
Journal of Software Engineering and Applications, 2022, 15, 385-405 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2022.1511022  Nov. 30, 2022 385 Journal of Software Engineering and Applications  
 

 
 
 

Architecture and Methodology of Unit Testing 
Embedding Pair-Wise Mode for Small Team 

Mengqing TanLi1, Ying Zhang2, Yulin Wang2 

1School of Software, University of South China, Hunan, China 
2School of Mechanical Engineering, University of South China, Hunan, China 

           
 
 

Abstract 
In this paper, the new organization for unit testing embedding pair-wise 
mode is proposed with the core thought focused on the cooperation of pro-
grammer and tester by “cross-testing”. The typical content of unit testing for 
the new organizing mode should have three aspects, including self-checking, 
cross-testing and independent-testing. For cross-testing, executing “pair-wise” 
mode, mainly tackles data testing, function testing and state testing, which 
function testing must be done by details and state testing must be considered 
for completeness. With the specializing of independent-testing, it should be 
taken as more rigid testing without arbitrariness. Consequently, strategy and 
measure are addressed for data testing focusing on boundary testing and 
function/state testing. And organizing method of procedure and key points of 
tackling unit testing are investigated for the new organizing mode. In order to 
assess the validity of our study and approach, a series of actual examples are 
demonstrated for GUI software. The result indicates that the execution of 
unit testing for the new organizing mode is effective and applicable. 
 

Keywords 
Unit Testing, Organizing Architecture, Pair-Wise Mode, Cross-Testing, Data 
Testing, Function/State Testing, Boundary Testing, Small Team 

 

1. Introduction and Background 

Unit testing is the first stage in software testing activity, and its workload is very 
heavy, and the test approach is mixed. It is undeniable that exploring an effective 
organizing mode for unit testing in a small team is a very meaningful work be-
cause software companies with a small team for software production have a rate 
of 75% in China [1] [2] [3] [4]. 

How to cite this paper: TanLi, M.Q., 
Zhang, Y. and Wang, Y.L. (2022) Archi-
tecture and Methodology of Unit Testing 
Embedding Pair-Wise Mode for Small Team. 
Journal of Software Engineering and Ap-
plications, 15, 385-405. 
https://doi.org/10.4236/jsea.2022.1511022 
 
Received: October 19, 2022 
Accepted: November 27, 2022 
Published: November 30, 2022 
 
Copyright © 2022 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2022.1511022
https://www.scirp.org/
https://doi.org/10.4236/jsea.2022.1511022
http://creativecommons.org/licenses/by/4.0/


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 386 Journal of Software Engineering and Applications 
 

As a kind of quality assurance measure and a node of software testing, unit 
testing should act as an important role in basic and verifying working [5] [6] [7] 
According to the general rule of quality assurance for a product, testing work of 
the software product may include self-testing, interchanging testing, and special 
testing [8] [9]. Considering the characteristic of software product, self-testing may 
focus on the code review of the software, and interchanging testing should apply 
“cross-testing” under “pair-wise” mode [5], and special testing must be independent 
for programming activity, and it will control the key quality of software units. 

On the other hand, programming is a professional technique activity, and a 
programmer usually has systematic knowledge and skills about some program-
ming languages and tools. Therefore, in organizing programmer tasks in a pro-
gramming activity, it should not be according to lonely programming with divi-
sions of the graphic user interface, analysis computation, printing output, etc. 
Otherwise, it should be done in terms of programming language and tools that the 
programmer had learned, familiarized and skilled in, especially for a small team [6]. 

However, in the organizing of software unit testing, the programmer must 
keep cooperation with the tester while their working procedure and effectiveness 
should be under necessary supervision, and all testing activity can run smoothly 
whenever key items should be controlled [5]. 

Overall, it must be noted that the software test organizing will be taken into 
account throughout the whole product life, and software quality assurance will 
present the characteristics of everybody involved [7] [10]. 

2. Related Literature and Work 

For the basic importance and universality of unit testing, Fu Bing [8] has given 
brilliant descriptions especially to improve the quality of programming code. For 
data testing of unit testing, Ron Patton [3] has paid close attention to the testing 
of boundary conditions. For function and state testing of unit testing, Li Fan [9] 
has demonstrated the coverage problem of “N+1-swith” with examples in detail. 

Consequently, the changing organization of software development is proposed 
by Emil Alegroth and Robert Feldt [4] with the term “Squad”, however, the de-
tail organizing architecture of test teams for software testing is lacking especially 
for a small team in China. Meanwhile, the testing process in software companies 
is deeply depicted in their case study [4], but the cooperation mechanism of test 
team is not given under new organization mode [5].  

Further, as the key content of software testing activity, the test suite construc-
tion should be considered with more concern, so previous work [6] on test suite 
construction of smoke test has shown the magnificence of data-driven in engi-
neering application software. And a more recent study [11] has provided the 
constructing method of grey-box for test suite of baseline package. 

As a consequence, this paper gives the definition of new organization of 
“Pair-wise” mode, and proposes its cooperation mechanism focusing on “cross- 
testing”. Of course, test design especially on test suite construction is deeply 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 387 Journal of Software Engineering and Applications 
 

discussed with strategy and concrete methods as well as some factual examples 
for GUI software. 

3. Architecture of Unit Testing Organizing 
3.1. New Organization for Unit Testing Embedding  

“Pair-Wise” Mode 

In order to assure the quality of software product especially the programming 
quality of software unit and module [8] [9], a new unit testing organization is 
proposed, and it is a test team whose organizing architecture is based on the co-
operation of testing activity and programming activity, and the Figure 1 [5] [9] 
has shown the detail. In Figure 1, the part that filled with grey depicts the per-
sonnel composite of small team. In this organizing mode, programmer and tes-
ter should conduct a pair-wise cooperator for unit programming and testing [9], 
and it is called “pair-wise” mode. For this “pair-wise” mode, when programming 
of a unit is finished, one programmer, acted as a tester, tests the code submitted 
by another programmer, and so on. Here, it is noticed that the programmer 
must submit his code to another programmer who will finish test design and 
testing execution, while the code is also submitted to testing manager with a 
copy. Advantages of “pair-wise” mode mainly include: 1) the software quality 
can be assured more effectively to avoid the mistake of individuals, 2) the testing 
and developing speed can be accelerated because of cooperating each other with 
intersection testing, 3) the testing cost may be decreased by finding BUG as early 
as possible, 4) it is easy to produce an atmosphere of cooperation [10]. 

Meanwhile, the key testing items of programming codes must be tested by an 
independent tester according to planning and supervising of the developing/testing 
manager. In this new organizing architecture, team manager focuses on the 
drawing and execution of testing standard, testing strategies and methods, be-
sides routine of workload arranging and work checking including key sampling 
doubling as independent tester. It implies that three or four people may con-
struct a test team with our experience, and this team will run with good effi-
ciency [11] [12]. 

As such, the testing activity between pair-wise cooperators may be called 
“cross-testing”, and that of acting key testing may be called “independent-testing”. 
Consequently, there are three kinds of testing activity in this new unit test 
 

 
Figure 1. Test team of software unit testing embedding pair-wise mode. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 388 Journal of Software Engineering and Applications 
 

organization, including self checking, cross-testing and independent-testing, 
which will be discussed in the next section in detail. 

3.2. Typical Contents of Unit Testing for New Mode 

Typical contents of unit testing for new organizing mode should have three as-
pects, including self-checking, cross-testing and independent-testing as men-
tioned above, and its details are shown in Figure 2. In self-checking, it mainly 
uses code review and “self-constructing test class”. For cross-testing, executing 
“pair-wise” mode, it mainly tackles data testing, function testing and state testing 
which function testing must be elaborately done for details and state testing 
must be considered as completely as possible. With the specializing of indepen-
dent-testing, it should be taken as more rigid testing without arbitrariness. More 
details are respectively described as follows. 

For code review, the programmer must do himself for all finished codes before 
the unit is submitted for cross-testing or independent-testing. For logic testing, it 
is must be executed according to actual requirement arranged by manager, ei-
ther engaging on cross-testing for important unit or executing indepen-
dent-testing for key unit. In the data testing, keeping more carefully, it must be 
done in terms of actual status of tested unit. Consequently, in the function and 
state testing, it should be executed according to factual feature of being tested 
units and software because the importance of units is distinguished, and it will 
also be discussed in Section 3.3 in detail. Further, distinguished strategy should 
be adopted for deferent software and system, and it will also be discussed in  
 

 
Figure 2. Typical content of unit testing activity. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 389 Journal of Software Engineering and Applications 
 

Section 3.3. 

3.3. Strategies and Measures in Unit Testing 

Because the workload of unit programming and testing is very heavy and inter-
changing between programmer and tester repeats very frequently, the efficiency 
and effectiveness must be taken into account in the strategy and measure of 
testing activity, which organizing mode and contents have stated in Figure 1 and 
Figure 2. 

3.3.1. Distinguished Strategy of Data Testing 
Data testing is the primary affair in unit testing especially for the scenario of 
GUI software testing with black-box, and the testing item should be chosen as 
Figure 2 in terms of the feature of actual software/system. Without loss of sys-
tematic unification, actual software system is divided into safety-critical system, 
general system, and lower system, and the unit of a system has three types, i.e. 
key unit, important unit, and unimportant unit. Thus, execution of data testing 
should be respectively done according to these actual types. Further, the arrange-
ment of data testing in unit testing must be executed in terms of actual state of 
software unit, i.e., key and important units should be arranged with more rigid 
testing, while fewer testing items should be briefly tackled to units for lower sys-
tem and unimportant units. Moreover, some testing items may be omitted in 
lower system and unimportant units. The concrete strategy is shown in Table 1. 

3.3.2. Distinguished Strategy of Function and State Testing 
Function and state testing is an ordinary and elaborated work in unit testing. 
Based on “Sheet and Form” of GUI software and system, the function and state 
may be numerous for a sheet and form, and the function and state testing must 
be kept on careful status and sustainable sense throughout the proceeding. 

For function testing, doing elaborately will be the best criterion in test design 
all the time. That is to say, every transformation of every state must be tested. 
Especially to deal with “error and exception state”, any error and exception state 
should not be omitted or leaked. 

For state testing, keeping completeness will be basic requirement in the 
process of test design. In the disposing procedure, the “return state” should be  
 
Table 1. The choice of testing items of data testing for deferent software/system. 

Testing items 
Safety-critical system General system Lower system 

KUa IUb UUc KU IU UU IU UU 

Data boundary ○d ○ ○ ○ ○ Δe ○ f 

Process boundary ○ ○ Δ ○ ○ Δ ○  

Format & interface ○ ○ ○ ○ Δ  Δ  

Safety ○ ○ ○ ○ Δ  Δ  

aKU-Key unit, bIU-Important unit, and cUU-Unimportant unit. d“○” presents an item 
that it must be done, e“△” implies an alternative item. and fthe blanket is an item unex-
pected to do. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 390 Journal of Software Engineering and Applications 
 

paid more attention in state testing, and all state of program execution must be 
considered including normal and abnormal state. Of course, some states can be 
aggregated if it is necessary. Without loss of briefness, the first stage of test de-
sign for state testing should be drawing of STD (State Transform Diagram). In 
the state transform diagram, all states must be divided correctly and precisely, 
and each label and each side must be described clearly and completely. 

3.4. Procedure Organizing Method of Unit Testing Activity 

There are four aspects in the cycle of unit testing activity as shown in Figure 3, 
including test design, testing execution, test record/report, track and statistics. It 
is an undeniable fact that the test design is the best important aspect, which the 
workload has occupied 60% of software testing [10]. And testing execution will 
determine the actual result of software testing and it is also the best concrete 
work. At the same time, test record and report is basic work, by which the saving 
file is taken as the important accordance and source for management and con-
trol of software testing activity. As a consequence, testing track and statistics will 
affect the derivation of software testing and the effectiveness of monitoring or 
supervising of whole life cycle of software testing activity. 

As depicted above, the new organization embedding “pair-wise” mode can be 
taken as a general arranging methodology; the detailed procedure of unit testing 
can also be described by embedding pair-wise mode shown in Figure 4. The 
central part of Figure 4 with grey filling will be the key part for testing activity, 
and dependency analysis will be referred to incremental testing while test suite is 
the important carrier of test case package. On the left of Figure 4, there are a 
number of items that will be the supporting materials for test design and testing 
execution in unit testing activity. 1) Testing standard—it is the criteria for test 
design, testing execution, test record/report, testing track and statistics. 2) Test-
ing strategy—it mainly refers to reasonable and effective disposal of whole test-
ing activity, including planning, schedule, controlling, monitoring and so on. 3) 
Testing method—including general and conventional testing method and special 
and particular testing approach, including grey-box testing and mutation  
 

 
Figure 3. The typical cycle of unit testing activity. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 391 Journal of Software Engineering and Applications 
 

 
Figure 4. Procedure of unit testing embedding pair-wise mode. 
 
testing approach, etc. 4) Testing environment—including hardware and sup-
porting software and system. 5) History experience—mainly referring to the ex-
perience of analysis, test design, test execution, BUG track and so on. 6) Tes-
ter—is also the affecting factor for testing organizing mainly considering their 
knowledge and skills. Without deniable fact, the process of testing activity will be 
continuously repeated when the testing result is “no pass” and the program and 
code is returned to programmer, and this status is stated in the tail of Figure 4. 

4. Key Organizing Method of Unit Testing 
4.1. Start Point of Unit Testing for GUI Software 

For GUI software, we have found that the “Sheet/Form” can be taken as the ba-
sic unit and start point for software unit testing, and it has been verified by fac-
tual practice including grey-box testing [11], in which all “Controls” in a sheet 
should be considered as a whole subject together even if there are data exchang-
ing each other. However, following aspects must be paid attention, including 1) 
the programmer should finish all tasks of GUI layout and coding of a 
“Sheet/Form” before it is submitted to cross-testing. 2) All code of event dispos-
ing of the “Sheet/Form” must have been debugged and have implemented their 
function. 3) All programs must be reviewed with desk check by the programmer 
himself, including obligated to the criteria and unification of coding. 4) For all 
code, the exception handling should be considered as completely as possible. 

4.2. Activity Organizing of “Cross-Testing” and  
“Independent-Testing” 

As shown in Figure 1, cross-testing is the primary and central work in unit test-
ing which workload is very heavy and work interchanging occurrs with high 
frequency. The organizing of cross-testing should consider the following re-
quirements. 
• Test design must keep the most optimal position and cooperation with pro-

gramming activity. 
• Organizing cross-testing should be prior in order to improve efficiency. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 392 Journal of Software Engineering and Applications 
 

• The programmer must submit a copy of code to manger with good notes 
when it is submitted to testing. 

• In the execution of cross-testing, programmer could not alter his code before 
the testing result was returned. 

• The tester must do his testing task in real earnest and give the real testing re-
sult according to the programmer’s code while tester may give some reasona-
ble suggestion if necessary. 

• If there are some questions and disputes about testing result, the programmer 
must report to the manger and executes the programming task in terms of 
manager’s approval. 

• Tester must seriously record the testing result and save the documentation in 
safety. 

However, independent-testing should not be omitted by testing activity. To 
some extent, the requirement of independent-testing in testing technique and 
skill is more serious and rigid, e.g., some contents of safety testing. At the same 
time, the coding quality of key unit and module must be controlled in indepen-
dent-testing by particular tester, and it is also the requirement of good quality 
system to assure the correctness and high performance of software code. 

4.3. Time-Axis of Testing-Programming Organizing in  
“Cross-Testing” 

For testing activity, good schedule is the primary condition for testing organiz-
ing. Figure 5 has illustrated time axis of general testing activity for “cross-testing”. 
In Figure 5, the below part of figure is the testing activity organizing, and the up 
part is the programming organizing. In order to keep accordance of progress in 
testing-programming activity, two methods of “idle-waiting manner” and “pa-
rallel-disposing manner” can be applied. And the term “waiting or program-
ming” in Figure 5 implies that two disposing manner are adopted, i.e., one pro-
grammer waiting is executed in “idle-waiting manner” as a tester, and program-
ming or testing for two programmers or testers is concurrently done in “paral-
lel-disposing manner”. 

4.4. Typical Application of “Idle-Waiting” & “Parallel-Disposing” 

As a consequence, there are two methods to tackle cross-testing in test team, that 
is, “idle-waiting manner” and “parallel-disposing manner” as mentioned above.  
 

 
Figure 5. Procedure time axis of general testing activity for cross testing. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 393 Journal of Software Engineering and Applications 
 

If the gap between the programming time and testing time is not very long, the 
“idle-waiting manner” should be applied. Otherwise, if the gap between the pro-
gramming time and testing time is very long and programming time is unde-
cided for programming activity, the “parallel-disposing manner” could be used. 

For “idle-waiting manner”, when a programmer engages into his program-
ming working, another programmer may settle his hands as follows: 1) having a 
cup of coffee in the resting room, 2) talking about each other with his working 
fellows in network for technique issues, 3) enjoying himself with music and so 
on, 4) and doing testing work later at night etc. 

For “parallel-disposing manner”, when a programmer has not finished his 
unit programming, another programmer should continuously do his own pro-
gramming work or do test design of other parts. Of course, for a newer of join-
ing team, he may learn something from the programmer who is programming 
for a key algorithm or interesting code segment, etc. 

4.5. Using of Improved STD for Function and State Testing [3] 
4.5.1. Improved STD for GUI Software Testing 
Facing particular features of GUI software, the improved STD is proposed. The 
distinguishing of improved STD includes three aspects. 1) The symbol “●” 
presents the start point of diagram, because a concrete control and event are ex-
isted to start for a state transforming in the GUI software, 2) the end point of 
diagram is labeled by symbol “⊙” for its graphical representation and expres-
siveness, and 3) the synthesis of many same or similar states is reasonably done. 

4.5.2. Testing Process Based on Improved STD 
The procedure of function and state testing based on improved STD could be 
given as follows. 
• A programmer, acted as a tester, receives the finished programming code 

from another programmer, and does necessary analysis including FTA 
(Fault-Tree Analysis). 

• According to software function, test design is firstly performed for detail di-
vided functions, and taken care for the respective disposing based on factual 
running and exception handling. 

• In terms of Section 3.5.1 above, the improved STD is drawn for the actual 
software. 

• Based on the finished STD, test cases for state testing are consequently de-
signed. 

• Executing test case or test suite, and saving testing records and reporting 
BUG after testing. 

• Doing statistical analysis, and tracking BUGs. 

5. Examples of Unit Test Activity in Small Team 

In unit testing activity as shown in Figure 2, data testing and function/state 
testing are main testing work, while logic testing is not required for general unit 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 394 Journal of Software Engineering and Applications 
 

except key or important unit of software system. Of course, self-checking must 
be finished before data testing and function/state testing are assigned. For data 
testing, data value boundary testing and process boundary testing are key items 
firstly, and sample testing is an important method. For function/state testing, the 
improved STD is a key tool with good expressiveness. At first, some typical dis-
posing methods for unit test activity are briefly introduced as follows. 

5.1. Typical Disposing Methods for Unit Test Activity 

Besides data testing according to general conventional approach, the sampling 
testing may be applied for testing of data value boundary and process boundary 
control in unit testing. 

5.1.1. Typical Disposing Method of Data Value Boundary of  
“Input Control’s” 

Taking for example with Visual C++, sampling test of boundary value can be 
disposed as follows. 

1) Whatever kind of “Input Control”, if the boundary value is not given ac-
cording to the requirement, it should be certificated and signed with “NO 
PASS”. 

a) CString type data etc.—Input character “T......” by keyboard with limited 
number of designed requirement plus one, and stop when listened to the “Da” 
voice. Then, if the number of characters input is equal to the design limit, 
“PASS” can be certificated. Otherwise, “NO PASS” should be signed. 

b) Integer type data etc.—It must adopt the method of program executing. 
Inputting digital “1......” by keyboard with up limited value of designed require-
ment adding “1” and low limited value of designed requirement subtracting “1”. 
Executing the program, if the error prompt information is displayed, “PASS” can 
be certificated. Otherwise, “NO PASS” should be signed. 

c) Float type data etc.—It must adopt the method of program executing. In-
putting data “xxxxxx.x” by keyboard with up limited value of designed require-
ment adding one accuracy unit and low limited value of designed requirement 
subtracting one accuracy unit. Executing the program, if the error prompt in-
formation is displayed, “PASS” can be certificated. Otherwise, “NO PASS” should 
be signed. 

2) Sampling test for “Input Control” of “ComBoBox/ComBoBoxEx”. 
a) CString type data etc.—including two situations—Situation 1 is that layout 

size of “Input Control” is smaller than designed requirement and situation 2 is 
that layout size of “Input Control” is larger than designed requirement. For the 
former situation, Inputting character “T......” by keyboard with limited number of 
designed requirement plus one, and stop when listened to the “Da” voice. Then, 
if number of characters input is equal to the design limit, “PASS” can be certifi-
cated. Otherwise, “NO PASS” should be signed. For the later situation, it must 
adopt the method of program executing like Integer type data of “Edit/Rich Edit”. 

b) Integer type data etc.—it is the same as “Input Control” of “Edit/Rich Edit”. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 395 Journal of Software Engineering and Applications 
 

c) Float type data etc.—it is the same as “Input Control” of “Edit/Rich Edit” 
too. 

5.1.2. Typical Disposing Method of Process Boundary 
In the practice of software product running, many accidents emerged referring 
to boundary control which had brought about a lot of loss. How to tackle and 
avoid this kind of software BUG, it has become a serious problem. 

As such, disposing measures of process boundary can be generally given as 
follows. 

1) If the control boundary is the status of the usual data which user can oper-
ate, the boundary value of control object must be set. 

2) If the control boundary can be transformed into usual data as 1), it should 
be deal with as usual data after transforming. 

3) If the control boundary is the status of varied data which user is blind, it 
should be tackled in primary setting. 

4) For tackling boundary control and its limit, the status of extra-condition 
and network attack should be considered especially for DB of distributed net-
work. 

Factual status of software is distinguished and varied with version upgrade, 
and the unit testing of software will have respective features. However, the unit 
testing includes generally two aspects—data testing and function/state testing. 
Further, due to generality of GUI software in desktop system, the following will 
investigate unit testing with factual examples in PQMS2 (Product Quality Mon-
itoring System version 2.0) in detail. 

5.2. Data Testing Examples Focusing on Boundary Testing 

As shown in Figure 2, data testing mainly includes boundary testing, format and 
interface testing, and safety testing, etc. However, for GUI software, format and 
interface control can be generally assured by DBMS, and safety testing should be 
arranged for system testing in particular e.g., leakage testing of memory, SQL 
injection testing, etc. As a consequence, unit data testing may focus on boundary 
testing. 

5.2.1. Boundary Testing of Key Unit with “Input Control’s” - Locally  
Important 

As we all know, for the key unit especially that of safety-critical system, the me-
thod of sampling test should not be adopted and full testing is obliged. In 
PQMS2, the unit of setting coefficient is a key unit of Median chart [13], as 
shown in Figure 6, because its efficacy is significant for the functional running 
and displaying effectiveness in Median chart. Thus, full testing must adopted in 
this unit for boundary testing. 

In Figure 6, there are six “Input Control’s for coefficients gathering, and all of 
those must be tested, instead of sampling test, with data boundary value. With-
out much difficulty, the test method is consequently according to Section 4.1.1. 
Thus, four EditBoxes of coefficient of magnitude should be verified in terms of  

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 396 Journal of Software Engineering and Applications 
 

 
Figure 6. GUI of setting coefficient of median chart in PQMS2. 
 
“Float data” value and two EditBoxes of coefficient of update should be verified 
according to “Integer data” value. And detail procedure may be depicted as fol-
lows,  

1) For EditBoxes of “Float data” value, i.e., “Block magnitude of vertical”, 
“Whole magnitude of figure”, “R-block magnitude of vertical” and “R-whole 
magnitude of figure”—Input max value “1000.01” and min value “0.00” by key-
board with accuracy “0.01” in the GUI “Form/Sheet”, and execute the program, 
if the error prompt information is displayed, “PASS” can be certificated. Other-
wise, “NO PASS” should be signed. 

2) For EditBox “Update velocity” with “Integer data” value—Input max value 
“10,001” and min value “−1” by keyboard with accuracy “1”, and execute the 
program, if the error prompt information is displayed, “PASS” can be certifi-
cated. Otherwise, “NO PASS” should be signed. 

3) Similarly, for EditBox “Interval of history display” with “Integer data” val-
ue—Input max value “100,001” and min value “999” by keyboard with accuracy 
“1”, and execute the program, if the error prompt information is displayed, 
“PASS” can be certificated. Otherwise, “NO PASS” should be signed. 

5.2.2. Boundary Testing of Key Unit with “Input Control’s”—Whole  
Important 

As a consequence, the approach of sampling test should not be applied for “In-
put Controls” of key units with whole importance, such as the setting unit of 
control chart [13], because it very important to other input components and the 
whole system in PQMS2. And the GUI of the setting unit of control chart is 
shown in Figure 7. 

Thereby, all “Input Controls” of the setting unit of control chart must be 
tested for boundary value. Similarly, these five ComBoBoxes should be verified  

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 397 Journal of Software Engineering and Applications 
 

 
Figure 7. GUI of setting of control chart in PQMS2. 
 
in terms of “CString data” value. i.e., (1) for ComBoBox “Accuracy of inspection 
data”—Input character “T......” by keyboard with limited 7 times, and stop when 
listened to the “Da” voice. Then, if the number of characters input is equal to 6, 
“PASS” can be certificated. Otherwise, “NO PASS” should be signed. (2) For 
ComBoBox “Moving mode”—Input continuously character “T......” by keyboard 
with limited 51 times, and stop when listened to the “Da” voice. Then, if the 
number of input characters is equal to 50, “PASS” can be certificated. Otherwise, 
“NO PASS” should be signed. (3) For other three ComBoBoxes “Sampling limit 
of counting chart”, “Division department”, “Name of testing operator”—the 
disposing is the same as the ComBoBox “Moving mode”. 

5.2.3. Boundary Testing of Popular Unit with “Input Control’s” 
For GUI software, a lot of “Form/Sheet” exists as popular units for general data 
input and function handling, and the sampling testing may be used in this kind 
of unit testing activity. As a popular unit, the GUI unit of factory division [14] in 
PQMS2 is shown in Figure 8. Because it is not a very important unit, the sam-
pling testing method may be applied for testing of data boundary value in this 
unit. 

As such, considering the significance of “Input Control” itself, three “Input 
Control’s” should be tested by sampling for boundary value, i.e. EditBox “Code 
and name of factory”, EditBox “Division code” and EditBox “Division name”. Ac-
cording to the test method above proposed, sampling test for these three Edit-
Boxes with “CString data” value should be adopted, i.e., (1) for EditBox “Code 
and name of factory”—Input character “T......” by keyboard with limited 51 times, 
and stop when listened to the “Da” voice. Then, if the number of input characters 
is equal to 50, “PASS” can be certificated. Otherwise, “NO PASS” should be signed; 
(2) for EditBox “Division code”—Input character “T......” by keyboard with limited 
21 times, and stop when listened to the “Da” voice. Then, if the number of in-
put characters is equal to 20, “PASS” can be certificated. Otherwise, “NO PASS” 
should be signed; (3) for EditBox “Division name”—the same as EditBox 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 398 Journal of Software Engineering and Applications 
 

 
Figure 8. GUI of factory division in PQMS2. 
 
“Code and name of factory”. Consequently, other five EditBoxes are omitted to 
verify the boundary value. 

5.3. Data Testing/Function Testing Example of Key Unit with  
Traditional Method 

For key unit testing embedding pair-wise mode, the logic testing of control flow 
may be used for key unit with special requirement [8]. In logic testing of control 
flow, there are three main kinds, i.e., sequential logic, branch logic and loop log-
ic. The following will demonstrates the traditional method for branch logic testing 
because branch logic error is easy-to-occur BUG in factual software application. 

In PQMS2, the computation of Median chart is a main part for Median chart 
application, and choice and computation of control chart parameter is a key 
logic processing unit. The control flow diagram of computation of control chart 
parameter of Median chart is shown in Figure 9, and its unit testing is a typical 
branch logic testing with traditional method. According to usual testing method 
of branch logic, test cases can be given as list in Table 2. We can find, in Table 
2, that this kind of branch logic testing is not very difficult except in a responsi-
ble and careful manner. 

5.4. Function and State Testing Examples for GUI Software 
5.4.1. Function and State Testing of Key Unit for Basic  

“Form/Sheet”—Locally Important 
As shown in Figure 6 above, for function and state testing, the unit of setting 
coefficient of the Median chart in PQMS2 is relatively simple because fewer 
functions and states are tackled. 

According to the test procedure of GUI software based on “Form/Sheet”, the 
function of data saving function of setting coefficient “Form/Sheet” should be 
tested firstly, and its test case is executed as shown in Table 3 [9]. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 399 Journal of Software Engineering and Applications 
 

 
Figure 9. The control flow diagram of parameter computation of control chart. 
 
Table 2. Test case of parameter computation of control chart in Median chart. 

IDa Branch Input Expected output 

TC020 a-b-c nVolume = 2 MA = 1.880 

TC021 a-d-e-f nVolume = 3 MA = 1.187 

TC022 a-d-g-h-i nVolume = 4 MA = 0.796 

TC023 a-d-g-j-k-l nVolume = 5 MA = 0.691 

TC024 a-d-g-j-m-n-p nVolume = 6 MA = 0.548 

TC025 a-d-g-j-m-q-r-s nVolume = 7 MA = 0.509 

TC026 a-d-g-j-m-q-t-u-v nVolume = 8 MA = 0.433 

TC027 a-d-g-j-m-q-t-w-x-y nVolume = 9 MA = 0.412 

TC028 a-d-g-j-m-q-t-w-z-I-II nVolume = 10 MA = 0.362 

TC029 a-d-g-j-m-q-t-w-z-III nVolume = 1 Prompt informationb 

TC030 a-d-g-j-m-q-t-w-z-III nVolume = 0 Prompt information 

TC031 a-d-g-j-m-q-t-w-z-III nVolume = −1 Prompt information 

TC032 a-d-g-j-m-q-t-w-z-III nVolume = −20 Prompt information 

TC033 a-d-g-j-m-q-t-w-z-III nVolume = 11 Prompt information 

TC034 a-d-g-j-m-q-t-w-z-III nVolume = 50 Prompt information 

a. the front part of all ID are omitted with “PQMS2-MC0-UNI-”, b. the prompt informa-
tion is “the value of nVolume is error, given with 1.880”. 
 

For state testing of setting coefficient “Form/Sheet”, the improved STD (State 
Transform Diagram) should be drawn correctly and completely [3]. As our test 
approach, the improved STD of setting coefficient in Median chart has been fi-
nished as shown in Figure 10. Consequently, in terms of the result of improved 
STD, test cases of the unit of setting coefficient of Median chart can be finished 
as test design, and the result is shown in Table 4. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 400 Journal of Software Engineering and Applications 
 

Table 3. Test case of data saving function of setting coefficient sheet in Median chart. 

ID Input 
Expected  

output 

PQMS2-MCF-UNI-TC020 

Start setting coefficient sheet from Median chart application  
program, input “7.0” in EditBox “magnitude coefficient of vertical 
coordinator”, input “1.5” in EditBox “magnitude coefficient of 
Median figure”, input “8.0” in EditBox “R magnitude coefficient 
of vertical coordinator”, input “1.0” in EditBox “magnitude  
coefficient of R figure”, input “0” in EditBox “coefficient of  
update”, and input “1500” in EditBox “gap of history  
manifesting”, and click Button “Save Setting” finally. 

Figure is renewed,  
display correctly and no 
prompt of error  
information is given. 

 
Table 4. Test case of state testing of setting coefficient sheet in Median chart. 

ID 
Start  
state 

End  
state 

Input Expected output 

PQMS2-MCS-UNI-TC001 S0 S1 
Click the menu item of  
“Setting-Coefficient Setting” or  
toolbar item “Coefficient Setting” 

Display the sheet “setting 
coefficient of Median chart” 

PQMS2-MCS-UNI-TC002 S1 S4 
No input operation, click the button 
“Cancel” or “Shut off” in the  
right-up angle 

Cancel setting 

PQMS2-MCS-UNI-TC003 S1 S2 Input data in the sheet Display data in the sheet 

PQMS2-MCS-UNI-TC004 S2 S4 
Keep default data and click the  
button “Save Setting” 

Save Setting data and no 
error information prompt 

PQMS2-MCS-UNI-TC005 S2 S3 
Keep blank in all “Input controls”  
and click the button “Save Setting” 

Display error information 
prompt 

PQMS2-MCS-UNI-TC006 S3 S4 
Click the confirming button of dialogue 
or button “Shut off” in the right-up 
angle of dialogue 

The idle state 

PQMS2-MCS-UNI-TC007 S2 S4 
When input data, click the button 
“Cancel” or “Shut off” in the  
right-up angle of sheet 

Cancel setting 

PQMS2-MCS-UNI-TC008 S4 S5 
Click “Shut off” in the right-up angle  
of sheet 

Exit 

 

 
Figure 10. The improved state transform diagram of setting coefficient in Median chart. 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 401 Journal of Software Engineering and Applications 
 

5.4.2. Function and State Testing of Key Unit for Basic  
“Form/Sheet”—Whole Important 

Conversely, many key units with basic “Form/Sheet” GUI have much more 
functions to tackle such as Figure 8. The function and state testing for this kind 
of GUI unit will be more complex and difficult, e.g., the GUI unit of inspection 
data in PQMS2, which it is a “Form/Sheet” for inputting inspection data and 
likes Figure 8 by a bit but it is more complex. 

Of course, the function testing should be finished firstly. For function testing, 
main items include 1) displaying of inspection data sheet with history default 
data, 2) manually input data, 3) manually modify data, 4) manually delete data, 
5) manually save data, 6) load saving data, 7) import digital gauge data, 8) im-
port Notepad data, 9) re-enter data, 10) save all data. 

Additionally, for some key units, the member function testing with traditional 
method including logic testing should be done especially for critical require-
ment. 

For state testing, in order to describe conveniently, we firstly give the im-
proved STD of inspection data “Form/Sheet” shown in Figure 11 and this im-
proved STD has given the necessary information for test design of state testing. 
In Figure 11, more disposing functions and states mainly include 1) Open & 
display “Tree-control”, the state is presented with S2. 2) Exception messages are 
disposed respectively, such as “Exception message of adding—S4-1”, “Exception 
message of modifying—S4-2”, “Exception message of deleting—S4-3”, “Exception 
message of input & import—S4-4”, “Exception message of saving all—S4-5” etc. 3) 
Verification and result display are disposed respectively, referring to S3-1, S3-2. As 
such, test design can be done according to information given in Figure 11. 

Consequently, in test case design of state testing, all state transforming infor-
mation in Figure 11 must be used, and the format of test case is similar to Table 
4, but the quantity of test case of state testing are more with the volume of 30, 
which codes are from PQMS2-EDS-UNI-TC010 to PQMS2-EDS-UNI-TCTC039, 
and its detail contents are abbreviated here. 

5.4.3. Function and State Testing of Popular Unit for Basic “Form/Sheet” 
The unit of factory division in PQMS2, which the GUI of this unit is illustrated 
in Figure 8, is a typical pattern of popular GUI unit. For this kind of popular 
GUI unit, the function and state testing should execute the strategy mentioned 
in Section 3.3.2, i.e., “Sheet and Form” may be taken as an independent unit for 
function and state testing for GUI software. 

It is obvious that functions of displaying, adding, modifying, deleting and 
re-entering should be tested firstly. Of course, test cases of function testing will 
be more for popular GUI unit because of more function disposing. Factually, there 
are 22 test cases in this example with codes of PQMS2-DDF-UNI-TC010-TC031. 
At the same time, it should be noticed that all these functions must be carefully 
tested without forgetting, missing and leaking. 

Consequently, state testing may be done according to improved STD as shown  

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 402 Journal of Software Engineering and Applications 
 

 
Figure 11. The improved state transform diagram of inspection data in PQMS2. 
 
in Figure 12. In Figure 12, in order to depict state and state-transform more 
clearly and to be understood easily [3], two particular states are given for which 
it is a sub-partitioning for the state of input and display, i.e., “Input and display 
data in factory division sheet—S2-1” and “Display data variety in list—S2-2”. Simi-
larly, “S4-1, S4-2, S4-3” and “S3-1, S3-2” are also sub-partitioning. 

If it is unnecessary, the member function testing with conventional method 
including logic testing may be omitted for this kind of popular GUI unit. How-
ever, if the result of integration testing or system testing [15] indicated that some 
units have critical BUG, these units must be rigidly tested in regression testing 
[16] including traditional logic testing, and preferably executing by an indepen-
dent tester. 

5.4.4. Function and State Testing of General Unit without “Input Control” 
In GUI software, the execution of some functions do not rely on the “Sheet/Form”, 
and run by other patterns such as internal computation, database, console, and 
so on. For this kind of function and state testing, the function testing may be ex-
ecuted in the level of member function testing or even level of code segment of 
the operation method. However, if testing in low level occurred for key unit, the 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 403 Journal of Software Engineering and Applications 
 

 
Figure 12. The improved state transform diagram of factory division in PQMS2. 
 

 
Figure 13. The improved state transform diagram of deleting all data from category. 
 
independent tester may act as a judge in whole testing activity. For state testing, 
regardless “Input control”, the improved STD should still be adopted. 

Figure 13 shows the improved STD of “deleting all data from category”, 
which is a function for initialization of PQMS2. As such, test case design can be 
done in terms of result of Figure 13, and the state testing of this example include 
9 test cases with code of PQMS2-DAS-UNI-TC010-TC018. For the execution of 
state testing of this kind unit, the probe should be applied to display the medium 
and final result of testing with visual mode. 

6. Result and Conclusion 

In China, the situation of software products with a small team is very popular at 
a great rate, and exploring an effective and cooperative test team for software 

https://doi.org/10.4236/jsea.2022.1511022


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 404 Journal of Software Engineering and Applications 
 

production is an important work. And how to organize the testing activity and 
how to execute the unit testing task will be a very meaningful affair in the rou-
tine. In this paper, according to aspects of organizing architecture and organiz-
ing execution of unit testing activity embedding pair-wise mode for a small 
team, the detailed contents of organizing architecture and organizing execution 
are completely discussed. For this new organization, organizing architecture 
mainly includes personnel organizing and task division. And then organizing 
method of procedure and key points of talking unit testing are discussed in de-
tail. Without loss of generality of our study, and a series of factual executable 
examples are investigated for GUI software including the update testing ap-
proach and traditional approach. The results of unit testing activity in operation 
practice indicate that organizing architecture embedding pair-wise mode for a 
small team is reasonable and organizing execution of unit testing activity fitting 
practice operation is effective. 

Conflicts of Interest 

The authors declare no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Boehm, B.W. (1979) Classics in Software Engineering. Yourdon Press, New Jersey. 

[2] Runeson, P. (2009) Guidelines for Conducting and Reporting Case Study Research 
in Software Engineering. Empirical Software Engineering, 14, 131-164.  

[3] Patton, R. (2006) Software Testing. 2th Edition, Pearson Education Inc., New York. 

[4] Alégroth, E. and Feldt, R. (2017) On the Long-Term Use of Visual Gui Testing in 
Industrial Practice: A Case Study. Empirical Software Engineering, 22, 2937-2971. 
https://doi.org/10.1007/s10664-016-9497-6 

[5] Tang, D., TanLi, M. and Li, T. (2022) Software Test Organizing for Small Team 
Based on “Pair-Wise” Mode. Proceedings of 2022 International Conference on 
Smart Transportation and Future Mobility, Changsha, 2-4 September 2022, Unpub-
lished. 

[6] TanLi, M., Zhang, Y., Jiang, Y. and Wang, Y. (2021) Baseline Test Suite Construc-
tion of Smoke Test for Extreme Programming. IOP Conference Series: Materials 
Science and Engineering, 1179, Article ID: 012001. 
https://doi.org/10.1088/1757-899X/1179/1/012001 

[7] TanLi, M.Q., Jiang, Y. and Wang, Y.L. (2020) Infrastructure Building of Software 
Testing for Engineering Software Based on Cooperation of University and Compa-
ny. Proceedings of the 10th International Workshop on Computer Science and En-
gineering, Shanghai, 19-21 June 2020, 18-26.  

[8] Fu, B. (2014) Course of Software Testing Technology. Tsinghua University Press, 
Beijing.  

[9] Li, F. (2016) Software Testing Technology. China Machine Press, Beijing. 

[10] Xu, Y.-Y. (2015) A Study of Test Case Reuse Based on CBR. Computer Engineering 
and Software, 36, 117-120. 

[11] TanLi, M., Zhang, Y., Wang, Y. and Jiang, Y. (2015) Grey-Box Technique of Soft-
ware Integration Testing Based on Message. Journal of Physics: Conference Series, 

https://doi.org/10.4236/jsea.2022.1511022
https://doi.org/10.1007/s10664-016-9497-6
https://doi.org/10.1088/1757-899X/1179/1/012001


M. Q. TanLi et al. 
 

 

DOI: 10.4236/jsea.2022.1511022 405 Journal of Software Engineering and Applications 
 

2025, Article ID: 012096. https://doi.org/10.1088/1742-6596/2025/1/012096 

[12] Chen, Z. (2005) Research and Implementation of Test Method in Task Arrange-
ment of Resource Satellite. Radio Engineering, 35, 62-64. 

[13] Tang, D., TanLi, M., Jiang, Y., Wan, X. and Peng, R. (2019) Product Quality Moni-
toring of Shewhart Chart Based on Function Integration for Manufacturing Factory. 
Journal of Physics: Conference Series, 1302, Article ID: 042044. 
https://doi.org/10.1088/1742-6596/1302/4/042044 

[14] TanLi, M., Jiang, Y., Wang, Y., Wang, X. and Peng, R. (2018) Digital Inspection of 
Cutting and Machining Based on Manufacturing Quality for Shop Floor. DEStech 
Transactions on Engineering and Technology Research, 1-7. 
https://doi.org/10.12783/dtetr/icmeit2018/23372 

[15] TanLi, M., Zhang, Y. and Wang, Y. (2020) System Testing Based on Software Per-
formance. Computer Engineering and Software, 41, 1-5, 41. 

[16] TanLi, M., Zhang, Y. and Wang, Y. (2020) Research on Fault Tree Technique in 
Software Regression Testing. Computer Engineering and Software, 41, 5-8, 25. 

 
 

https://doi.org/10.4236/jsea.2022.1511022
https://doi.org/10.1088/1742-6596/2025/1/012096
https://doi.org/10.1088/1742-6596/1302/4/042044
https://doi.org/10.12783/dtetr/icmeit2018/23372

	Architecture and Methodology of Unit Testing Embedding Pair-Wise Mode for Small Team
	Abstract
	Keywords
	1. Introduction and Background
	2. Related Literature and Work
	3. Architecture of Unit Testing Organizing
	3.1. New Organization for Unit Testing Embedding “Pair-Wise” Mode
	3.2. Typical Contents of Unit Testing for New Mode
	3.3. Strategies and Measures in Unit Testing
	3.3.1. Distinguished Strategy of Data Testing
	3.3.2. Distinguished Strategy of Function and State Testing

	3.4. Procedure Organizing Method of Unit Testing Activity

	4. Key Organizing Method of Unit Testing
	4.1. Start Point of Unit Testing for GUI Software
	4.2. Activity Organizing of “Cross-Testing” and “Independent-Testing”
	4.3. Time-Axis of Testing-Programming Organizing in “Cross-Testing”
	4.4. Typical Application of “Idle-Waiting” & “Parallel-Disposing”
	4.5. Using of Improved STD for Function and State Testing [3]
	4.5.1. Improved STD for GUI Software Testing
	4.5.2. Testing Process Based on Improved STD


	5. Examples of Unit Test Activity in Small Team
	5.1. Typical Disposing Methods for Unit Test Activity
	5.1.1. Typical Disposing Method of Data Value Boundary of “Input Control’s”
	5.1.2. Typical Disposing Method of Process Boundary

	5.2. Data Testing Examples Focusing on Boundary Testing
	5.2.1. Boundary Testing of Key Unit with “Input Control’s” - Locally Important
	5.2.2. Boundary Testing of Key Unit with “Input Control’s”—Whole Important
	5.2.3. Boundary Testing of Popular Unit with “Input Control’s”

	5.3. Data Testing/Function Testing Example of Key Unit with Traditional Method
	5.4. Function and State Testing Examples for GUI Software
	5.4.1. Function and State Testing of Key Unit for Basic “Form/Sheet”—Locally Important
	5.4.2. Function and State Testing of Key Unit for Basic “Form/Sheet”—Whole Important
	5.4.3. Function and State Testing of Popular Unit for Basic “Form/Sheet”
	5.4.4. Function and State Testing of General Unit without “Input Control”


	6. Result and Conclusion
	Conflicts of Interest
	References

