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Abstract 
The 3D reconstruction pipeline uses the Bundle Adjustment algorithm to re-
fine the camera and point parameters. The Bundle Adjustment algorithm is a 
compute-intensive algorithm, and many researchers have improved its per-
formance by implementing the algorithm on GPUs. In the previous research 
work, “Improving Accuracy and Computational Burden of Bundle Adjust-
ment Algorithm using GPUs,” the authors demonstrated first the Bundle 
Adjustment algorithmic performance improvement by reducing the mean 
square error using an additional radial distorting parameter and explicitly 
computed analytical derivatives and reducing the computational burden of 
the Bundle Adjustment algorithm using GPUs. The naïve implementation of 
the CUDA code, a speedup of 10× for the largest dataset of 13,678 cameras, 
4,455,747 points, and 28,975,571 projections was achieved. In this paper, we 
present the optimization of the Bundle Adjustment algorithm CUDA code on 
GPUs to achieve higher speedup. We propose a new data memory layout for 
the parameters in the Bundle Adjustment algorithm, resulting in contiguous 
memory access. We demonstrate that it improves the memory throughput on 
the GPUs, thereby improving the overall performance. We also demonstrate 
an increase in the computational throughput of the algorithm by optimizing 
the CUDA kernels to utilize the GPU resources effectively. A comparative 
performance study of explicitly computing an algorithm parameter versus 
using the Jacobians instead is presented. In the previous work, the Bundle 
Adjustment algorithm failed to converge for certain datasets due to several 
block matrices of the cameras in the augmented normal equation, resulting 
in rank-deficient matrices. In this work, we identify the cameras that cause 
rank-deficient matrices and preprocess the datasets to ensure the convergence 
of the BA algorithm. Our optimized CUDA implementation achieves con-
vergence of the Bundle Adjustment algorithm in around 22 seconds for the 
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largest dataset compared to 654 seconds for the sequential implementation, 
resulting in a speedup of 30×. Our optimized CUDA implementation pre-
sented in this paper has achieved a 3× speedup for the largest dataset com-
pared to the previous naïve CUDA implementation.  
 

Keywords 
Scene Reconstruction, Bundle Adjustment, Levenberg-Marquardt, 
Non-Linear Least Squares, Memory Throughput, Computational  
Throughput, Contiguous Memory Access, CUDA Optimization 

 

1. Introduction 

In the previous article [1], the authors presented the use of the second radial 
distorting coefficient and explicitly computed analytical derivatives to modify 
the Adjustment (BA) algorithm to reduce the mean square error. Using the 
second radial distorting parameter to reduce the mean square error resulted in 
additional computations. A naïve CUDA implementation on graphics processing 
units (GPUs) addressed the increased computational burden. The computational 
performance of the modified BA algorithm [1] for the largest dataset with the 
naïve CUDA implementation resulted in a speedup of 10×. The naïve CUDA 
implementation performance of the modified BA algorithm was insufficient for 
large datasets due to not addressing the computational and memory throughput 
issues associated with execution on GPUs.  

The performance of the GPU execution greatly depends on the computational 
and memory throughput. The computational throughput depends on the level of 
concurrency that can be achieved in computing different mathematical opera-
tions asynchronously. The memory throughput depends on the rate at which the 
data can be accessed from the memory and the total number of memory transac-
tions. The time taken to access data from memory is around two orders of mag-
nitude compared to the time taken to perform a mathematical computation, 
which is less than one order of magnitude. This paper proposes techniques to 
improve the computational and memory throughput of the modified BA algo-
rithm [1]. 

We demonstrate an optimization technique that employs shared memory on 
GPUs to compute intermediate mathematical operations asynchronously before 
obtaining the final output from the intermediate results. This optimization tech-
nique, which improves computational throughput, is widely used to distribute 
the workload effectively across threads in the blocks on GPUs, thereby improv-
ing GPU utilization. 

We also propose a new data layout for all the mathematical variables repre- 
sented as block matrices and vectors. The proposed data layout will have ele-
ments of each vector/matrix of each mathematical variable distributed across 
the memory. Accessing the data from the proposed memory layout will signif-
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icantly reduce the overall memory transactions, thereby improving the memory 
throughput.  

In addition to the proposed new data layout and CUDA kernel optimization, 
we also analyze the datasets provided in [2] to address the non-convergence is-
sue mentioned in [1]. Thirty-two datasets in the large datasets [2] do not con-
verge from their initial mean square error. This paper investigates the reasons 
for the non-convergence and proposes modifications to the datasets so that the 
modified BA algorithm can converge. In addition, we extend our performance 
studies to datasets with 10,000 images and millions of points and projections. 

The rest of the paper is organized as follows. Section 2 talks about various im-
plementations of the BA algorithm on GPUs. Section 3 briefly introduces the BA 
algorithm, its mathematical representation, and the modified BA algorithm from 
[1]. Section 4 provides an introduction to the GPU hardware and performance. 
Section 5 details the CUDA optimization and the proposed data layout. Section 6 
provides information about the datasets and the proposed modifications to en-
sure all the datasets converge from their initial mean square error. Section 7 de-
monstrates the results and provides information about the performance of the 
implementation compared to the sequential and GPU versions. Finally, the pa-
per summarizes the findings and puts forward the scope of future work in the 
conclusion and future work section. 

2. Literature Review 

Implementation in [3] developed a GPU version of the BA algorithm that em-
ploys the exact-step Levenberg-Marquardt (LM) method [4] using Compressed 
Column Storage (CCS) format. The computationally intensive left-hand side of 
the augmented normal equations is calculated on the GPU. In contrast, the equ-
ations’ relatively less computationally intensive right-hand side is computed on 
the central processing units (CPU). The computationally intensive linear sys-
tems are solved using the MAGMA library [5]. The implementation has stored 
all the mathematical parameters on the GPUs, resulting in higher memory re-
quirements. In addition, Ceres Solver [6], a C++ library to solve the non-linear 
least squares problem for the exact-step LM method, is used. The Ceres Solver 
library only has CUDA support for the dense Cholesky decomposition variant 
and the Schur complement. The library does not support CUDA sparse compu-
tations in the exact-step LM method; instead uses third-party libraries like Ap-
ple’s Accelerate framework [7] and Eigen’s sparse linear solvers [8]. The ex-
act-step method is found to be optimal for smaller datasets but was found to be 
computationally expensive for larger datasets due to the use of Cholesky factori-
zation.  

A GPU version of the inexact-step LM method [2] [9] [10] using a block Jaco-
bi preconditioner is developed in Parallel Bundle Adjustment (PBA) [11]. In the 
PBA implementation, only eight camera parameters are refined, consisting of 
three rotational elements, three translational elements, one focal length, and one 
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radial distortion parameter. The sparse matrices in the PBA implementation are 
stored in Block Compressed Sparse Row (BCSR) format. The implementation 
extensively uses texture object functions of the CUDA runtime application pro-
gramming interface (API). The PBA implementation has shown a significant 
performance boost compared to single-core executions.  

Ceres solver [6] library also computes the inexact-step LM method with the 
CUDA-enabled preconditioner conjugate gradient (PCG) method. The library 
supports GPU implementation of a few preconditioners, like Jacobi and Schur 
Jacobi. The library can refine around six to nine camera parameters. The library 
does not explicitly compute the augmented normal equation; instead, it uses the 
Jacobians stored in Compressed Row Sparse (CSR) format.  

Implementation in [12] has refined 11 camera parameters, consisting of three 
rotational elements, three translational elements, one focal length, two correc-
tions of the principal point, and two radial distortions using the inexact-step LM 
method. The time-consuming portions of the algorithm are simulated on the 
GPU, and the performance is evaluated on datasets with fewer points and pro-
jections, demonstrating performance improvement compared to the PBA im-
plementation. 

Unlike in PBA implementation, our previous work has implemented the BA 
algorithm on CPUs and improved the accuracy of the minimization by using 
additional radial distortion and explicit Jacobian computation. The PBA imple-
mentation [11] exploited the block structure in the BA algorithm with texture 
memory fetching and shared memory. The texture reference management func-
tions are deprecated in the latest CUDA runtime APIs [13]. As a result, the PBA 
implementation cannot be executed using the texture memory. In this paper, we 
adopt a similar strategy from the PBA implementation for using shared memory 
and extend our previous work [1] by further optimizing the CUDA kernels. 

In addition, we also extend our previous work [1] by improving the memory 
throughput. Our previous implementation and implementations in PBA and 
Ceres Solver all store the mathematical parameters in block structures. Elements 
of each mathematical variable represented in the form of block vectors/matrices 
are stored per the spatial locality. In this paper, we demonstrate the drawback of 
storing the matrices/vectors of each block element in continuous memory, re-
sulting in lower memory throughput. We propose a new data memory layout to 
reduce the total memory transactions and improve the algorithm’s performance. 
In addition, we also illustrate the impact of the proposed memory layout on the 
algorithm’s overall performance by a comparative study of the optimized CUDA 
with the naïve CUDA implementation in [1]. 

3. Brief Discussion of the Modified Bundle Adjustment  
Algorithm  

Minimizing the reprojection error involves solving the augmented normal equa-
tion, as shown in Equation (1), which can be represented as a linear system of 
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equations as in Equation (2). 

 ( )T T Tµ+ = −J J D D J eδ  (1) 

 =Ax b  (2) 

where,  
( )f= ∂ ∂J P P  is a Jacobian of the projection function ( )f P  [1]; 

δ  is the change in the parameter vector; 
e  is the error vector computed as the difference between the computed pro-

jection and observed projection; 
D  is a non-negative diagonal matrix formulated as the square root of the di-

agonal of the matrix TJ J  [2]. 
μ is the positive damping parameter used to control the regularization; 

T Tµ= +A J J D D  is a symmetric positive-definite matrix; 
T= −b J e  is a gradient vector; 

=x δ  is a solution vector. 
The augmented normal equation can be represented [1] [4] of the camera and 

points sections in the matrix notation as in Equation (3). 

 T
c c

p p

µ

µ

    
=    

     

U W
W V

δ
δ




 (3) 

T T T T T T T; ; ; ;c c c c p p p p c p c c c p p pµ µµ µ= + = + = = − = −U J J D D V J J D D W J J J e J e   

where, 
c represents the camera section; 
p represents the point section. 

µU  and µV  are block diagonal matrices; W  is a block sparse matrix; cδ , 

pδ , c , and p  are the block vectors. 
The preconditioned conjugate gradient (PCG) method is an iterative solver 

used to solve the system of linear equations. The PCG method employs a pre-
conditioner for better and faster convergence and involves a significantly higher 
number of vector-vector and matrix-vector computations per iteration [12]. The 
PCG method is employed on the augmented normal equation represented by 
Equation (3). The PCG method can also be applied to a matrix with reduced di-
mensions by multiplying both sides of Equation (3) with a block matrix, as illu-
strated in [4], which results in Equation (4) and Equation (5).  

 ( )1 T 1
c c pµ µ

− −− = −U WV W WVδ    (4) 

 T
p p cµ = −V Wδ δ  (5) 

In this research, similar to the representation in [1], solving Equation (3) di-
rectly for the solution vector is called Without-Schur complement, and solving 
for the solution vector using the Schur complement representation in Equation 
(4) and Equation (5) is called With-Schur complement. 

The modified BA algorithm proposed in [1] uses an additional radial distor-
tion coefficient as part of the camera parameters. An additional camera parame-
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ter increases the dimension of the camera section of the Jacobian as represented 
in Equation (6) (additional radial distortion coefficient parameter is represented 
in bold). 

( ) 3 31 2 1 2 1 2

21 2 3 1 2 3 1

ij ijij ij ij ij ijijij
j jj j j j j jjjij

j
ij ij ij ij ij ij ij ij ij

jj j j j j j j j j

x xx x x x xxx
f k tk k t t Kfc

y y y y y y y y y
c k k k t t t f K

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂∂ 
  ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂∂∂   = =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

x
P K

yc
K

 (6) 

where, 

( ),ij ijx y  is the projection in the camera system for point i and camera j; 
jc  is the camera parameter vector of camera j; 

( )1 2 3, ,j j j jk k k k=  is the rotation matrix of camera j in axis-angle representa-
tion; 

( )1 2 3, ,j j j jt t t t=  is the translation vector of camera j; 
jf  is the focal length of camera j. 

1
jK  and 2

jK  are the first and second radial distortion coefficients of camera j 
The increase in the dimension of the camera section of the Jacobian, in turn, 

increases the size of all the parameters in the augmented normal equation, as 
represented in [1]. In addition, the modified BA algorithm uses a rotation vector 
in the axis-angle representation directly in the Jacobian computation without 
computing the rotational matrix using Rodrigues’ formula and without any 
cross-product of partial derivatives. The Jacobian is derived using explicit ana-
lytical derivatives without approximations using the “diff” command in Matlab 
Symbolic Math Toolbox [14] and hardcoding the projection function into the 
code.  

4. GPU Hardware and Performance 

Central processing units (CPUs) and graphics processing units (GPUs) are two 
different types of processors widely used for computational purposes. The 
hardware configurations of CPUs and GPUs differ significantly, making them 
ideal for specific problems. CPUs have fewer cores with higher clock rates, whe-
reas GPUs have a larger number of cores with slower clock rates than CPUs. In 
addition, the CPUs’ cores contain complex pipelines, making them ideal for de-
cision-making instructions like conditional loops. Whereas the cores in GPUs 
are lightweight and ideal for basic mathematical operations. A large number of 
simple cores and their ability to execute instructions concurrently make the 
GPUs ideal for large independent mathematical operations. A fewer number of 
complex cores with higher clock rates make CPUs ideal for branching and con-
ditional loops and input/output operations. 

As mentioned, the concurrency offered by the GPUs makes them ideal for 
large-scale independent mathematical operations. In addition, the fundamental 
properties of the GPUs offering concurrency and memory throughput are the 
same across different GPU architectures. The differences across the GPU archi-
tectures are mainly in the level of concurrency, memory throughput, and a few 
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additional features. The number of computing cores in the A30 GPU is 3584, 
whereas the total number of cores in the latest NVIDIA GPU H100 is 7296, re-
sulting in approximately twice the level of concurrency compared [15] to an A30 
GPU. The difference across the GPUs is also in the memory bandwidth. The A30 
GPU [15] has a memory bandwidth of 933.1 GB/s, whereas the H100 GPU has 
around 1280 GB/s. This difference in the memory bandwidth results in higher 
memory throughput in the H100 GPU compared to the A30 GPU. In addition, 
there are several other differences, such as the total streaming multiprocessors 
(SMs), memory bus width, increased size of different memory categories, and 
boost clock speed, that are improved in the latest GPU architectures. The in-
creased size of different memory on the GPUs would result in increased caching 
and improved bandwidth, but the core functionality is the same across different 
GPU architectures. The latest GPUs also include new features [16], like tensor 
cores and multi-instance GPUs (MIG), which are beyond the scope of the paper 
and do not impact the proposed methodologies in this paper. Nonetheless, the 
total number of cores and the memory throughput play a vital role in perfor-
mance improvement across different GPU architectures. Irrespective of the dif-
ference in the GPU architectures, the underlying principles of the computational 
throughput and the memory throughput across the GPU architectures are the 
same. As a result, the same code base that was executed on an older GPU can be 
readily executed on the latest GPUs without any changes to the code and achieve 
a significant performance boost based on the hardware improvements alone. 

GPUs are equipped with thousands of cores that can execute operations con-
currently. On the other hand, the number of independent computations availa-
ble in the algorithm allows to take advantage of the concurrency on the GPUs. 
As mentioned in the implementation [1], the independent nature of the camera 
and point sections in the algorithm enables the execution of each mathematical 
operation concurrently, thereby reducing the total time taken for all computa-
tions. In addition, the block-based structures across both the camera and point 
sections of each matrix and vector enable further concurrency in the matrix- 
vector multiplications. 

In addition to the computational concurrency, memory throughput also plays 
a vital role in achieving better performance on the GPU. The memory through-
put depends on the access time and the total number of memory transactions 
required for the computations. Effective utilization of the caching techniques on 
the GPU using a register shared, and global memory will reduce the total time 
taken to access the data. In addition to the caching techniques, reducing the total 
number of memory transactions required for the computations also reduces the 
total computational time. A detailed understanding of the memory access pat-
terns is required to utilize the required memory transactions effectively. 

4.1. Memory Access Patterns 

The computational and memory operations are issued per warp in the CUDA 
programming model. A warp is a group of 32 threads that concurrently issues 
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and executes the same instruction. While executing the memory instructions, 
each thread in a warp issues a request to access a memory address. All the re-
quests from 32 threads in the warp are grouped and processed as a single mem-
ory transaction. Whenever a memory transaction is requested, based on the spa-
tial locality, the first memory address is accessed and loads contiguous data from 
that address. The amount of contiguous memory segments transferred in a sin-
gle memory transaction depends on the granularity of the cache line which is 
mostly 128-bytes or 32-bytes. In this research work, we assume the granularity to 
be 128 bytes, and each thread in a warp is requesting 4-byte data, and consider 
two basic access patterns that could arise in any memory access. 

4.1.1. Coalesced Memory Access 
In the coalesced memory access pattern, each thread in a warp accesses conti-
guous memory. As a result, all 32 threads access 128 bytes, which is contiguous 
in memory, as in Figure 1. 

As the granularity is assumed to be 128 bytes, the entire 128 bytes requested 
by the warp are addressed in a single memory transaction. This is an ideal case 
where one memory request fulfills the data requests by all 32 threads in a warp. 

4.1.2. Strided Memory Access 
In the strided memory access pattern, each thread in a warp accesses data from a 
different locality in the memory. As a result, multiple memory transactions are 
required to fetch all the data requested by the 32 threads in a warp. Figure 2 
provides an example of a strided access pattern in which the first 16 threads 
access data from one memory segment, and the next 16 threads access data from 
a different memory segment. 

In this example of strided access, the first 16 threads access 64 bytes of conti-
guous memory from a 128-byte memory segment in the memory, and the next 
16 threads access the remaining 64 bytes of contiguous memory from the next 
128-byte memory segment. As a result, two memory transactions are required to 
fetch the data requested by all the 32 threads in a warp.  

There are many different strided access patterns possible. In the worst-case 
scenario, each thread in the warp will access data from different 128-byte mem-
ory segments, requiring 32 memory transactions to access the data requested by 
all 32 threads in a warp.  
 

 

Figure 1. Pictorial representation of the coalesced memory access pattern. 
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Figure 2. Pictorial representation of the strided memory access pattern accessing two 
memory segments. 
 

Overall, the ideal case results in one memory transaction, whereas the strided 
access results in 2 - 32 memory transactions based on the degree of data distri-
bution in the memory. In this paper, we propose a new data layout to improve 
the access pattern and reduce the total memory transactions. 

5. Proposed Implementations 

In the BA algorithm, all the elements of each matrix and vector are represented 
as blocks. For example, the block-matrix µU  and µV  are represented as in 
Equation (7). 

 

1 1

2 2

0 0 0 0 0 0
0 0 0 0 0 0

;
0 0 0 0 0 0
0 0 0 0 0 0m m

µ µ

   
   
   = =
   
   
   

U V
U V

U V

U V
 

 (7) 

where, 
, 1,2, ,i i m=U   are the blocks of m cameras each of size 9 × 9; 
, 1,2, ,j j n=V   are the blocks of n points each of size 3 × 3. 

Similarly, each vector element is stored in the form of blocks, as shown in Eq-
uation (8). 

 

11

22

;

pc

pc
c p

m n
c p

  
  
  = =   
  
     

 




 

 

 (8) 

where, 
, 1,2, ,i

c i m=   are the blocks of m cameras each of size 9 × 1; 
, 1,2, ,i

p i n=   are the blocks of n points each of size 3 × 1. 
In the BA algorithm, formulation of the augmented normal equation as in 

Equation (3) results in significant matrix-matrix and matrix-vector computa-
tions. In addition, the PCG method involves matrix-vector and vector-vector 
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computations. The highly optimized cuBLAS executes vector-vector operations 
[17] library, whereas the sparse nature of the matrix-matrix and matrix-vector 
operations restrict the use of the cuBLAS library. As a result, CUDA kernels are 
developed to compute the matrix-matrix and matrix-vector operations. In our 
previous work [1], we implemented basic CUDA optimization techniques to 
improve the BA performance on the GPUs. In this paper, we demonstrate addi-
tional optimization techniques to improve the performance of the CUDA ker-
nels involving matrix-vector multiplications. 

5.1. CUDA Kernel Optimization 

In the previous implementation [1], we observed that the use of atomic opera-
tions introduced race conditions in higher datasets due to the sensitivity of the 
data precision. To address the sensitivity of the data precision, we propose eli-
minating the use of atomic operations. However, eliminating atomic operations 
will not allow navigation through each projection, obtain the camera and point 
information of that projection, and compute all the parameters of a specific 
camera and point configuration as implemented in [1]. Instead, to compute a 
particular parameter belonging to a specific camera, we gather all the points and 
projections information about that camera and compute it on a single block. Si-
milarly, we gather all the camera and projection information about a point to 
compute a particular parameter. This change does not cause any race conditions 
and produces accurate results. 

Naïve CUDA implementation [1] describes the optimal thread and block con-
figurations that can be employed based on the computation of the camera, point, 
and projection sections. Unlike in [1], where the computation of each camera is 
distributed across each thread, we perform the computation of each camera on a 
block with threads computing intermediate results. As the number of cameras is 
fewer and the number of points is significantly higher, assigning computations 
of each camera to a block is found to be optimal. In this configuration, each 
thread of a block computes a temporary solution of an operation. The solutions 
from all the threads are aggregated in the end to compute a parameter for a 
camera.  

For example, let us compute the first camera block-matrix 1U  in the aug-
mented normal equation, which can be represented [1] as in Equation (9). 

 T
1 1 1

1

n

i i
i=

= ∑U J J  (9) 

where, 

1, 1,2, ,i i n=J   are the block-Jacobian matrices of n points each of size 2 × 9. 
Computing the 1U  block matrix of the camera section involves iterating 

through n points. As a result, all the points are divided among the threads in a 
block, and each thread computes the summation of the T

1 1i iJ J  for those set of 
points assigned to it. And in the end, all the intermediate solutions are aggre-
gated on a single thread. Figure 3 provides a pictorial representation of compu-
ting 1U  with 9 points on a block that has 3 threads.  

https://doi.org/10.4236/jsea.2024.174010


P. R. Kommera et al. 
 

 

DOI: 10.4236/jsea.2024.174010   182 Journal of Software Engineering and Applications 
 

 

Figure 3. Pictorial representation of computing 1U  with 9 points on a block and 3 
threads. 
 

The above optimization is ideal for computing the parameters of the camera 
section, as it iterates through a larger number of points. The same methodology 
is found to be non-optimal for computing parameters of the point section as we 
have a higher number of points and fewer cameras to iterate through. A higher 
number of points invokes more blocks, which in turn serializes the execution. As 
a result, all the parameters of the points section are computed directly on each 
thread across the blocks. In addition, unrolling the points on each thread is em-
ployed to compute the parameters of multiple points on a single thread, thereby 
reducing the total number of blocks. 

The CUDA kernel optimization studied in this paper aims at improving the 
concurrency of computing the camera parameters by distributing the computa-
tions across threads in a block and by effective utilization of shared memory. 
These properties of performance improvement using concurrency and the use of 
shared memory are the same across different GPU architectures. The difference 
only lies in the level of concurrency and the size of shared memory. As a result, 
the CUDA kernel optimization studied in this paper is applicable across differ-
ent GPU architectures without any changes to the code implementation. 

In the current implementations [1], each block of a matrix is stored in a con-
tiguous memory, as represented in Figure 4. In turn, all the elements of each 
block are contiguous in memory.  

In the above figure, the dimension of each block-Jacobian matrix is 2 × 9. This 
layout results in more memory transactions due to the strided access pattern. In 
this paper, we analyze the current memory layout and propose a new data layout 
that would reduce the degree of strided access and reduce the total memory 
transactions. 

5.2. Proposed Memory Layout 

The data layout, as mentioned above, results in strided access as each element of 
respective blocks is in memory addresses far from each other. For example, con-
sider a multiplication operation [1] between a block matrix and a block vector, 
as in Equation (10). 
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Figure 4. Layout of Jacobian-matrices 1 , 1, ,i i n=J   in memory. 
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 (10) 

where, 
, 1,2, ,i i m=U   are the block-matrices each of size 9 × 9; 
, 1,2, ,i

c i m=p   are the block-vectors each of size 9 × 1. 
In the current implementation, all the elements of each block of matrix and 

vector are stored in contiguous memory, as in Figure 5. 
In the CUDA kernel, each block multiplication can be assigned to a single 

thread. As a result, thread 0 will access 1U , thread 1 will access 2U  and so on. 
Analyzing further, when thread 0 accesses the first element in 1U , thread 1 will 
access the first element in 2U  which is 9 × 9 memory spaces away from the first 
element of 1U . As all the elements of each block-matrix iU  are stored in con-
tiguous memory, each thread will end up having strided access to fetch the ele-
ment from memory, as shown in Figure 6. This results in multiple memory 
transactions per request from a warp. 

In this paper, we propose to modify the data placement in memory so that 
adjacent threads can access contiguous memory, thereby reducing the strided 
access and memory transactions required per request. To access contiguous 
memory, we propose the continuous-element data layout where each element 
from a particular index across the blocks is stored in contiguous memory, as de-
picted in Figure 7 and Figure 8.  

Using the proposed continuous-element data layout, computing the matrix- 
vector multiplication in Equation (10) will result in a contiguous memory access 
pattern, as shown in Figure 9. We propose to change the data layout to the con-
tinuous-element format for all the matrix and vector variables in the BA algo-
rithm. The use of the proposed continuous-element format would reduce the 
total memory transactions per request and improve the GPU performance. 

The proposed continuous-element data layout aims at improving the memory 
throughput which employs similar fundamental principles across different GPU 
architectures. As mentioned earlier, the difference lies in the magnitude of the 
memory access, i.e., the memory bandwidth, which describes the time required 
to access the memory. Whereas the functional properties describing the total 
number of memory transactions per request are the same across different GPU 
architectures. With this proposed data layout, we are reducing the total number  
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Figure 5. Memory layout of block-matrix iU  and block-vector i
cp . 

 

 

Figure 6. Strided access of the block-matrix iU  and block-vector i
cp . 

 

 

Figure 7. Memory layout of the proposed continuous-element layout for block-matrix 

iU . 

 

 

Figure 8. Memory layout of the proposed continuous-element layout for block-vector 
i
cp . 

 

 

Figure 9. Contiguous access pattern of the block-matrix iU  and block-vector i
cp . 
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of memory transactions per request whose functionality is the same across dif-
ferent GPU architectures. As a result, the proposed data layout can be applicable 
across different GPU architectures without any code changes and improve the 
performance of the application. 

Overall, the studied CUDA kernel optimization and the proposed continuous- 
element data layout can be universally applicable across different GPUs as they 
affect the fundamental principles which are the same across the different GPUs 
and are not targeted towards a specific feature of a particular GPU architecture 
and be constrained to those GPUs only. 

6. Data Processing 

As mentioned earlier, the use of atomic operations in implementation [1] re-
sulted in precision differences for larger datasets. As a result, in this paper, the 
atomic operations are eliminated resulting in the requirement of additional in-
itialization data for computing the augmented normal equations and matrix- 
vector multiplications in the PCG method. In addition, the datasets used are 
processed to address the non-divergence of a few datasets. 

6.1. Additional Initialization Data  

Atomic operations were heavily used [1] while computing the augmented nor-
mal equation and the matrix-vector multiplication in the PCG method. Using 
atomic operations allows us to sweep through the entire projections once and 
compute each of the mathematical variables which are part of the augmented 
normal equation and the matrix-vector multiplication in the PCG method. 
While generating a parameter of the augmented normal equation on the GPU, 
different threads might end up loading from or writing to the same memory. 
This would result in accessing incorrect data from the memory if the memory is 
not updated appropriately. Atomic operations are used to avoid reading from or 
writing to the same memory while other threads in the GPU are using that 
memory.  

As mentioned earlier, computations on GPUs are processed per warp, and the 
warps can be issued and executed in any order across different runs. For exam-
ple, in an execution, if a parameter computation on GPU executes warps 1, 5, 
and 7 in the order, then the next execution may or may not follow the same or-
der. As the algorithm is precision sensitive, this results in a difference in output 
for each execution. As a result, atomic operations are eliminated from compu-
ting the augmented normal equation and the matrix-vector multiplications.  

As the atomic operations are eliminated, the parameters cannot be computed 
by sweeping through the projections. Instead, detailed information about the 
number of points in a camera, the number of cameras that contain the same 
point, the start and end index of each camera, and the point with respect to the 
projections are required during the computation of each parameter in the aug-
mented normal equation and the matrix-vector multiplications.  
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The datasets [2] provide information about the total number of cameras, 
points, and projections and the information about parameters of each camera 
and point. In addition, they contain the camera index, point index, and the ob-
served projection of that camera-point configuration grouped in a single line, as 
shown in Figure 10. In addition, all the cameras for each point are grouped 
along with the projection information about the point in the camera in consecu-
tive lines.  

As the Jacobian are computed for each projection with respect to the camera 
and point, they are stored in the same order as the observed projections. While 
computing the point parameters like jV  [4], we need to sweep through all the 
cameras that contain the point j and identify the point Jacobian of that projec-
tion. As the current dataset contains all the cameras for each point grouped, we 
only need the start and the end index of the point as they correspond to the Ja-
cobian stored in the memory. In this paper, we compute the start and end of 
each point using the prefix sum [18].  

In addition, to compute the camera parameters like iU  [4], we need to sweep 
through all the points in the respective camera. However, as the datasets are 
grouped in terms of cameras that contain a particular point, we would need to 
sweep through the entire dataset to identify the camera. This process takes a sig-
nificant amount of time. As a result, in this paper, we also store the camera and 
point indexes such that all the points of each camera are grouped. As the camera 
and point indexes are reordered, we also need to reorder the observed projec-
tions. Instead of reordering the observed projections that contain two coordi-
nates for each projection, we generate an index of the projections with respect to 
points on a single camera being grouped. So, now, the index can be used to point 
to the respective projection. In addition, similar to the point parameters, we also 
need to compute the start and end of each camera using the prefix sum. 

For example, let us consider we have three points and three cameras, where all 
three cameras contain all the points. The camera index, point index, and ob-
served projections with respect to the dataset format [2] are shown in Figure 11. 
 

 

Figure 10. Format of the camera index, point index, and projection coordinates. 
 

 

Figure 11. Format of the camera, point, and projections in the dataset files. 
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In this paper, we modify the format in the datasets, as in Figure 12, to contain 
the camera-point indexes with each camera, points grouped, followed by the 
projection index, and the observed projections, as shown in Figure 13. 

In Figure 13, the first set of camera-point indexes in the first and second 
columns has all the cameras of each point grouped, and the second set of cam-
era-point indexes in the third and fourth columns has all the points of each 
camera grouped. The fifth column has the projection index with respective to 
the second set of camera-point indexes. Reading this additional information 
from the data files is found to be more optimal than computing them in the in-
itialization phase of each execution. In addition, it is also found that computing 
the start and end indexes for both the cameras grouped and points grouped us-
ing prefix sum is time consuming. As a result, the prefix sum values are also 
stored in the data files, thereby eliminating the need to compute them for every 
execution. 

In addition to the above modifications to the dataset, we also address the 
non-divergence of a few datasets.  

6.2. Dataset Processing 

A few of the datasets from [2] are not converging from their initial mean square 
error. Both the modified BA implementation in [1] and the PBA [11] imple-
mentation show similar non-convergent behavior on a few datasets. In a few 
other datasets that converge, different executions produce different final mean 
square errors, taking different numbers of PCG iterations. In this paper, we ana-
lyze the datasets and propose the removal of a few of the cameras from certain 
datasets. 

From the augmented normal equation, the addition of a regularization term 
results in a non-singular and positive definite matrix that ensures convergence. 
As a few of the datasets are not converging, it would mean that the regulariza-
tion term added was not ensuring convergence due to the matrix being singular.  
 

 

Figure 12. Modified format of the camera index, point index, and projection coordinates. 
 

 

Figure 13. Modified format of the camera, point, and projections in the dataset files. 
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As the regularization term [2] added is a diagonal matrix, the inverse of each 
block diagonal matrix in the augmented normal equation can be computed and 
checked for singularity.  

In this paper, we have computed the matrix inverse for all block matrices of 
augmented normal equations across different camera-point configurations in the 
datasets [2]. Computing the matrix inverse of each block matrix in the aug-
mented normal equation resulted in a few of the matrices having linearly de-
pendent rows, resulting in a rank deficiency. This leads to the matrices being 
singular. All the block matrices in the point section of the augmented normal 
equation µV  are found to be non-singular. In contrast, few of the block matric-
es in the camera section of the augmented normal equation µU  are found to be 
singular matrices. As a result, specific cameras that result in singular matrices 
were removed, and the datasets were rearranged accordingly. Table 1 provides 
information about each camera that was removed from the datasets and is cate-
gorized as per the different locations [2]. 

After removing the specified cameras in Table 1, all the datasets converge 
from their initial mean square error and produce identical results across differ-
ent executions.  

7. Results and Analysis 

The proposed continuous-element data layout is implemented on the framework 
adapted from [1]. The framework has been modified to load the additional in-
itialization data as proposed in this paper. In addition, the proposed data pro- 
cessing has been applied to the datasets provided by the Bundle Adjustments in 
Large [2], and the modified datasets are used in this paper. Similar to the im-
plementation in [1], the performance results and analysis are provided for ten 
datasets. The performance study is extended to larger datasets that involve tens 
of millions of projections. In [1], where few of the datasets were not converging, 
in this implementation with the data processing, all datasets converge from their 
initial mean square error. The parameters of the 10 datasets that are used in this 
paper are provided in Table 2, which shows both the original and modified 
number of cameras, points, and projections.  

As in any optimizations, the accuracy of the algorithm is of utmost impor-
tance compared to the computational optimizations which can be achieved by 
changing the algorithm implementation. As a result, in this paper, the initial 
emphasis is on ensuring that the optimized CUDA code does not alter the con-
vergence of the algorithm. As a result, a detailed analysis of the convergence of 
the mean square error and the final projections of the optimized CUDA imple-
mentation is studied and compared with the naïve CUDA and sequential im-
plementations. Then, the performance results from the optimized CUDA im-
plementation are presented with a comparative analysis of different profiler pa-
rameters between optimized and naïve CUDA implementation. Finally, a brief 
analysis of the complexity of the CUDA optimization is provided. 
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Table 1. Cameras were removed from datasets of different locations. 

Location Cameras Removed 

Dubrovnik 105, 125 

Final 724, 460 

Trafalgar Square 72 

Venice 34, 49, 138, 584 

 
Table 2. Original and modified dataset configurations. 

Dataset 
ID No. 

Original Dataset Configurations Modified Dataset Configurations 

Number 
of 

Cameras 

Number 
of 

Points 

Number 
of 

Projections 

Number 
of 

Cameras 

Number 
of 

Points 

Number 
of 

Projections 

1 21 11,315 36,455 21 11,315 36,455 

2 88 64,298 383,937 88 64,298 383,937 

3 182 116,770 668,705 182 116,770 668,705 

4 245 198,739 1,091,386 243 198,340 1,084,136 

5 744 543,562 3,058,863 741 543,163 3,050,099 

6 951 708,276 3,748,892 947 707,877 3,738,748 

7 1288 866,452 4,383,006 1284 866,053 4,373,425 

8 1936 649,673 5,213,733 1936 649,673 5,213,733 

9 4585 1,324,582 9,125,125 4584 1,324,582 9,123,988 

10 13,682 4,456,117 28,987,644 13,678 4,455,747 28,975,571 

7.1. Accuracy 

As mentioned in [1], the algorithm is highly sensitive to floating point precision. 
A comparison was shown between the accuracy of the sequential and naïve 
CUDA implementation using the performance parameters described in our pre-
vious work [1]. Similarly, we have initially compared the final mean square error 
across the naïve CUDA and optimized CUDA implementations. The percentage 
difference in the final mean square error between the naïve and optimized CUDA 
implementations is evaluated to ascertain the accuracy of the convergence, sta-
bility, and reliability of the optimized CUDA implementation. The percentage 
difference was less than 0.1% for 87 datasets and less than 2.5% for the remain-
ing 8 datasets, indicating that the optimized CUDA has similar convergence to 
naïve CUDA. Overall, the average percentage error for all 95 datasets is less than 
0.22% across different configurations. 

Further, similar to the analysis in [1], the stability of the convergence of the 
optimized CUDA implementation is compared with the naïve CUDA imple-
mentation using pixel coordinates. Figure 14 provides a pictorial representation 
of the final computed projection and observed projection for the maximum  
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Figure 14. Final projections in pixel coordinates for all sequential, naïve CUDA, and optimized CUDA im-
plementations. 

 
error across the ten datasets. In Figure 14, it can be seen that the optimized 
CUDA implementation converges to the same pixel coordinates as the naïve 
CUDA and sequential implementations.  

From this analysis, it can be concluded that the optimized CUDA implemen-
tation does not deteriorate the accuracy of the algorithm and converges to the 
same pixel coordinates as with the naïve and sequential implementations, indi-
cating that the optimized CUDA implementation of the BA algorithm is stable 
and reliable. 

7.2. Performance 

Similar to the analysis in [1], we demonstrate the performance studies on both 
the with-Schur and without-Schur complement algorithm configurations. In ad-
dition, we extended our analysis to understand the impact of computing and 
using the block-matrix W  explicitly and to compute the block-matrix W  
implicitly by using the camera and point Jacobians in place [1] of the block-matrix 
W  in the different computations. Ongoing in this paper, Explicit-W indicates 
computing block-matrix W  explicitly, while Implicit-W indicates computing 
block-matrix W  implicitly. The performance study is implemented on a node 
with a 64-core AMD EPYC 7713P CPU and 3584 cores NVIDIA A30 GPU. The 
algorithm is executed for a maximum of 50 LM iterations and 100 precondi-
tioned conjugate gradient (PCG) iterations. 

Figure 15 shows the computation time of the sequential, naïve CUDA [1] and 
the optimized CUDA implementation using Implicit-W for the ten datasets. In 
both the Without-Schur and With-Schur complement, the computation time of  
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(a) 

 
(b) 

Figure 15. Computational time of sequential, naïve CUDA, and optimized CUDA implementations for Im-
plicit-W across different datasets using without-Schur and with-Schur complement. (a) Without-Schur 
complement, (b) With-Schur complement. 

 
the optimized CUDA implementation is significantly less compared to both the 
sequential and naïve CUDA implementations. At the same time, the computa-
tional time of the naïve CUDA implementation is less compared to the sequen-
tial implementation only for larger datasets, i.e., for datasets with more than 700 
cameras. Furthermore, the computation time of the sequential implementation 
is significantly increasing for larger dataset sizes. Whereas the computation time 
for both the CUDA versions increases for larger dataset sizes but not as signifi-
cantly as with the sequential implementation. This is because the CUDA imple-
mentations execute the mathematical operations concurrently. 

Figure 16 shows the computation time for the sequential, naïve CUDA and 
the optimized CUDA implementation using Explicit-W for the same 10 datasets. 
Similar to the Implicit-W, the computation time for the optimized CUDA im-
plementation is significantly less compared to both the sequential and naïve  
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(a) 

 
(b) 

Figure 16. Computational time of sequential, naïve CUDA, and optimized CUDA implementations for Ex-
plicit-W across different datasets using without-Schur and with-Schur complement. (a) Without-Schur 
Complement, (b) With-Schur Complement 

 
CUDA implementations. Also, like Implicit-W, the computational time of the 
naïve CUDA implementation is less compared to the sequential implementation 
only for larger datasets. Comparing Figure 15 and Figure 16, the sequential im-
plementation is taking significantly higher computation time in Explicit-W than 
the Implicit-W. Also, for most of the datasets, it can be observed that the naïve 
CUDA and optimized CUDA are taking slightly more computation time in the 
Explicit-W configuration. This can be clearly observed in Figure 17, which pro-
vides the computational time of all the configurations for the largest dataset with 
13,678 cameras. 

In Figure 17, it can be observed that the computation time of the Explicit-W 
is more compared to the Implicit-W for all the configurations of sequential and 
CUDA versions. The Explicit-W configuration would take more computational 
time compared to Implicit-W because of either having a higher number of PCG  
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(a) 

 
(b) 

Figure 17. Computational time for the dataset containing 13,678 cameras for all the configurations. (a) 
Without-Schur Complement, (b) With-Schur Complement. 

 
iterations or a higher number of total computations per iteration. Furthermore, 
the computational time of the Without-Schur and With-Schur complement con-
figurations are random with respect to dataset sizes, as shown in Figure 15 and 
Figure 16.  

In all the implementations, the total number of PCG iterations varies and is 
based on the convergence of the algorithm. For example, in the dataset with 
1936 cameras, the sequential implementation is better compared to the naïve 
implementation for Without-Schur complement and Explicit-W, as shown in 
Figure 16. This is because the sequential code has around 506 preconditioned 
conjugate gradient (PCG) iterations compared to the 1400 iterations by the naïve 
CUDA implementation. As a result, the naïve implementation has a significantly 
higher computational time compared to the sequential implementation. Simi-
larly, in Figure 15 and Figure 16, it can be seen that the computational time 
does not always increase with the increase of the dataset size. This is because 
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some of the datasets with higher sizes are executing fewer PCG iterations, re-
sulting in fewer overall computations and computational time. The same beha-
vior can be observed in the speedup plot in Figure 18.  

Figure 18 shows the speedup of the naïve CUDA and optimized CUDA im-
plementation with respect to the sequential implementation. The significant 
performance improvement achieved by the optimized CUDA implementation in 
comparison to the naïve CUDA implementation can be seen in the speedup 
plots. The algorithm achieves the best speedup of approximately 30× on the 
largest dataset on the With-Schur Implicit-W configuration. Overall, the opti-
mized CUDA implementation achieves a speedup of more than 25× on all dif-
ferent configurations of Schur complement and block-matrix W  using the 
largest dataset. 

From the speedup plot, it can be seen that the speedup of the optimized 
CUDA implementation is not steadily increasing with the increase of the dataset 
size. As mentioned earlier, this is because of the different number of PCG itera-
tions across different implementations or the difference in the overall computa-
tions per iteration. As a result, comparing the performance for the complete  
 

  
(a)                                   (b) 

  
(c)                                   (d) 

Figure 18. Speedup of the naïve CUDA and optimized CUDA implementations with re-
spect to the sequential implementation with 50 LM and 100 CG iteration. (a) With-
out-Schur Complement & Implicit-W, (b) Without-Schur Complement & Explicit-W, (c) 
With-Schur Complement & Implicit-W, (d) With-Schur Complement & Explicit-W. 
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convergence of the algorithm for 50 LM steps and 100 PCG iterations does not 
provide us with sufficient information about the performance as they involve 
different numbers of total PCG iterations. A common reference for the analysis 
is required to understand the performance of all the configurations. In this pa-
per, to better understand the performance of different configurations, the total 
number of LM steps and the total PCG iterations is set to one, and the speedup 
for all the configurations is evaluated. With this approach, the performance of a 
configuration can be analyzed based on the total computations per iteration. 

Figure 19 shows the speedup of the naïve and optimized CUDA implementa-
tions with respect to the sequential implementation with 1 LM and 1 PCG itera-
tion. From the plot, it can be seen that the speedup of the optimized CUDA im-
plementation is monotonically increasing with the size of the datasets. This is 
because larger datasets contain more computations which can leverage the par-
allelism offered by the GPUs. The speedup of the naïve CUDA implementation 
is also increasing monotonically but at a lower rate compared to the optimized 
CUDA implementation.  

As mentioned earlier in Figures 15-17, the computational time of the Expli-
cit-W configuration is higher compared to the Implicit-W configuration for  
 

   
(a)                                   (b) 

   
(c)                                   (d) 

Figure 19. Speedup of the naïve CUDA and optimized CUDA implementations with re-
spect to the sequential implementation with 1 LM and 1 PCG iteration. (a) With-
out-Schur Complement & Implicit-W, (b) Without-Schur Complement & Explicit-W, (c) 
With-Schur Complement & Implicit-W, (d) With-Schur Complement & Explicit-W. 
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both the Without-Schur and With-Schur complements. This is due to the Impli-
cit-W and Explicit-W configurations having a different total number of compu-
tations per iteration when using block-matrix W . In Table 3, we present the 
total number of floating-point operations required for a matrix-vector multipli-
cation for both the Implicit-W and Explicit-W configuration using profiler me-
trics from the Nsight Compute [19] for the largest dataset. We profiled the code 
to extract the total number of floating-point operations for the ij kW p  computa-
tion [4] in the Explicit-W configuration, and for the T

c pij ij kJ J p  in the Impli-
cit-W configuration for 1 LM and 1 CG iteration.  

In Table 3, it can be seen that the Explicit-W computation requires more 
floating-point operations compared to the Implicit-W configuration. In addi-
tion, we also need to compute the block-matrix W  explicitly in the Explicit-W 
configuration. As a result, the Explicit-W configuration has more computations 
per iteration and would increase further with an increase in the total number of 
iterations. Overall, Explicit-W configuration requires more operations compared 
to Implicit-W configuration and this can also be observed in the overall timings 
as in Table 4. A detailed study of the computational time for different mathe-
matical operations in the Implicit-W and Explicit-W configurations for 1 LM 
and 1 PCG method is conducted and analyzed. Table 4 provides us with the 
computation time for computing the elements of the augmented normal equa-
tion and one iteration of the preconditioned conjugate gradient algorithm for 
the largest dataset. 

In Table 4, it can be seen that the computational time for computing the 
augmented normal equation and the conjugate gradient algorithm is higher in 
the Explicit-W configuration compared to the Implicit-W configuration. In ad-
dition, storage of the block-matrix W  would require huge memory. As a re-
sult, the Implicit-W computations provide better performance and memory 
footprint compared to the Explicit-W implementations. 
 
Table 3. Total number of floating-point operations for the CUDA implementations. 

Dataset ID No. 
Total floating-point operations 

in Implicit-W configuration 
Total floating-point operations 

in Explicit-W configuration 

1 1,203,015 1312,380 

2 12,669,921 13,821,732 

3 22,067,265 24,073,380 

4 35,776,488 39,028,896 

5 100,653,267 109,803,561 

6 123,378,684 134,594,928 

7 144,323,025 157,443,300 

8 172,053,189 187,694,388 

9 301,091,604 328,463,568 

10 956,193,843 1,043,120,556 
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Table 4. Computational time (milliseconds) to compute augmented normal equation and 
PCG algorithm. 

Configuration 
Optimized CUDA Implementation 

Augmented Normal Equation PCG Algorithm 

1 50 70 

2 135 74 

3 49 55 

4 135 57 

 
In Figure 19, it can also be seen that the performance of the optimized CUDA 

implementation is better compared to the naïve CUDA. One of the main differ-
ences between the naïve and the optimized CUDA implementations is the con-
tinuous-element data layout. We analyze the impact of the proposed data layout 
on the performance of the algorithm using the Nsight Compute [19] profiler. 
The profiler is used to extract performance metrics of the load and store func-
tionality of the GPUs.  

Primarily, we have extracted the global load and store efficiency metrics that 
provide a ratio of the requested global memory throughput to the required glob-
al memory throughput for both the load and store operations. In addition, the 
global load and store transactions per request metrics are also extracted, which 
provides information about the total number of load and store memory transac-
tions required to fulfill the data request. Higher load and store efficiencies closer 
to 100% and lower transactions per request closer to 1 imply better memory 
performance. We have extracted the metrics mentioned above from the CUDA 
kernel that computes both the camera and point Jacobians. This CUDA kernel is 
used for illustration of the metrics as it involves a significantly higher number of 
floating-point operations compared to most of the other CUDA kernels. Table 5 
provides information on the metrics for the largest dataset. 

From the table, it can be seen that the global load and store transactions per 
request have improved in the optimized CUDA implementation compared to 
the naïve CUDA implementation. In fact, the global store transactions have sig-
nificantly improved from around 30 transactions to around 5 transactions per 
request. This reduction in the transactions per request will greatly reduce the to-
tal load and store transactions required by the kernel. Similarly, improvement is 
also evident in the global load and store efficiencies, where the global store effi-
ciency has improved to more than 80% compared to the 13.33% in the naïve 
CUDA implementation. Improved efficiency shows that a majority of the trans-
actions are being utilized effectively. These improvements in the transactions per 
request and efficiency have greatly improved the overall performance of the al-
gorithm. 
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Table 5. Profiler metrics of the jacobian computation. 

Dataset 
ID No. 

Naïve CUDA Implementation Optimized CUDA Implementation 

Global Load 
Efficiency 

Global Load 
Transactions 
per Request 

Global Store 
Efficiency 

Global Store 
Transactions 
per Request 

Global Load 
Efficiency 

Global Load 
Transactions 
per Request 

Global Store 
Efficiency 

Global Store 
Transactions 
per Request 

1 31.21 4.82 13.33 29.98 52.75 2.83 82.75 4.83 

2 28.16 8.47 13.33 30 41.57 5.74 82.76 4.83 

3 28.14 8.58 13.33 30 38.71 6.24 82.76 4.83 

4 28.18 8.54 13.33 30 38.85 6.19 100 4 

5 28.07 8.79 13.33 30 34.08 7.24 82.76 4.83 

6 28.22 8.45 13.33 30 33.83 7.07 88.89 4.5 

7 28.32 8.26 13.33 30 33.77 6.92 82.76 4.83 

8 27.47 10.41 13.33 30 32.65 8.65 82.76 4.83 

9 27.81 9.34 13.33 30 30.01 8.47 88.89 4.5 

10 27.68 9.85 13.33 30 29.96 8.92 82.76 4.83 

7.3. Complexity 

Further, we analyze the complexity of the BA algorithm. The BA algorithm in-
volves many sparse matrix-vector and dense vector-vector operations. As a re-
sult, the algorithm’s computational complexity is not straightforward and is a 
combination of different mathematical operations. As a result, we made an effort 
to analyze the computational complexity of the BA algorithm using the compu-
tational time and the different input parameters. The code is implemented for a 
single LM and PCG iteration so that the total number of LM steps and the con-
jugate iterations are constant across all datasets. Also, the total number of cam-
era parameters and the 3D points are constant across all datasets.  

Each dataset has a different number of images, points, and projections. A 
smaller number of images and points can have a larger number of projections 
and vice versa. As a result, the number of images and points alone would not 
provide complete information about the complexity of the algorithm. Also, the 
total number of projections is significantly larger compared to the number of 
images and points. As a result, we have used the number of projections as the 
parameters to compare the complexity. The optimized CUDA implementation 
that proposes a memory data layout only alters the location of different elements 
in the memory and does not alter the algorithm implementation. Similarly, the 
CUDA kernel optimization does not change the algorithm implementation but 
distributes and executes the algorithm in parallel. As a result, the complexity of 
the algorithm does not change between the naïve and optimized CUDA imple-
mentation in terms of the algorithm execution. However, it does change in terms 
of the time complexity between the naïve and optimized CUDA implementation.  

In Figure 20, the trendline equations of the projections versus computational 
times of the naïve and optimized CUDA implementations are shown. The slope  
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Figure 20. Trendline equations of projections versus computation time of naïve and optimized CUDA. 
 
of the optimized CUDA implementation trendline is approximately 3× of the 
naïve implementation, correlating with the 30× speedup achieved. The differ-
ence in the slope demonstrates the decrease in time complexity for the optimized 
CUDA implementation. 

8. Conclusion and Future Work 

In this paper, we proposed a new memory data layout that has improved the 
memory throughput and reduced the total computational time of the algorithm. 
We have demonstrated the performance benefits of the proposed data layout 
through the profiler metrics. The proposed data layout can also be adapted 
across the other state-of-the-art implementations and would improve their per-
formances. This has been illustrated by implementing the proposed data layout 
on the framework from [1], and the timing profile has shown a performance 
improvement. The proposed data layout can be used in applications in other 
domains where the applications benefit from the spatial locality in the memory. 

In addition, we have also studied the impact of computing the block-matrix 
W  explicitly and implicitly by using the camera and point Jacobians in place of 
the block-matrix W . From the study, it is evident that the Implicit-W configu-
ration takes less computational time compared to the Explicit-W configuration. 
Also, we have optimized a few of the CUDA kernels by distributing the compu-
tations related to camera sections across blocks and the point iterations across 
threads generating intermediate results that are aggregated by a single thread in 
the end. We have also preprocessed the datasets such that all the datasets con-
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verge from their initial mean square error. Overall, the CUDA implementation 
with the proposed data layout and the optimizations has achieved a speedup of 
approximately 30× for the largest dataset, which has 13,678 cameras, 4,455,747 
points, and 28,975,571 projections. Overall, a speedup of more than 25× has 
been achieved with all of the configurations. 

The proposed data layout emphasizes on improving the spatial locality of the 
data in memory, where the consecutive memory is accessed significantly. This 
deteriorates the temporal locality of the memory, by using the same set of mem-
ory repetitively. In the BA algorithm improving spatial locality with deteriorat-
ing temporal locality still improved the overall performance of the algorithm.  

In addition to the performance optimizations presented in the paper, further 
studies on the use of complex preconditioners to reduce the total number of 
conjugate gradient iterations should be researched. The increased computations 
from generating and utilizing the complex preconditioner can be addressed by 
asynchronously implementing the computations on the GPUs. In addition, the 
proposed CUDA optimizations would further improve the computational time 
in using the complex preconditioners. 
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