
Journal of Software Engineering and Applications, 2024, 17, 155-171
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.174009 Apr. 15, 2024 155 Journal of Software Engineering and Applications

Software Defect Prediction Using Hybrid
Machine Learning Techniques: A Comparative
Study

Hemant Kumar , Vipin Saxena

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India

Abstract
When a customer uses the software, then it is possible to occur defects that
can be removed in the updated versions of the software. Hence, in the present
work, a robust examination of cross-project software defect prediction is ela-
borated through an innovative hybrid machine learning framework. The
proposed technique combines an advanced deep neural network architecture
with ensemble models such as Support Vector Machine (SVM), Random
Forest (RF), and XGBoost. The study evaluates the performance by consider-
ing multiple software projects like CM1, JM1, KC1, and PC1 using datasets
from the PROMISE Software Engineering Repository. The three hybrid mod-
els that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost,
Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, Logis-
ticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, Gaus-
sianNB, Support Vector Classification (SVC), Neural Network), and the Hy-
brid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC
AUC, and precision. The presented work offers valuable insights into the ef-
fectiveness of hybrid techniques for cross-project defect prediction, providing
a comparative perspective on early defect identification and mitigation strat-
egies.

Keywords
Defect Prediction, Hybrid Techniques, Ensemble Models, Machine Learning,
Neural Network

1. Introduction

In the ever-evolving realm of software development, the pursuit of pre-emptive
defect detection and efficient mitigation strategies remains a critical endeavor.

How to cite this paper: Kumar, H. and
Saxena, V. (2024) Software Defect Prediction
Using Hybrid Machine Learning Tech-
niques: A Comparative Study. Journal of
Software Engineering and Applications, 17,
155-171.
https://doi.org/10.4236/jsea.2024.174009

Received: February 22, 2024
Accepted: April 12, 2024
Published: April 15, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.174009
https://www.scirp.org/
https://orcid.org/0009-0005-4040-4071
https://orcid.org/0000-0003-1035-1704
https://doi.org/10.4236/jsea.2024.174009
http://creativecommons.org/licenses/by/4.0/

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 156 Journal of Software Engineering and Applications

Leveraging the power of advanced machine learning, this paper delves into a
comprehensive exploration of cross-project software defect prediction The
proposed strategy provides a unique hybrid machine learning framework by
combining deep neural network designs with ensemble models like Random
Forest, XGBoost, and SVM [1] [2] [3] [4] [5]. SVM, a foundational element of
Hybrid Model-1, excels in capturing complex decision boundaries and navigat-
ing high-dimensional data spaces. This model’s predictive capacity is further
fortified through the inclusion of Random Forest, a versatile ensemble learning
method celebrated for its robustness and ability to handle datasets rife with noise
[6]. Concurrently, XGBoost, a key constituent of Hybrid Model-1, strategically
assembles weak learners, culminating in an augmented predictive capability
through boosting. The introduction of Hybrid Model-2 introduces a distinct en-
semble featuring GradientBoosting, DecisionTree, and LogisticRegression [7]
[8]. GradientBoosting, sharing traits with XGBoost, iteratively constructs weak
learners, contributing to the model’s adaptability and resilience. DecisionTree
imparts simplicity and interpretability to the model, while LogisticRegression
proves particularly advantageous in the context of binary classification tasks. On
the other hand, Hybrid Model-3 adopts a unique amalgamation strategy, inte-
grating KNeighbors, GaussianNB, and SVC [9] [10] [11]. KNeighbors, guided by
feature similarity, collaborates with GaussianNB, a probabilistic model rooted in
Bayes’ theorem. Simultaneously, SVC is incorporated, seeking optimal hyper-
planes for classification. To comprehensively evaluate the performance of said hy-
brid models, datasets are utilized from renowned software projects, including
CM1, JM1, KC1, and PC1, sourced from the PROMISE Software Engineering
Repository [12]. Performance metrics encompassing recall, F1-score, accuracy,
ROC AUC, and precision offer a nuanced understanding of the models’ multi-
faceted effectiveness [13]. Notably, Hybrid Model-3 emerges as the preeminent
performer across diverse metrics, emphasizing the significance of its unique al-
gorithmic composition. The complexity of developing said hybrid models is ex-
plained in detail in this study, along with the methodical approach, the complex-
ities of the experimental setup, and a thorough analysis of the results. Software
engineers and practitioners can use the research’s insights to help in the search
for effective defect identification and mitigation strategies for a variety of soft-
ware projects. The insights also advance the understanding of hybrid machine-
learning techniques in software defect prediction.

2. Related Work

In the software, it is important to uncover the software bugs which are errors
and flaws and removed in the update versions of the software. Some of the latest
research on the said article is described here which automatically covers the pre-
vious research available in the literature. In the year 2020, Thota et al. [14] inves-
tigated software defect prediction, highlighting its crucial role in maintaining
high-quality software during technological advancements. The authors presented
an efficient approach that can be utilized in the soft computing-based machine

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 157 Journal of Software Engineering and Applications

learning techniques to optimize feature prediction. The strategy aimed to alle-
viate challenges in industries with high software development costs, especially in
safety-critical systems, providing valuable insights for enhancing the testing
strategies. Further, Ning Li et al. [15] conducted an examination of 49 studies on
unsupervised learning techniques for software defect prediction, encompassing
2456 experimental results. The meta-analysis revealed that unsupervised models,
especially Fuzzy C-Means (FCM) and Fuzzy SOMs (FSOM’s), demonstrated
comparable performance to supervised models in both within-project and cross-
project prediction. However, the review identified concerns, such as demonstra-
bly erroneous results, undemanding benchmarks, and incomplete reporting,
emphasizing the need for comprehensive research reporting practices in this
domain. In the year 2021, Matloob et al. [16] systematically reviewed the litera-
ture on Software Defect Prediction (SDP) utilizing ensemble learning, an ap-
proach that integrates multiple classification techniques to enhance prediction
performance. The study analyzed the research papers published from 2012 on-
ward across renowned online libraries such as ACM, IEEE, Springer Link, and
Science Direct. Addressing five research questions, the review highlighted progress
in ensemble learning for SDP. Out of the 46 relevant papers considered, the re-
view revealed that commonly employed ensemble methods included random
forest, boosting, and bagging, while less common methods encompassed stack-
ing, voting, and Extra Trees. Numerous promising frameworks were proposed,
such as EMKCA, SMOTE-Ensemble, MKEL, SDAEsTSE, TLEL, and LRCR. Per-
formance measurement metrics included AUC, accuracy, F-measure, Recall, Preci-
sion, and MCC, with WEKA being widely adopted as a machine learning plat-
form. Empirical analyses underscored the importance of features selection and
data sampling as pre-processing steps to enhance the performance of ensemble
classifiers. Akimova et al. [17] conducted a survey on software defect prediction
using deep learning techniques, addressing the key challenge of identifying de-
fective source code for enhanced software quality and reliability. The study
delved into recent developments in machine learning, particularly in deep
learning, and explored methods for automatically learning semantic and struc-
tural features from code. The survey analyzed recent works in the field, hig-
hlighted open problems, and discussed emerging trends in software defect pre-
diction through deep learning. Gong et al. [18] conducted a study to reassess the
impact of Software Dependency Network Analysis (SDNA) metrics, extracted
using Social Network Analysis (SNA), on Software Defect Prediction (SDP)
models. The research aimed to clarify the relative effectiveness of SNA metrics
compared to traditional code metrics in different SDP contexts (Within-project,
Cross-version, and Cross-project) and scenarios (Defect-count, Defect-classifi-
cation, and Effort-aware). The study was based on a case analysis of nine open-
source software projects spanning 30 versions, found that incorporating SNA
metrics, either alone or in combination with code metrics, improved the per-
formance of SDP models in five out of nine studied scenarios. The findings sug-
gested that future research should consider both SNA metrics and code metrics

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 158 Journal of Software Engineering and Applications

in SDP models, considering the different behaviors of Ego metrics and Global
metrics, two types of SNA metrics, when training the models.

In the year 2022, Khan et al. [19] conducted a systematic literature review
on software defect prediction using Artificial Neural Networks (ANN’s). The
study, which covered publications from 2015 to 2018, aimed to analyze recent
trends and critical aspects of using ANN’s in defect prediction. The research
highlighted the increasing demand for high-quality and cost-effective software
systems and emphasized the significance of defect prediction in the software de-
velopment life cycle. The review was based on publications from IEEE, Elsevier,
and Springer, identified eight of the most relevant research works for in-depth
analysis, providing valuable insights for researchers. Goyal [20] conducted re-
search on SDP focusing on the effective utilization of SVM’s. The study ad-
dressed the challenges of imbalanced datasets, specifically the uneven distribu-
tion of faulty and non-faulty modules, which can impact the accuracy of
SVMs. The author introduced a novel filtering technique (FILTER) to enhance
defect prediction using SVM’s. The research involved designing SVM-based
classifiers, including linear, polynomial, and radial basis function models, ap-
plying the proposed filtering technique to five datasets. The results demonstrat-
ed improvements in accuracy, AUC, and F-measure, with the FILTER enhancing
the performance of SVM-based SDP models by 16.73%, 16.80%, and 7.65%, re-
spectively. The findings contribute to the advancement of SDP methodologies.
Uddin et al. [21] presented an innovative software defect prediction model,
SDP-BB, overcoming limitations of existing approaches. SDP-BB utilized Bidi-
rectional Long Short-Term Memory networks (BiLSTM) and BERT-based se-
mantic features to address shortcomings in manual code feature approaches.
Unlike traditional models, SDP-BB incorporated semantic and contextual in-
formation from the source code. The BiLSTM captured contextual details
through embedded token vectors from BERT, and an attention mechanism hig-
hlighted salient features. The approach employed data augmentation for en-
hanced training. Evaluation against state-of-the-art models on ten open-source
projects demonstrated superior performance in fault prediction, outperforming
competitors in terms of F1-score. The study contributed to advancing software
defect prediction methodologies.

In the year 2023, Zhao et al. [22] conducted a systematic survey comprising 67
studies on Just-in-Time Software Defect Prediction (JIT-SDP). The survey aimed
to advance research and familiarize practitioners with recent progress in JIT-SDP,
a variant focused on predicting defects in incremental software changes. Results
summarized best practices across JIT-SDP workflow phases, performed me-
ta-analysis of prior studies, and suggested future research directions. Findings
indicated that predictive performance correlated with change defect ratio, hig-
hlighting JIT-SDP’s effectiveness in projects with higher defect ratios. Future di-
rections included domain-specific application, reliability-aware, and user-centered
approaches for JIT-SDP. Giray et al. [23] conducted a study that examined the
use of deep learning (DL) in software defect prediction (SDP). The research

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 159 Journal of Software Engineering and Applications

Table 1. Overview of related work.

Authors Year Focus Area Techniques/ Models/Methods Key Findings/Contributions

Thota et al. [14] 2020
Software
Defect

Prediction

Soft computing-based machine
learning techniques

Proposed an efficient approach using soft
computing-based machine learning for
optimized feature prediction in high-cost
software development.

Ning Li et al. [15] 2020
Unsupervised

Learning
Techniques

Fuzzy C-Means (FCM) and
Fuzzy SOMs (FSOMs) in
software defect prediction

Identified concerns in research and
demonstrated the comparable performance of
unsupervised models, particularly FCM and
FSOMs, to supervised models in software
defect prediction.

Matloob et al. [16] 2021

Ensemble
Learning

for
SDP

Random forest, boosting,
bagging methods; Analysis of
papers from ACM, IEEE,
Springer Link, Science Direct

Revealed commonly employed ensemble
methods, highlighted promising frameworks,
and emphasized the importance of feature
selection in software defect prediction.

Akimova et al. [17] 2021
Deep

Learning
Techniques

Survey on software defect
prediction using deep learning

Highlighted unresolved issues and new trends
while examining recent advances in deep
learning for software defect prediction.

Gong et al. [18] 2021

Software
Dependency

Network
Analysis

Metrics extracted using Social
Network Analysis (SNA)

Identified the impact of Software Dependency
Network Analysis (SNA) metrics on software
defect prediction models.

Khan et al. [19] 2022
Artificial
Neural

Networks

Systematic literature review
on software defect
prediction using ANNs

Analyzed trends and critical aspects of using
ANNs in defect prediction, emphasizing the
increasing demand for high-quality software
systems.

Goyal [20] 2022
Support
Vector

Machines

Novel filtering technique
(FILTER) for
imbalanced datasets

Presented a brand-new filtering method to
improve Support Vector Machine (SVM)-based
defect prediction.

Uddin et al. [21] 2022

Bidirectional
Long

Short-Term
Memory

Bidirectional Long Short-Term
Memory networks (BiLSTM)
and BERT-based semantic
features

Proposed an innovative software defect
prediction model (SDP-BB) utilizing BiLSTM
and BERT-based semantic features for
improved performance.

Zhao et al. [22] 2023

Just-in-Time
Software
Defect

Prediction

Systematic survey on JIT-SDP

Summarized best practices, performed
meta-analysis, and suggested future research
directions for Just-in-Time Software Defect
Prediction (JIT-SDP).

Giray et al. [23] 2023
Deep Learning

In SDP
Examination of deep learning in
software defect prediction

Proposed recommendations for future research
in deep learning for defect prediction.

Stradowski and
Madeyski [24]

2023
Business-Driven
Mapping Study

Business-driven mapping study
on machine learning in SDP

Provided insights into past and potential future
research opportunities for businesses in
machine learning software defect prediction.

Hernández-Molinos
et al. [25]

2023
Bayesian

Approaches

Evaluation of Bayesian
approaches for software
defect prediction

Compared classification results and discussed
the robustness of Bayesian algorithms for
defect prediction.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 160 Journal of Software Engineering and Applications

systematically analyzed 102 peer-reviewed studies, revealing that most studies
had applied supervised DL, with two-thirds using metrics as input to DL algo-
rithms. Convolutional Neural Network emerged as the most frequently used DL
algorithm. The findings led to proposed recommendations, including the devel-
opment of more comprehensive DL approaches for automatic feature extraction,
the utilization of diverse software artifacts beyond source code, adoption of data
augmentation techniques to address class imbalance, and encouragement of rep-
lication package publication. Stradowski and Madeyski [24] conducted a busi-
ness-driven mapping study, analyzing the use of machine learning in software
defect prediction and evaluated the state-of-the-art, identified trends, and as-
sessed the potential for business adoption. Utilizing Scopus, authors analyzed
742 studies until February 23, 2022. Results showed a smaller use of commercial
datasets, with academic considerations dominating. However, there were signs
of in vivo results emerging. The study provided insights into past and potential
future research opportunities in machine learning software defect prediction for
businesses. Hernández-Molinos et al. [25] conducted a study on software defect
prediction using Bayesian approaches. The research aimed to evaluate the three
algorithms (K2, Hill Climbing, and TAN) to construct Bayesian Networks for
classifying projects prone to defects. The choice was motivated by the underex-
plored use of Bayesian Networks, compared to the commonly used Naive Bayes.
Using three public PROMISE datasets based on McCabe and Halstead complex-
ity metrics, the results were compared with Decision Tree and Random Forest.
The cross-validation process showed comparable classification results, with
Bayesian algorithms exhibiting less variability and greater robustness compared
to Decision Tree and Random Forest. Table 1 presents a summary of significant
contributions in the field of software defect prediction, including the focus area,
techniques, models, and key findings or contributions of each study.

3. Methodology

A system model is proposed and represented in Figure 1 for a robust examina-
tion of software defect prediction in an innovative hybrid machine learning
framework. It is described below in brief.

3.1. Data Collection

The first phase of the methodology involves the systematic acquisition of diverse

Figure 1. System model for software defect prediction using hybrid techniques.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 161 Journal of Software Engineering and Applications

and representative software defect datasets to form the empirical basis for sub-
sequent algorithmic evaluation and comparative analysis. Through an exhaustive
literature review, publicly available repositories housing software defect datasets,
such as the PROMISE repository, were identified. Priority was given to datasets
showcasing variability in project types, programming languages, and defect cha-
racteristics, ensuring a comprehensive assessment of the algorithm’s perfor-
mance. Rigorous criteria were applied to assess dataset quality, with a focus on
completeness, balance, and relevance to the software defect prediction task.
Statistical methods were employed to ensure the quality of datasets, validating
their sufficiency in terms of instances and feature diversity. Additionally, atten-
tion was given to ethical considerations, respecting privacy and confidentiality
aspects, and complying with licensing terms associated with each dataset. The
selected datasets, integral to the subsequent analysis, were meticulously docu-
mented, detailing project types, defect types, and metadata such as the number
of instances, features, and class distribution. These datasets were then retrieved
from designated repositories, and version control mechanisms were implemented
to track dataset versions, ensuring transparency, and facilitating reproducibility
in subsequent analyses. The acquired datasets, along with their comprehensive
metadata, form the foundational elements for the subsequent stages of the me-
thodology. The study sources datasets from the PROMISE software engineering
repository [26], encompassing CM1, JM1, KC1, and PC1. Key characteristics of
the datasets, specifically the number of instances and attributes, are presented in
Table 2 below.

The attribute of selected dataset is compiled in the following Table 3.
Preprocessing involves handling missing values, converting string labels to

binary integers, and scaling numerical features to ensure dataset readiness for
subsequent model training.

3.2. Data Pre-Processing

Following the systematic acquisition of software defect datasets, the next critical
step in the methodology is data preprocessing. This phase is essential for pre-
paring the selected datasets for subsequent model training, ensuring consistency
and reliability in the analysis. The procedure begins with the comprehensive
loading of the selected datasets into the analysis environment. Subsequently, a
meticulous examination is conducted to identify and handle any missing values,
employing advanced imputation methodologies to mitigate potential bias and
maintain data integrity.

Categorical variables within the datasets are then subjected to conversion into
a numerical format, leveraging state-of-the-art encoding techniques such as
one-hot encoding or label encoding. This transformation is crucial for preserv-
ing information integrity and facilitating the compatibility of categorical data
with machine learning algorithms. Furthermore, numerical features are norma-
lized to ensure they are on a comparable scale. Techniques such as Min-Max

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 162 Journal of Software Engineering and Applications

Table 2. Key characteristics of the datasets.

Dataset Name Number of Instances Number of Attributes

CM1 498 22

JM1 10885 22

KC1 2109 22

PC1 1109 22

Table 3. The attributes of the selected datasets.

Column Name Data Type Explanation

Loc numeric McCabe’s line count of code

v_g numeric McCabe “cyclomatic complexity”

ev_g numeric McCabe “essential complexity”

iv_g numeric McCabe “design complexity”

N numeric Halstead total operators + operands

V numeric Halstead “volume”

L numeric Halstead “program length”

D numeric Halstead “difficulty”

I numeric Halstead “intelligence”

E numeric Halstead “effort”

B numeric Halstead

T numeric Halstead’s time estimator

lOCode numeric Halstead’s line count

lOComment numeric Halstead’s count of lines of comments

lOBlank numeric Halstead’s count of blank lines

uniq_Op numeric Unique operators

uniq_Opnd numeric Unique operands

total_Op numeric Total operators

total_Opnd numeric Total operands

branchCount numeric Percentage of the flow graph

Defects boolean Module has/has not one or more reported defects

scaling or StandardScaler are applied to promote homogeneity in feature mag-
nitudes, preventing certain features from dominating the model training process
due to scale.

The overarching objective of the data preprocessing phase is to create a stan-
dardized and conducive environment for subsequent model training and evalua-

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 163 Journal of Software Engineering and Applications

tion. This involves addressing missing values, converting categorical variables,
and normalizing numerical features, all while adhering to contemporary best
practices in data preprocessing. The meticulously pre-processed datasets serve as
the input for the subsequent phases of the methodology, ensuring that the algo-
rithms are trained on consistent, high-quality data representations.

3.3. Base Learners

The base learners phase is a crucial step in algorithmic methodology, where one
carefully selects foundational machine learning models to serve as individual
components for constructing three distinct hybrid models. In our initial imple-
mentation, opted for RandomForestClassifier, XGBClassifier, and SVM as the
base learners for Hybrid Model-1. The classifiers are well-known for strong per-
formance in classification tasks, particularly in software defect prediction. Each
chosen base learner undergoes individual training on meticulously pre-processed
dataset, incorporating modern practices in model initialization, optimization,
and validation.

In modified implementation, the algorithmic approaches for all three hybrid
models are applied. For Hybrid Model-2, the initial base learners were replaced
with AdaBoostClassifier, LogisticRegression, and DecisionTreeClassifier. For
Hybrid Model-3, KNeighborsClassifier, GaussianNB, and SVC are selected. This
strategic shift aims to explore different algorithmic paradigms and assess impact
on model diversity and overall predictive performance. Similar to the initial im-
plementation, each modified base learner undergoes individual training on the
pre-processed dataset, ensuring alignment with industry best practices and es-
tablished methodologies.

The selection of base learners for each hybrid model is grounded in the effec-
tiveness in classification tasks and the goal is to explore a diverse set of algo-
rithms. The individual models act as the foundational components upon which
Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid
Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Net-
work), and Hybrid Model-3 (KNeighbors, GaussianNB, SVC, Neural Network)
will be constructed in subsequent phases. A thorough evaluation of the perfor-
mance and contributions of each base learner will be conducted to determine the
impact on the overall efficacy of the respective hybrid models in predicting
software defects.

3.4. Hybridization Techniques

In the Hybridization Techniques phase of algorithmic methodology, predictions
from diverse base learners are combined with the training of a neural network
model to create robust and accurate hybrid models. The approach aims to leve-
rage the strengths of individual base learners while harnessing the power of
neural networks to enhance predictive performance. It is considered by incor-
porating predictions from a variety of base learners, including RandomFo-

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 164 Journal of Software Engineering and Applications

restClassifier, XGBClassifier, SVM, AdaBoostClassifier, LogisticRegression, De-
cisionTreeClassifier, KNeighborsClassifier, GaussianNB, and SVC, into the
original dataset features The predictions serve as additional features that capture
different perspectives and patterns within the data. The predictions of each base
learner are then blended with the original dataset features to train a neural net-
work model utilizing the combined features. This neural network model com-
prises several layers, including dropout layers and dense layers with activation
functions like sigmoid and ReLU, to improve generalization and decrease over-
fitting. During training, RMSprop optimization and binary cross-entropy loss to
accomplish effective learning are applied. Three hybrid models are prepared by
combining several base learner combinations in each. Hybrid Model-1 incorpo-
rates SVM, XGBoost, and RandomForest predictions together with the original
features. AdaBoost, Logistic Regression, and Decision Tree predictions are com-
bined with the initial features in Hybrid Model-2. The original characteristics are
combined with predictions from GaussianNB, SVC, and KNeighbors in Hybrid
Model-3.

Through this hybrid approach, the aim is to get benefit from the diverse pers-
pectives offered by individual base learners while leveraging the flexibility and
adaptability of neural networks to enhance predictive accuracy and robustness.
The effectiveness of the hybrid models is rigorously evaluated and compared
against individual base learners to assess their impact on overall predictive per-
formance.

3.5. Evaluation Metrics

In the following section, several software defect prediction metrics, including
false positive (FP), false negative (FN), true positive (TP), and true negative
(TN), will be covered. The quantity of software instances correctly classified as
clean (TN) is equal to the quantity of software instances correctly classed as
faulty (TP). The number of clean software examples that are incorrectly catego-
rized as defective is shown by the letters FP and the number of defective software
instances that are incorrectly labelled as clean is indicated by the letters FN.
Classification accuracy, also referred to as the right classification rate, is one of
the primary simple metrics used to evaluate how well predictive models work. It
is employed to measure the degree to which the cases that have been classified
effectively relate to the total instances. A different metric known as precision is
computed by dividing the total number of instances categorized as faulty (TP +
FP) by the number of instances accurately classified as defective (TP) [13]. Fur-
thermore, recall quantifies the proportion of accurately identified defective cases
(TP) to the overall number of faulty cases (TP + FN) [13]. The F1-score is a sta-
tistic used in numerous research in the literature, which is a harmonic mean of
precision and recall [27] [28]. ROC-AUC calculates the area under the receiver
operating characteristic (ROC) curve by weighing the trade-offs between TPR
and FPR. The following metrics are given by

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 165 Journal of Software Engineering and Applications

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (1)

 TPPrecision
TP FP

=
+

 (2)

 TPRecall
TP FN

=
+

 (3)

 Precision RecallF1-Score 2
Precision Recall

×
= ×

+
 (4)

These metrics collectively provide a comprehensive evaluation of predictive
performance, capturing aspects of correctness, precision, recall, and overall dis-
criminatory power. Customized functions are implemented to calculate these
metrics for both individual base learners and hybrid models. The choice of me-
trics is grounded in established standards in predictive modeling assessment,
ensuring a rigorous and unbiased evaluation process. The evaluation metrics
phase serves as the benchmark for comparing the performance of different mod-
els, guiding the interpretation of results, and facilitating the identification of the
most effective models in the context of software defect prediction.

3.6. Results Analysis

The Results Analysis phase involves a thorough examination and interpretation of
the performance metrics obtained from evaluating individual base learners and
hybrid models constructed through the algorithmic methodology. This critical
step aims to derive actionable insights, discern patterns, and draw meaningful
conclusions regarding the effectiveness of the models in predicting software de-
fects.

4. Results and Discussion

By using the above concept, the following parameters are evaluated and de-
scribed below in brief.

4.1. Accuracy

Accuracy is providing an overall assessment of correctness of model which is
pivotal in evaluating the models’ general performance. The accuracy values for
the three hybrid combinations across projects are outlined in the following Fig-
ure 2. The provided figure succinctly presents accuracy values across three hy-
brid combinations for various projects, including CM1, JM1, KC1, and PC1. For
the CM1 project, all three Hybrid Models consistently exhibit high accuracy
values of 0.980, indicating a robust performance in correctly classifying instances
across different combinations. In the case of the JM1 project, accuracy values
range from 0.893 to 0.899, showcasing a generally high level of correctness
across the Hybrid Models, albeit with slight variations. Moving to the KC1
project, accuracy values are consistently high, ranging from 0.950 to 0.953, indi-
cating accurate classifications across different Hybrid Models. Lastly, for the PC1

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 166 Journal of Software Engineering and Applications

Figure 2. Accuracy scores for different hybrid models (y-axis represents accuracy, the
x-axis represents model).

project, accuracy values range from 0.977 to 0.982, demonstrating a high level of
correctness in classifying instances among the Hybrid Models. The accuracy re-
sults highlight competitive overall performance, with the third combination
consistently demonstrating robust accuracy across all projects.

4.2. Precision

Precision is a measure of the accuracy of positive predictions, quantifies the
proportion of correctly predicted defective instances among all instances pre-
dicted as defective. In the first, second, and third hybrid combinations, precision
values for CM1, JM1, KC1, and PC1 are presented in Figure 3. The figure out-
lines Precision values, a key metric in software defect prediction, detailing the
accuracy of positive predictions for different projects (CM1, JM1, KC1, and
PC1) across three Hybrid Models (Hybrid Model 1, Hybrid Model 2, and Hybrid
Model 3). Notably, CM1 demonstrates consistently perfect precision (1.000)
across all models. For JM1, precision ranges from 0.853 to 0.891, reflecting some
variability. In KC1, precision improves across models, ranging from 0.883 to
0.959. PC1 exhibits slight fluctuations in precision (0.889 to 0.941) among Hy-
brid Models. The figure succinctly presents insights into the accuracy of positive
predictions for each project and model combination in the software defect pre-
diction context. The precision results indicate that all combinations achieved
high precision values, particularly in the third combination, showcasing a con-
sistent ability to minimize false positives and enhance the accuracy of defective
predictions. The trend is represented in the following Figure 3.

4.3. Recall

Recall, representing the ability to correctly identify all positive instances, is cru-
cial for capturing actual defective instances among all actual defective instances.
The recall values for the three hybrid combinations across projects are detailed
in the following Figure 4.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 167 Journal of Software Engineering and Applications

Figure 3. Precision scores for different hybrid models.

Figure 4. Recall scores for different hybrid models.

The presented figure details recall values for three hybrid combinations across
different projects. For the CM1 project, all three Hybrid Models consistently ex-
hibit a recall value of 0.833, indicating their effectiveness in correctly identifying
actual defective instances. In the case of the JM1 project, recall values fluctuate
between 0.501 and 0.544 across the Hybrid Models, highlighting variations in
their ability to accurately identify positive instances. Moving on to the KC1
project, recall values range from 0.712 to 0.803, indicating differing degrees of
efficacy in capturing actual defective instances across the Hybrid Models. Lastly,
for the PC1 project, recall values vary from 0.789 to 0.842, revealing distinctions
in the models’ proficiency in correctly identifying positive instances. The recall
results demonstrate a consistent performance across all combinations, with the
third combination consistently exhibiting higher recall values, indicating its ef-
fectiveness in identifying actual defective instances.

4.4. F1-Score

The F1-Score is harmonizing precision and recall which offers a balanced as-
sessment of model performance. Across the three hybrid combinations, F1-Score
values for CM1, JM1, KC1, and PC1 are summarized in the following Figure 5.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 168 Journal of Software Engineering and Applications

Figure 5. F1-Score scores for different hybrid models.

In the figure provided, F1-Score values across three hybrid combinations are
outlined for distinct projects, namely CM1, JM1, KC1, and PC1. For the CM1
project, all three Hybrid Models consistently achieve an F1-Score of 0.909, sig-
nifying a balanced performance that effectively considers both precision and re-
call. In the case of the JM1 project, F1-Score values range from 0.643 to 0.676
across the Hybrid Models, indicating a generally balanced assessment of model
performance with slight variability. Moving to the KC1 project, F1-Score values
range from 0.817 to 0.841, showcasing a balanced performance with variations
across different Hybrid Models. Lastly, for the PC1 project, F1-Score values
fluctuate from 0.857 to 0.889, demonstrating a balanced assessment of model
performance with slight fluctuations among the Hybrid Models. The F1-Score
results underscore the third combination’s consistent balanced performance,
making it a valuable hybrid approach in software defect prediction.

4.5. ROC AUC

ROC AUC evaluates the trade-off between true positive rate and false positive
rate, providing insights into the model’s ability to distinguish between defective
and non-defective instances. The ROC AUC values for the three hybrid combi-
nations are presented in the following Figure 6.

Figure 6 provides ROC AUC values for three hybrid combinations across
various projects, namely CM1, JM1, KC1, and PC1. For the CM1 project, all
three Hybrid Models consistently display high ROC AUC values, ranging from
0.979 to 0.990, indicating robust performance in distinguishing between defec-
tive and non-defective instances. In the JM1 project, ROC AUC values range
from 0.877 to 0.881 across Hybrid Models, highlighting the models’ ability to
make effective differentiations. For the KC1 project, ROC AUC values consis-
tently range from 0.929 to 0.939, indicating a strong ability to discriminate be-
tween defective and non-defective instances across different Hybrid Models. In
the PC1 project, ROC AUC values range from 0.976 to 0.990, demonstrating a
high level of discriminative power among the Hybrid Models. The ROC AUC
results emphasize the third combination’s superior ability to discriminate be-
tween defective and non-defective instances.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 169 Journal of Software Engineering and Applications

Figure 6. ROC AUC scores for different hybrid models.

The third combination consistently outperforms the other combinations across
precision, recall, F1-Score, accuracy, and ROC AUC. This hybrid approach de-
monstrates a remarkable ability to balance precision and recall, leading to robust
overall performance in software defect prediction. The precision and recall me-
trics emphasize the model’s capability to minimize false positives and false nega-
tives, while the F1-Score and accuracy metrics indicate a balanced and accurate
predictive performance. Additionally, the ROC AUC values highlight the dis-
criminative power of the models, especially in the Third Combination. These
results collectively underscore the significance of carefully selecting and com-
bining base classifiers in hybrid approaches, demonstrating their potential to
enhance the accuracy and reliability of defect prediction models.

5. Conclusion

Our analysis of hybrid machine-learning techniques for software defect predic-
tion highlights the consistent superiority of the third hybrid combination, in-
corporating KNeighborsClassifier, GaussianNB, SVC, and Neural Network,
across key metrics (Accuracy, Precision, Recall, F1-Score, and ROC AUC) for
various projects (CM1, JM1, KC1, PC1). This combination’s balanced approach
effectively minimizes false positives and false negatives, underscoring the signi-
ficance of thoughtful classifier selection in hybrid models. These results make a
valuable contribution to the continuous effort to enhance the dependability and
precision of defect prediction in the field of software engineering. Future re-
search may explore additional classifier combinations and feature engineering
strategies to further enhance software defect prediction models.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Murphy, K.P. (2012) Machine Learning: A Probabilistic Perspective. MIT Press,

Cambridge.

https://doi.org/10.4236/jsea.2024.174009

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 170 Journal of Software Engineering and Applications

[2] Dietterich, T.G. (2000) Ensemble Methods in Machine Learning. In: International
Workshop on Multiple Classifier Systems, Springer, Berlin, 1-15.
https://doi.org/10.1007/3-540-45014-9_1

[3] Cristianini, N. and De Bie, T. (2005) Support Vector Machines. Hodder Arnold,
London.

[4] Breiman, L. (2001) Random Forests. Machine Learning, 45, 5-32.
https://doi.org/10.1023/A:1010933404324

[5] Chen, T. and Guestrin, C. (2016) Xgboost: A Scalable Tree Boosting System. Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785

[6] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013) An Introduction to Sta-
tistical Learning. Vol. 112, Springer, New York, 18.
https://doi.org/10.1007/978-1-4614-7138-7

[7] Friedman, J.H. (2001) Greedy Function Approximation: A Gradient Boosting Ma-
chine. Annals of Statistics, 29, 1189-1232. https://doi.org/10.1214/aos/1013203451

[8] Podgorelec, V., Kokol, P., Stiglic, B. and Rozman, I. (2002) Decision Trees: An
Overview and Their Use in Medicine. Journal of Medical Systems, 26, 445-463.
https://doi.org/10.1023/A:1016409317640

[9] Bishop, C.M. (2006) Pattern Recognition and Machine Learning by Christopher M.
Bishop. Springer Science+ Business Media, Berlin.

[10] Hastie, T., Tibshirani, R., Friedman, J.H. and Friedman, J.H. (2009) The Elements
of Statistical Learning: Data Mining, Inference, and Prediction. Vol. 2, Springer,
New York, 1-758. https://doi.org/10.1007/978-0-387-84858-7

[11] Burges, C.J. (1998) A Tutorial on Support Vector Machines for Pattern Recognition.
Data Mining and Knowledge Discovery, 2, 121-167.
https://doi.org/10.1023/A:1009715923555

[12] http://promise.site.uottawa.ca/SERepository/datasets-page.html

[13] Fawcett, T. (2006) An Introduction to ROC Analysis. Pattern Recognition Letters,
27, 861-874. https://doi.org/10.1016/j.patrec.2005.10.010

[14] Thota, M.K., Shajin, F.H. and Rajesh, P. (2020) Survey on Software Defect Predic-
tion Techniques. International Journal of Applied Science and Engineering, 17,
331-344.

[15] Li, N., Shepperd, M. and Guo, Y. (2020) A Systematic Review of Unsupervised
Learning Techniques for Software Defect Prediction. Information and Software
Technology, 122, Article ID: 106287. https://doi.org/10.1016/j.infsof.2020.106287

[16] Matloob, F., Ghazal, T.M., Taleb, N., Aftab, S., Ahmad, M., Khan, M.A. and Soo-
mro, T.R. (2021) Software Defect Prediction Using Ensemble Learning: A Systematic
Literature Review. IEEE Access, 9, 98754-98771.
https://doi.org/10.1109/ACCESS.2021.3095559

[17] Akimova, E.N., Bersenev, A.Y., Deikov, A.A., Kobylkin, K.S., Konygin, A.V., Me-
zentsev, I.P. and Misilov, V.E. (2021) A Survey on Software Defect Prediction Using
Deep Learning. Mathematics, 9, Article No. 1180.
https://doi.org/10.3390/math9111180

[18] Gong, L., Rajbahadur, G.K., Hassan, A.E. and Jiang, S. (2021) Revisiting the Impact
of Dependency Network Metrics on Software Defect Prediction. IEEE Transactions
on Software Engineering, 48, 5030-5049. https://doi.org/10.1109/TSE.2021.3131950

[19] Khan, M.A., Elmitwally, N.S., Abbas, S., Aftab, S., Ahmad, M., Fayaz, M. and Khan,

https://doi.org/10.4236/jsea.2024.174009
https://doi.org/10.1007/3-540-45014-9_1
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.1214/aos/1013203451
https://doi.org/10.1023/A:1016409317640
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1023/A:1009715923555
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1016/j.infsof.2020.106287
https://doi.org/10.1109/ACCESS.2021.3095559
https://doi.org/10.3390/math9111180
https://doi.org/10.1109/TSE.2021.3131950

H. Kumar, V. Saxena

DOI: 10.4236/jsea.2024.174009 171 Journal of Software Engineering and Applications

F. (2022) Software Defect Prediction Using Artificial Neural Networks: A Systemat-
ic Literature Review. Scientific Programming, 2022, Article ID: 2117339.
https://doi.org/10.1155/2022/2117339

[20] Goyal, S. (2022) Effective Software Defect Prediction Using Support Vector Ma-
chines (SVMs). International Journal of System Assurance Engineering and Man-
agement, 13, 681-696. https://doi.org/10.1007/s13198-021-01326-1

[21] Uddin, M.N., Li, B., Ali, Z., Kefalas, P., Khan, I. and Zada, I. (2022) Software Defect
Prediction Employing BiLSTM and BERT-Based Semantic Feature. Soft Compu-
ting, 26, 7877-7891. https://doi.org/10.1007/s00500-022-06830-5

[22] Zhao, Y., Damevski, K. and Chen, H. (2023) A Systematic Survey of Just-in-Time
Software Defect Prediction. ACM Computing Surveys, 55, 1-35.
https://doi.org/10.1145/3567550

[23] Giray, G., Bennin, K.E., Köksal, Ö., Babur, Ö. and Tekinerdogan, B. (2023) On the
Use of Deep Learning in Software Defect Prediction. Journal of Systems and Soft-
ware, 195, Article ID: 111537. https://doi.org/10.1016/j.jss.2022.111537

[24] Stradowski, S. and Madeyski, L. (2023) Machine Learning in Software Defect Pre-
diction: A Business-Driven Systematic Mapping Study. Information and Software
Technology, 155, Article ID: 107128. https://doi.org/10.1016/j.infsof.2022.107128

[25] Hernández-Molinos, M.J., Sánchez-García, A.J., Barrientos-Martínez, R.E., Pérez-
Arriaga, J.C. and Ocharán-Hernández, J.O. (2023) Software Defect Prediction with
Bayesian Approaches. Mathematics, 11, Article No. 2524.
https://doi.org/10.3390/math11112524

[26] Elish, K.O. and Elish, M.O. (2008) Predicting Defect-Prone Software Modules Using
Support Vector Machines. Journal of Systems and Software, 81, 649-660.
https://doi.org/10.1016/j.jss.2007.07.040

[27] Kim, S., Zhang, H., Wu, R. and Gong, L. (2011) Dealing with Noise in Defect Pre-
diction. Proceedings of the 33rd International Conference on Software Engineering,
Honolulu, 21-28 May 2011, 481-490. https://doi.org/10.1145/1985793.1985859

[28] Lee, T., Nam, J., Han, D., Kim, S. and In, H.P. (2011) Micro Interaction Metrics for
Defect Prediction. Proceedings of the 19th ACM SIGSOFT Symposium and the
13th European Conference on Foundations of Software Engineering, September
2011, 311-321. https://doi.org/10.1145/2025113.2025156

https://doi.org/10.4236/jsea.2024.174009
https://doi.org/10.1155/2022/2117339
https://doi.org/10.1007/s13198-021-01326-1
https://doi.org/10.1007/s00500-022-06830-5
https://doi.org/10.1145/3567550
https://doi.org/10.1016/j.jss.2022.111537
https://doi.org/10.1016/j.infsof.2022.107128
https://doi.org/10.3390/math11112524
https://doi.org/10.1016/j.jss.2007.07.040
https://doi.org/10.1145/1985793.1985859
https://doi.org/10.1145/2025113.2025156

	Software Defect Prediction Using Hybrid Machine Learning Techniques: A Comparative Study
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Methodology
	3.1. Data Collection
	3.2. Data Pre-Processing
	3.3. Base Learners
	3.4. Hybridization Techniques
	3.5. Evaluation Metrics
	3.6. Results Analysis

	4. Results and Discussion
	4.1. Accuracy
	4.2. Precision
	4.3. Recall
	4.4. F1-Score
	4.5. ROC AUC

	5. Conclusion
	Conflicts of Interest
	References

