
Journal of Software Engineering and Applications, 2024, 17, 155-171 
https://www.scirp.org/journal/jsea 

ISSN Online: 1945-3124 
ISSN Print: 1945-3116 

 

DOI: 10.4236/jsea.2024.174009  Apr. 15, 2024 155 Journal of Software Engineering and Applications  
 

 
 
 

Software Defect Prediction Using Hybrid 
Machine Learning Techniques: A Comparative 
Study 

Hemant Kumar , Vipin Saxena  

Department of Computer Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India  

 
 
 

Abstract 
When a customer uses the software, then it is possible to occur defects that 
can be removed in the updated versions of the software. Hence, in the present 
work, a robust examination of cross-project software defect prediction is ela-
borated through an innovative hybrid machine learning framework. The 
proposed technique combines an advanced deep neural network architecture 
with ensemble models such as Support Vector Machine (SVM), Random 
Forest (RF), and XGBoost. The study evaluates the performance by consider-
ing multiple software projects like CM1, JM1, KC1, and PC1 using datasets 
from the PROMISE Software Engineering Repository. The three hybrid mod-
els that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, 
Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, Logis-
ticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, Gaus-
sianNB, Support Vector Classification (SVC), Neural Network), and the Hy-
brid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC 
AUC, and precision. The presented work offers valuable insights into the ef-
fectiveness of hybrid techniques for cross-project defect prediction, providing 
a comparative perspective on early defect identification and mitigation strat-
egies.  
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1. Introduction 

In the ever-evolving realm of software development, the pursuit of pre-emptive 
defect detection and efficient mitigation strategies remains a critical endeavor. 
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Leveraging the power of advanced machine learning, this paper delves into a 
comprehensive exploration of cross-project software defect prediction The 
proposed strategy provides a unique hybrid machine learning framework by 
combining deep neural network designs with ensemble models like Random 
Forest, XGBoost, and SVM [1] [2] [3] [4] [5]. SVM, a foundational element of 
Hybrid Model-1, excels in capturing complex decision boundaries and navigat-
ing high-dimensional data spaces. This model’s predictive capacity is further 
fortified through the inclusion of Random Forest, a versatile ensemble learning 
method celebrated for its robustness and ability to handle datasets rife with noise 
[6]. Concurrently, XGBoost, a key constituent of Hybrid Model-1, strategically 
assembles weak learners, culminating in an augmented predictive capability 
through boosting. The introduction of Hybrid Model-2 introduces a distinct en-
semble featuring GradientBoosting, DecisionTree, and LogisticRegression [7] 
[8]. GradientBoosting, sharing traits with XGBoost, iteratively constructs weak 
learners, contributing to the model’s adaptability and resilience. DecisionTree 
imparts simplicity and interpretability to the model, while LogisticRegression 
proves particularly advantageous in the context of binary classification tasks. On 
the other hand, Hybrid Model-3 adopts a unique amalgamation strategy, inte-
grating KNeighbors, GaussianNB, and SVC [9] [10] [11]. KNeighbors, guided by 
feature similarity, collaborates with GaussianNB, a probabilistic model rooted in 
Bayes’ theorem. Simultaneously, SVC is incorporated, seeking optimal hyper-
planes for classification. To comprehensively evaluate the performance of said hy-
brid models, datasets are utilized from renowned software projects, including 
CM1, JM1, KC1, and PC1, sourced from the PROMISE Software Engineering 
Repository [12]. Performance metrics encompassing recall, F1-score, accuracy, 
ROC AUC, and precision offer a nuanced understanding of the models’ multi-
faceted effectiveness [13]. Notably, Hybrid Model-3 emerges as the preeminent 
performer across diverse metrics, emphasizing the significance of its unique al-
gorithmic composition. The complexity of developing said hybrid models is ex-
plained in detail in this study, along with the methodical approach, the complex-
ities of the experimental setup, and a thorough analysis of the results. Software 
engineers and practitioners can use the research’s insights to help in the search 
for effective defect identification and mitigation strategies for a variety of soft-
ware projects. The insights also advance the understanding of hybrid machine- 
learning techniques in software defect prediction. 

2. Related Work 

In the software, it is important to uncover the software bugs which are errors 
and flaws and removed in the update versions of the software. Some of the latest 
research on the said article is described here which automatically covers the pre-
vious research available in the literature. In the year 2020, Thota et al. [14] inves-
tigated software defect prediction, highlighting its crucial role in maintaining 
high-quality software during technological advancements. The authors presented 
an efficient approach that can be utilized in the soft computing-based machine 
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learning techniques to optimize feature prediction. The strategy aimed to alle-
viate challenges in industries with high software development costs, especially in 
safety-critical systems, providing valuable insights for enhancing the testing 
strategies. Further, Ning Li et al. [15] conducted an examination of 49 studies on 
unsupervised learning techniques for software defect prediction, encompassing 
2456 experimental results. The meta-analysis revealed that unsupervised models, 
especially Fuzzy C-Means (FCM) and Fuzzy SOMs (FSOM’s), demonstrated 
comparable performance to supervised models in both within-project and cross- 
project prediction. However, the review identified concerns, such as demonstra-
bly erroneous results, undemanding benchmarks, and incomplete reporting, 
emphasizing the need for comprehensive research reporting practices in this 
domain. In the year 2021, Matloob et al. [16] systematically reviewed the litera-
ture on Software Defect Prediction (SDP) utilizing ensemble learning, an ap-
proach that integrates multiple classification techniques to enhance prediction 
performance. The study analyzed the research papers published from 2012 on-
ward across renowned online libraries such as ACM, IEEE, Springer Link, and 
Science Direct. Addressing five research questions, the review highlighted progress 
in ensemble learning for SDP. Out of the 46 relevant papers considered, the re-
view revealed that commonly employed ensemble methods included random 
forest, boosting, and bagging, while less common methods encompassed stack-
ing, voting, and Extra Trees. Numerous promising frameworks were proposed, 
such as EMKCA, SMOTE-Ensemble, MKEL, SDAEsTSE, TLEL, and LRCR. Per-
formance measurement metrics included AUC, accuracy, F-measure, Recall, Preci-
sion, and MCC, with WEKA being widely adopted as a machine learning plat-
form. Empirical analyses underscored the importance of features selection and 
data sampling as pre-processing steps to enhance the performance of ensemble 
classifiers. Akimova et al. [17] conducted a survey on software defect prediction 
using deep learning techniques, addressing the key challenge of identifying de-
fective source code for enhanced software quality and reliability. The study 
delved into recent developments in machine learning, particularly in deep 
learning, and explored methods for automatically learning semantic and struc-
tural features from code. The survey analyzed recent works in the field, hig-
hlighted open problems, and discussed emerging trends in software defect pre-
diction through deep learning. Gong et al. [18] conducted a study to reassess the 
impact of Software Dependency Network Analysis (SDNA) metrics, extracted 
using Social Network Analysis (SNA), on Software Defect Prediction (SDP) 
models. The research aimed to clarify the relative effectiveness of SNA metrics 
compared to traditional code metrics in different SDP contexts (Within-project, 
Cross-version, and Cross-project) and scenarios (Defect-count, Defect-classifi- 
cation, and Effort-aware). The study was based on a case analysis of nine open- 
source software projects spanning 30 versions, found that incorporating SNA 
metrics, either alone or in combination with code metrics, improved the per-
formance of SDP models in five out of nine studied scenarios. The findings sug-
gested that future research should consider both SNA metrics and code metrics 
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in SDP models, considering the different behaviors of Ego metrics and Global 
metrics, two types of SNA metrics, when training the models. 

In the year 2022, Khan et al. [19] conducted a systematic literature review 
on software defect prediction using Artificial Neural Networks (ANN’s). The 
study, which covered publications from 2015 to 2018, aimed to analyze recent 
trends and critical aspects of using ANN’s in defect prediction. The research 
highlighted the increasing demand for high-quality and cost-effective software 
systems and emphasized the significance of defect prediction in the software de-
velopment life cycle. The review was based on publications from IEEE, Elsevier, 
and Springer, identified eight of the most relevant research works for in-depth 
analysis, providing valuable insights for researchers. Goyal [20] conducted re-
search on SDP focusing on the effective utilization of SVM’s. The study ad-
dressed the challenges of imbalanced datasets, specifically the uneven distribu-
tion of faulty and non-faulty modules, which can impact the accuracy of 
SVMs. The author introduced a novel filtering technique (FILTER) to enhance 
defect prediction using SVM’s. The research involved designing SVM-based 
classifiers, including linear, polynomial, and radial basis function models, ap-
plying the proposed filtering technique to five datasets. The results demonstrat-
ed improvements in accuracy, AUC, and F-measure, with the FILTER enhancing 
the performance of SVM-based SDP models by 16.73%, 16.80%, and 7.65%, re-
spectively. The findings contribute to the advancement of SDP methodologies. 
Uddin et al. [21] presented an innovative software defect prediction model, 
SDP-BB, overcoming limitations of existing approaches. SDP-BB utilized Bidi-
rectional Long Short-Term Memory networks (BiLSTM) and BERT-based se-
mantic features to address shortcomings in manual code feature approaches. 
Unlike traditional models, SDP-BB incorporated semantic and contextual in-
formation from the source code. The BiLSTM captured contextual details 
through embedded token vectors from BERT, and an attention mechanism hig-
hlighted salient features. The approach employed data augmentation for en-
hanced training. Evaluation against state-of-the-art models on ten open-source 
projects demonstrated superior performance in fault prediction, outperforming 
competitors in terms of F1-score. The study contributed to advancing software 
defect prediction methodologies.  

In the year 2023, Zhao et al. [22] conducted a systematic survey comprising 67 
studies on Just-in-Time Software Defect Prediction (JIT-SDP). The survey aimed 
to advance research and familiarize practitioners with recent progress in JIT-SDP, 
a variant focused on predicting defects in incremental software changes. Results 
summarized best practices across JIT-SDP workflow phases, performed me-
ta-analysis of prior studies, and suggested future research directions. Findings 
indicated that predictive performance correlated with change defect ratio, hig-
hlighting JIT-SDP’s effectiveness in projects with higher defect ratios. Future di-
rections included domain-specific application, reliability-aware, and user-centered 
approaches for JIT-SDP. Giray et al. [23] conducted a study that examined the 
use of deep learning (DL) in software defect prediction (SDP). The research  
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Table 1. Overview of related work. 

Authors Year Focus Area Techniques/ Models/Methods Key Findings/Contributions 

Thota et al. [14] 2020 
Software 
Defect 

Prediction 

Soft computing-based machine 
learning techniques 

Proposed an efficient approach using soft 
computing-based machine learning for 
optimized feature prediction in high-cost 
software development. 

Ning Li et al. [15] 2020 
Unsupervised 

Learning 
Techniques 

Fuzzy C-Means (FCM) and 
Fuzzy SOMs (FSOMs) in 
software defect prediction 

Identified concerns in research and 
demonstrated the comparable performance of 
unsupervised models, particularly FCM and 
FSOMs, to supervised models in software 
defect prediction. 

Matloob et al. [16] 2021 

Ensemble 
Learning 

for 
SDP 

Random forest, boosting, 
bagging methods; Analysis of 
papers from ACM, IEEE, 
Springer Link, Science Direct 

Revealed commonly employed ensemble 
methods, highlighted promising frameworks, 
and emphasized the importance of feature 
selection in software defect prediction. 

Akimova et al. [17] 2021 
Deep 

Learning 
Techniques 

Survey on software defect 
prediction using deep learning 

Highlighted unresolved issues and new trends 
while examining recent advances in deep 
learning for software defect prediction. 

Gong et al. [18] 2021 

Software 
Dependency 

Network 
Analysis 

Metrics extracted using Social 
Network Analysis (SNA) 

Identified the impact of Software Dependency 
Network Analysis (SNA) metrics on software 
defect prediction models. 

Khan et al. [19] 2022 
Artificial 
Neural 

Networks 

Systematic literature review 
on software defect 
prediction using ANNs 

Analyzed trends and critical aspects of using 
ANNs in defect prediction, emphasizing the 
increasing demand for high-quality software 
systems. 

Goyal [20] 2022 
Support 
Vector 

Machines 

Novel filtering technique 
(FILTER) for 
imbalanced datasets 

Presented a brand-new filtering method to 
improve Support Vector Machine (SVM)-based 
defect prediction. 

Uddin et al. [21] 2022 

Bidirectional 
Long 

Short-Term 
Memory 

Bidirectional Long Short-Term 
Memory networks (BiLSTM) 
and BERT-based semantic 
features 

Proposed an innovative software defect 
prediction model (SDP-BB) utilizing BiLSTM 
and BERT-based semantic features for 
improved performance. 

Zhao et al. [22] 2023 

Just-in-Time 
Software 
Defect 

Prediction 

Systematic survey on JIT-SDP 

Summarized best practices, performed 
meta-analysis, and suggested future research 
directions for Just-in-Time Software Defect 
Prediction (JIT-SDP). 

Giray et al. [23] 2023 
Deep Learning 

In SDP 
Examination of deep learning in 
software defect prediction 

Proposed recommendations for future research 
in deep learning for defect prediction. 

Stradowski and 
Madeyski [24] 

2023 
Business-Driven 
Mapping Study 

Business-driven mapping study 
on machine learning in SDP 

Provided insights into past and potential future 
research opportunities for businesses in 
machine learning software defect prediction. 

Hernández-Molinos 
et al. [25] 

2023 
Bayesian 

Approaches 

Evaluation of Bayesian 
approaches for software 
defect prediction 

Compared classification results and discussed 
the robustness of Bayesian algorithms for 
defect prediction. 
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systematically analyzed 102 peer-reviewed studies, revealing that most studies 
had applied supervised DL, with two-thirds using metrics as input to DL algo-
rithms. Convolutional Neural Network emerged as the most frequently used DL 
algorithm. The findings led to proposed recommendations, including the devel-
opment of more comprehensive DL approaches for automatic feature extraction, 
the utilization of diverse software artifacts beyond source code, adoption of data 
augmentation techniques to address class imbalance, and encouragement of rep-
lication package publication. Stradowski and Madeyski [24] conducted a busi-
ness-driven mapping study, analyzing the use of machine learning in software 
defect prediction and evaluated the state-of-the-art, identified trends, and as-
sessed the potential for business adoption. Utilizing Scopus, authors analyzed 
742 studies until February 23, 2022. Results showed a smaller use of commercial 
datasets, with academic considerations dominating. However, there were signs 
of in vivo results emerging. The study provided insights into past and potential 
future research opportunities in machine learning software defect prediction for 
businesses. Hernández-Molinos et al. [25] conducted a study on software defect 
prediction using Bayesian approaches. The research aimed to evaluate the three 
algorithms (K2, Hill Climbing, and TAN) to construct Bayesian Networks for 
classifying projects prone to defects. The choice was motivated by the underex-
plored use of Bayesian Networks, compared to the commonly used Naive Bayes. 
Using three public PROMISE datasets based on McCabe and Halstead complex-
ity metrics, the results were compared with Decision Tree and Random Forest. 
The cross-validation process showed comparable classification results, with 
Bayesian algorithms exhibiting less variability and greater robustness compared 
to Decision Tree and Random Forest. Table 1 presents a summary of significant 
contributions in the field of software defect prediction, including the focus area, 
techniques, models, and key findings or contributions of each study. 

3. Methodology 

A system model is proposed and represented in Figure 1 for a robust examina-
tion of software defect prediction in an innovative hybrid machine learning 
framework. It is described below in brief. 

3.1. Data Collection 

The first phase of the methodology involves the systematic acquisition of diverse 
 

 

Figure 1. System model for software defect prediction using hybrid techniques. 
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and representative software defect datasets to form the empirical basis for sub-
sequent algorithmic evaluation and comparative analysis. Through an exhaustive 
literature review, publicly available repositories housing software defect datasets, 
such as the PROMISE repository, were identified. Priority was given to datasets 
showcasing variability in project types, programming languages, and defect cha-
racteristics, ensuring a comprehensive assessment of the algorithm’s perfor-
mance. Rigorous criteria were applied to assess dataset quality, with a focus on 
completeness, balance, and relevance to the software defect prediction task.  
Statistical methods were employed to ensure the quality of datasets, validating 
their sufficiency in terms of instances and feature diversity. Additionally, atten-
tion was given to ethical considerations, respecting privacy and confidentiality 
aspects, and complying with licensing terms associated with each dataset. The 
selected datasets, integral to the subsequent analysis, were meticulously docu-
mented, detailing project types, defect types, and metadata such as the number 
of instances, features, and class distribution. These datasets were then retrieved 
from designated repositories, and version control mechanisms were implemented 
to track dataset versions, ensuring transparency, and facilitating reproducibility 
in subsequent analyses. The acquired datasets, along with their comprehensive 
metadata, form the foundational elements for the subsequent stages of the me-
thodology. The study sources datasets from the PROMISE software engineering 
repository [26], encompassing CM1, JM1, KC1, and PC1. Key characteristics of 
the datasets, specifically the number of instances and attributes, are presented in 
Table 2 below. 

The attribute of selected dataset is compiled in the following Table 3. 
Preprocessing involves handling missing values, converting string labels to 

binary integers, and scaling numerical features to ensure dataset readiness for 
subsequent model training. 

3.2. Data Pre-Processing 

Following the systematic acquisition of software defect datasets, the next critical 
step in the methodology is data preprocessing. This phase is essential for pre-
paring the selected datasets for subsequent model training, ensuring consistency 
and reliability in the analysis. The procedure begins with the comprehensive 
loading of the selected datasets into the analysis environment. Subsequently, a 
meticulous examination is conducted to identify and handle any missing values, 
employing advanced imputation methodologies to mitigate potential bias and 
maintain data integrity. 

Categorical variables within the datasets are then subjected to conversion into 
a numerical format, leveraging state-of-the-art encoding techniques such as 
one-hot encoding or label encoding. This transformation is crucial for preserv-
ing information integrity and facilitating the compatibility of categorical data 
with machine learning algorithms. Furthermore, numerical features are norma-
lized to ensure they are on a comparable scale. Techniques such as Min-Max  
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Table 2. Key characteristics of the datasets. 

Dataset Name Number of Instances Number of Attributes 

CM1 498 22 

JM1 10885 22 

KC1 2109 22 

PC1 1109 22 

 
Table 3. The attributes of the selected datasets. 

Column Name Data Type Explanation 

Loc numeric McCabe’s line count of code 

v_g numeric McCabe “cyclomatic complexity” 

ev_g numeric McCabe “essential complexity” 

iv_g numeric McCabe “design complexity” 

N numeric Halstead total operators + operands 

V numeric Halstead “volume” 

L numeric Halstead “program length” 

D numeric Halstead “difficulty” 

I numeric Halstead “intelligence” 

E numeric Halstead “effort” 

B numeric Halstead 

T numeric Halstead’s time estimator 

lOCode numeric Halstead’s line count 

lOComment numeric Halstead’s count of lines of comments 

lOBlank numeric Halstead’s count of blank lines 

uniq_Op numeric Unique operators 

uniq_Opnd numeric Unique operands 

total_Op numeric Total operators 

total_Opnd numeric Total operands 

branchCount numeric Percentage of the flow graph 

Defects boolean Module has/has not one or more reported defects 

 
scaling or StandardScaler are applied to promote homogeneity in feature mag-
nitudes, preventing certain features from dominating the model training process 
due to scale. 

The overarching objective of the data preprocessing phase is to create a stan-
dardized and conducive environment for subsequent model training and evalua-
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tion. This involves addressing missing values, converting categorical variables, 
and normalizing numerical features, all while adhering to contemporary best 
practices in data preprocessing. The meticulously pre-processed datasets serve as 
the input for the subsequent phases of the methodology, ensuring that the algo-
rithms are trained on consistent, high-quality data representations. 

3.3. Base Learners 

The base learners phase is a crucial step in algorithmic methodology, where one 
carefully selects foundational machine learning models to serve as individual 
components for constructing three distinct hybrid models. In our initial imple-
mentation, opted for RandomForestClassifier, XGBClassifier, and SVM as the 
base learners for Hybrid Model-1. The classifiers are well-known for strong per-
formance in classification tasks, particularly in software defect prediction. Each 
chosen base learner undergoes individual training on meticulously pre-processed 
dataset, incorporating modern practices in model initialization, optimization, 
and validation. 

In modified implementation, the algorithmic approaches for all three hybrid 
models are applied. For Hybrid Model-2, the initial base learners were replaced 
with AdaBoostClassifier, LogisticRegression, and DecisionTreeClassifier. For 
Hybrid Model-3, KNeighborsClassifier, GaussianNB, and SVC are selected. This 
strategic shift aims to explore different algorithmic paradigms and assess impact 
on model diversity and overall predictive performance. Similar to the initial im-
plementation, each modified base learner undergoes individual training on the 
pre-processed dataset, ensuring alignment with industry best practices and es-
tablished methodologies. 

The selection of base learners for each hybrid model is grounded in the effec-
tiveness in classification tasks and the goal is to explore a diverse set of algo-
rithms. The individual models act as the foundational components upon which 
Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid 
Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Net-
work), and Hybrid Model-3 (KNeighbors, GaussianNB, SVC, Neural Network) 
will be constructed in subsequent phases. A thorough evaluation of the perfor-
mance and contributions of each base learner will be conducted to determine the 
impact on the overall efficacy of the respective hybrid models in predicting 
software defects. 

3.4. Hybridization Techniques 

In the Hybridization Techniques phase of algorithmic methodology, predictions 
from diverse base learners are combined with the training of a neural network 
model to create robust and accurate hybrid models. The approach aims to leve-
rage the strengths of individual base learners while harnessing the power of 
neural networks to enhance predictive performance. It is considered by incor-
porating predictions from a variety of base learners, including RandomFo-
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restClassifier, XGBClassifier, SVM, AdaBoostClassifier, LogisticRegression, De-
cisionTreeClassifier, KNeighborsClassifier, GaussianNB, and SVC, into the 
original dataset features The predictions serve as additional features that capture 
different perspectives and patterns within the data. The predictions of each base 
learner are then blended with the original dataset features to train a neural net-
work model utilizing the combined features. This neural network model com-
prises several layers, including dropout layers and dense layers with activation 
functions like sigmoid and ReLU, to improve generalization and decrease over-
fitting. During training, RMSprop optimization and binary cross-entropy loss to 
accomplish effective learning are applied. Three hybrid models are prepared by 
combining several base learner combinations in each. Hybrid Model-1 incorpo-
rates SVM, XGBoost, and RandomForest predictions together with the original 
features. AdaBoost, Logistic Regression, and Decision Tree predictions are com-
bined with the initial features in Hybrid Model-2. The original characteristics are 
combined with predictions from GaussianNB, SVC, and KNeighbors in Hybrid 
Model-3.  

Through this hybrid approach, the aim is to get benefit from the diverse pers-
pectives offered by individual base learners while leveraging the flexibility and 
adaptability of neural networks to enhance predictive accuracy and robustness. 
The effectiveness of the hybrid models is rigorously evaluated and compared 
against individual base learners to assess their impact on overall predictive per-
formance. 

3.5. Evaluation Metrics 

In the following section, several software defect prediction metrics, including 
false positive (FP), false negative (FN), true positive (TP), and true negative 
(TN), will be covered. The quantity of software instances correctly classified as 
clean (TN) is equal to the quantity of software instances correctly classed as 
faulty (TP). The number of clean software examples that are incorrectly catego-
rized as defective is shown by the letters FP and the number of defective software 
instances that are incorrectly labelled as clean is indicated by the letters FN. 
Classification accuracy, also referred to as the right classification rate, is one of 
the primary simple metrics used to evaluate how well predictive models work. It 
is employed to measure the degree to which the cases that have been classified 
effectively relate to the total instances. A different metric known as precision is 
computed by dividing the total number of instances categorized as faulty (TP + 
FP) by the number of instances accurately classified as defective (TP) [13]. Fur-
thermore, recall quantifies the proportion of accurately identified defective cases 
(TP) to the overall number of faulty cases (TP + FN) [13]. The F1-score is a sta-
tistic used in numerous research in the literature, which is a harmonic mean of 
precision and recall [27] [28]. ROC-AUC calculates the area under the receiver 
operating characteristic (ROC) curve by weighing the trade-offs between TPR 
and FPR. The following metrics are given by 
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 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (1) 

 TPPrecision
TP FP

=
+

 (2) 

 TPRecall
TP FN

=
+

 (3) 

 Precision RecallF1-Score 2
Precision Recall

×
= ×

+
 (4) 

These metrics collectively provide a comprehensive evaluation of predictive 
performance, capturing aspects of correctness, precision, recall, and overall dis-
criminatory power. Customized functions are implemented to calculate these 
metrics for both individual base learners and hybrid models. The choice of me-
trics is grounded in established standards in predictive modeling assessment, 
ensuring a rigorous and unbiased evaluation process. The evaluation metrics 
phase serves as the benchmark for comparing the performance of different mod-
els, guiding the interpretation of results, and facilitating the identification of the 
most effective models in the context of software defect prediction. 

3.6. Results Analysis 

The Results Analysis phase involves a thorough examination and interpretation of 
the performance metrics obtained from evaluating individual base learners and 
hybrid models constructed through the algorithmic methodology. This critical 
step aims to derive actionable insights, discern patterns, and draw meaningful 
conclusions regarding the effectiveness of the models in predicting software de-
fects. 

4. Results and Discussion 

By using the above concept, the following parameters are evaluated and de-
scribed below in brief. 

4.1. Accuracy 

Accuracy is providing an overall assessment of correctness of model which is 
pivotal in evaluating the models’ general performance. The accuracy values for 
the three hybrid combinations across projects are outlined in the following Fig-
ure 2. The provided figure succinctly presents accuracy values across three hy-
brid combinations for various projects, including CM1, JM1, KC1, and PC1. For 
the CM1 project, all three Hybrid Models consistently exhibit high accuracy 
values of 0.980, indicating a robust performance in correctly classifying instances 
across different combinations. In the case of the JM1 project, accuracy values 
range from 0.893 to 0.899, showcasing a generally high level of correctness 
across the Hybrid Models, albeit with slight variations. Moving to the KC1 
project, accuracy values are consistently high, ranging from 0.950 to 0.953, indi-
cating accurate classifications across different Hybrid Models. Lastly, for the PC1  
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Figure 2. Accuracy scores for different hybrid models (y-axis represents accuracy, the 
x-axis represents model). 
 
project, accuracy values range from 0.977 to 0.982, demonstrating a high level of 
correctness in classifying instances among the Hybrid Models. The accuracy re-
sults highlight competitive overall performance, with the third combination 
consistently demonstrating robust accuracy across all projects.  

4.2. Precision 

Precision is a measure of the accuracy of positive predictions, quantifies the 
proportion of correctly predicted defective instances among all instances pre-
dicted as defective. In the first, second, and third hybrid combinations, precision 
values for CM1, JM1, KC1, and PC1 are presented in Figure 3. The figure out-
lines Precision values, a key metric in software defect prediction, detailing the 
accuracy of positive predictions for different projects (CM1, JM1, KC1, and 
PC1) across three Hybrid Models (Hybrid Model 1, Hybrid Model 2, and Hybrid 
Model 3). Notably, CM1 demonstrates consistently perfect precision (1.000) 
across all models. For JM1, precision ranges from 0.853 to 0.891, reflecting some 
variability. In KC1, precision improves across models, ranging from 0.883 to 
0.959. PC1 exhibits slight fluctuations in precision (0.889 to 0.941) among Hy-
brid Models. The figure succinctly presents insights into the accuracy of positive 
predictions for each project and model combination in the software defect pre-
diction context. The precision results indicate that all combinations achieved 
high precision values, particularly in the third combination, showcasing a con-
sistent ability to minimize false positives and enhance the accuracy of defective 
predictions. The trend is represented in the following Figure 3. 

4.3. Recall 

Recall, representing the ability to correctly identify all positive instances, is cru-
cial for capturing actual defective instances among all actual defective instances. 
The recall values for the three hybrid combinations across projects are detailed 
in the following Figure 4. 
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Figure 3. Precision scores for different hybrid models. 
 

 

Figure 4. Recall scores for different hybrid models. 
 

The presented figure details recall values for three hybrid combinations across 
different projects. For the CM1 project, all three Hybrid Models consistently ex-
hibit a recall value of 0.833, indicating their effectiveness in correctly identifying 
actual defective instances. In the case of the JM1 project, recall values fluctuate 
between 0.501 and 0.544 across the Hybrid Models, highlighting variations in 
their ability to accurately identify positive instances. Moving on to the KC1 
project, recall values range from 0.712 to 0.803, indicating differing degrees of 
efficacy in capturing actual defective instances across the Hybrid Models. Lastly, 
for the PC1 project, recall values vary from 0.789 to 0.842, revealing distinctions 
in the models’ proficiency in correctly identifying positive instances. The recall 
results demonstrate a consistent performance across all combinations, with the 
third combination consistently exhibiting higher recall values, indicating its ef-
fectiveness in identifying actual defective instances.  

4.4. F1-Score 

The F1-Score is harmonizing precision and recall which offers a balanced as-
sessment of model performance. Across the three hybrid combinations, F1-Score 
values for CM1, JM1, KC1, and PC1 are summarized in the following Figure 5. 
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Figure 5. F1-Score scores for different hybrid models. 
 

In the figure provided, F1-Score values across three hybrid combinations are 
outlined for distinct projects, namely CM1, JM1, KC1, and PC1. For the CM1 
project, all three Hybrid Models consistently achieve an F1-Score of 0.909, sig-
nifying a balanced performance that effectively considers both precision and re-
call. In the case of the JM1 project, F1-Score values range from 0.643 to 0.676 
across the Hybrid Models, indicating a generally balanced assessment of model 
performance with slight variability. Moving to the KC1 project, F1-Score values 
range from 0.817 to 0.841, showcasing a balanced performance with variations 
across different Hybrid Models. Lastly, for the PC1 project, F1-Score values 
fluctuate from 0.857 to 0.889, demonstrating a balanced assessment of model 
performance with slight fluctuations among the Hybrid Models. The F1-Score 
results underscore the third combination’s consistent balanced performance, 
making it a valuable hybrid approach in software defect prediction. 

4.5. ROC AUC 

ROC AUC evaluates the trade-off between true positive rate and false positive 
rate, providing insights into the model’s ability to distinguish between defective 
and non-defective instances. The ROC AUC values for the three hybrid combi-
nations are presented in the following Figure 6. 

Figure 6 provides ROC AUC values for three hybrid combinations across 
various projects, namely CM1, JM1, KC1, and PC1. For the CM1 project, all 
three Hybrid Models consistently display high ROC AUC values, ranging from 
0.979 to 0.990, indicating robust performance in distinguishing between defec-
tive and non-defective instances. In the JM1 project, ROC AUC values range 
from 0.877 to 0.881 across Hybrid Models, highlighting the models’ ability to 
make effective differentiations. For the KC1 project, ROC AUC values consis-
tently range from 0.929 to 0.939, indicating a strong ability to discriminate be-
tween defective and non-defective instances across different Hybrid Models. In 
the PC1 project, ROC AUC values range from 0.976 to 0.990, demonstrating a 
high level of discriminative power among the Hybrid Models. The ROC AUC 
results emphasize the third combination’s superior ability to discriminate be-
tween defective and non-defective instances.  
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Figure 6. ROC AUC scores for different hybrid models. 
 

The third combination consistently outperforms the other combinations across 
precision, recall, F1-Score, accuracy, and ROC AUC. This hybrid approach de-
monstrates a remarkable ability to balance precision and recall, leading to robust 
overall performance in software defect prediction. The precision and recall me-
trics emphasize the model’s capability to minimize false positives and false nega-
tives, while the F1-Score and accuracy metrics indicate a balanced and accurate 
predictive performance. Additionally, the ROC AUC values highlight the dis-
criminative power of the models, especially in the Third Combination. These 
results collectively underscore the significance of carefully selecting and com-
bining base classifiers in hybrid approaches, demonstrating their potential to 
enhance the accuracy and reliability of defect prediction models. 

5. Conclusion 

Our analysis of hybrid machine-learning techniques for software defect predic-
tion highlights the consistent superiority of the third hybrid combination, in-
corporating KNeighborsClassifier, GaussianNB, SVC, and Neural Network, 
across key metrics (Accuracy, Precision, Recall, F1-Score, and ROC AUC) for 
various projects (CM1, JM1, KC1, PC1). This combination’s balanced approach 
effectively minimizes false positives and false negatives, underscoring the signi-
ficance of thoughtful classifier selection in hybrid models. These results make a 
valuable contribution to the continuous effort to enhance the dependability and 
precision of defect prediction in the field of software engineering. Future re-
search may explore additional classifier combinations and feature engineering 
strategies to further enhance software defect prediction models.  
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