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Abstract 

Maximum frequent pattern generation from a large database of transactions 
and items for association rule mining is an important research topic in data 
mining. Association rule mining aims to discover interesting correlations, 
frequent patterns, associations, or causal structures between items hidden in a 
large database. By exploiting quantum computing, we propose an efficient 
quantum search algorithm design to discover the maximum frequent pat-
terns. We modified Grover’s search algorithm so that a subspace of arbitrary 
symmetric states is used instead of the whole search space. We presented a 
novel quantum oracle design that employs a quantum counter to count the 
maximum frequent items and a quantum comparator to check with a mini-
mum support threshold. The proposed derived algorithm increases the rate of 
the correct solutions since the search is only in a subspace. Furthermore, our 
algorithm significantly scales and optimizes the required number of qubits in 
design, which directly reflected positively on the performance. Our proposed 
design can accommodate more transactions and items and still have a good 
performance with a small number of qubits.  
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1. Introduction 

We live in a digitalized era where vast amounts of data are collected daily. Data 
mining is a process of extracting interesting information, which is called know-
ledge discovery (KDD) in a database. According to [1], data mining is a field re-
lated to machine learning, but data mining is more applied than machine learn-
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ing. Data mining has a broader spectrum of applications in engineering, science, 
business, medical applications, and many other areas. Data mining is used to 
process the raw data on a larger scale of data. There are various types of data 
mining techniques, such as association rules, classification, and clustering [2]. 
Association rule mining (ARM) is one of the most important research topics in 
data mining. ARM aims to discover interesting correlations, frequent patterns, 
associations, or causal structures between items hidden in a large database. As-
sociation rule mining is a branch of unsupervised learning processes that dis-
cover hidden patterns in data in the form of easily recognizable rules. Associa-
tion rule mining is often termed as market basket analysis which studies the 
buying behaviors of customers by searching for sets of items that are frequently 
purchased together. Association rule mining is widely used in the retail analysis 
of transactions [3] [4], recommendation engines [5] [6] [7], web mining [8] [9], 
medical diagnosis, bioinformatics [10], and other applications [11] in various 
areas. 
 Retail analysis of transactions: The data from past transactions can be used to 

generate items that the customers most like to be purchased together. The 
retailer can then adjust the store layout, sales strategy, bundling prices, and 
inventory control to take advantage of the extracted rules that are generated 
from association rule mining.  

 Recommendation engines: Recommendation systems such as entertainment, 
news, and social media can be designed using association rule mining to 
recommend the most interesting content based on the user’s past behavior. 

 Web mining: Web usage mining is used in e-commerce applications to get 
useful information about the behavior of customers. Association rule mining 
is applied to the data from past behavior of the customers, and then rules 
based on customer preferences are generated. The developers can optimize 
and improve websites to personalize the web portals based on the association 
rules.  

 Medical diagnosis: Association rule mining can be used to help diagnose pa-
tients. The symptoms of diseases and illnesses can be identified to find the 
conditional probability of the occurrence of illness using associate rule min-
ing.  

 Bioinformatics: There are many applications in bioinformatics problems, 
such as protein interaction networks, gene expression data, and others [10], 
that can be applied to association rule mining to identify biologically relevant 
patterns. These patterns can be translated into a biological context. 

Association rule mining increases revenue by ensuring customer satisfaction 
based on customized web portals, as well as enhances medical treatment by re-
lating the severity of the sickness and its symptoms. 

Given a set of transactions in a database, the goal is to find the association 
rules that connect between itemsets. For example, X Y⇒  (X implies Y), which 
means the customer who buys the items in X also tends to buy the items in Y. 
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The implication means the co-occurrence of X and Y items. If patterns within 
transaction data tell us that baby formula and diapers are usually purchased to-
gether in the same transaction, a retailer can take advantage of this association 
for bundle pricing, product placement, and even shelf space optimization within 
the store layout. Association rules are considered interesting and called strong if 
they satisfy the user-predefined thresholds, which are minimum support (min-
sup) and minimum confidence (minconf) thresholds. These threshold values are 
pre-defined by users or domain experts.  

The original association rule mining problem was first introduced in [12]. Let 
{ }1 2, , , MI I I I=   be the set of all items. Let T be a set of database transactions 

where { }1 2, , , NT T T T=   and T I⊆ . Each transaction is associated with an 
identifier, called a TID. A set of items is referred to as an itemset. An itemset 
that contains k items is called a k-itemset. k-itemsets that occur frequently are 
called a frequent k-itemsets. Association rules of the form X Y⇒  (X implies 
Y) is measured by support, the percentage of transactions that contain both X 
and Y, the union of itemsets X and Y. The support is taken to be the probability, 
( )P X Y .  

( ) ( )
number of transactions containing both  and 

Total number of transactions

support X Y P X Y
X Y

⇒ =

=



 

( ) number of transactions containing 
Total number of transactions

Xsupport X =  

The support in the above equation is called relative support, where the fre-
quency or occurrence of an item is called an absolute support or a support 
count. Another objective measure for association rules is confidence, which as-
sesses the degree of certainty of the detected association [13]. The rule X Y⇒  
has confidence, the percentage of transactions that containing X also contains Y. 
The confidence is taken to be the conditional probability, ( )|P Y X .  

( ) ( )
( )
( )

|

number of transactions containing and
number of transaction containing 

confidence X Y P Y X

support X YX Y
X support X

⇒ =

= =


 

The main objective of ARM is to discover the itemsets that frequently appear 
in the transactions. The support (occurrence frequency) for each of these item-
sets is generated from a number of candidate itemsets and not less than a 
pre-defined threshold [13] [14]. In Figure 1, association rule mining is decom-
posed into two phases: First, find out all the frequent itemsets such that each of 
these itemsets will occur at least as frequently as the pre-defined minimum sup-
port threshold. Those itemsets are called frequent or large itemsets. Second, 
generate association rules from those frequent itemsets with the constraints of 
minimum confidence threshold. There are many algorithms for mining frequent 
itemsets; the first phase of the association rule mining task. This first phase do-
minates the complexity of the whole process. 
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Figure 1. Association rule mining phases. 

2. Related Works 
2.1. Classical Algorithms for Association Rule Mining 

The AIS (Agrawal, Imielinski, Swami) algorithm was the first algorithm pro-
posed for mining association rules in [12]. In the AIS algorithm, the database 
was scanned many times to get maximum frequent or large itemsets. During the 
first pass, C1, the candidate 1-itemsets are generated, and the support count of 
each individual item was accumulated. From candidate 1-itemsets, F1 frequent 
1-itemsets are generated by eliminating itemsets whose support count less than 
the value of minsup. Candidate 2-itemsets are generated by extending frequent 
1-itemsets with other items in the same transaction. During the second pass over 
the database, the support counts of those candidate 2-itemsets are accumulated 
and checked against the minsup. Similarly, those candidate (k + 1)-itemsets are 
generated by extending frequent k-itemsets with items in the same transaction. 
However, extending the itemsets that are not present in the previous pass results 
in unnecessarily generating and counting too many candidate itemsets that turn 
out to be small. 

A number of ARM algorithms were proposed. Among these, the most 
well-known algorithm is the Apriori algorithm [14] that makes additional use of 
prune property to those candidates which have an infrequent subset before 
counting their supports. This optimization is possible because the support values 
of all subsets of a candidate are known in advance. The Apriori algorithm em-
ploys an iterative approach known as level-wise search, where k-itemsets are 
used to explore (k + 1)-itemsets. First, the set of candidate 1-itemsets is found by 
scanning the database to accumulate the count for each item and collecting those 
items that satisfy the minimum support threshold. The resulting set is denoted 
by F1, the set of frequent 1-itemsets. Next, F1 is used to find C2, the set of candi-
date 2-itemsets, which is used to find F2, and so on, until no more frequent 
k-itemsets can be found. The finding of each Ck requires one full scan of the da-
tabase, which becomes the dilemma of performance in ARM when the transac-
tion database is very large.  

In the Apriori algorithm, finding of each Ck requires one full scan of the data-
base. To improve the efficiency of the level-wise generation of frequent itemsets, 
an important property called the Apriori property is used to reduce the search 
space. Apriori property is: 
 If an itemset is frequent, then all its subsets must also be frequent. 
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 If an itemset is not frequent, then all its supersets cannot be frequent. 
To construct candidate Ck combine frequent itemsets of size k. If 1k = , take 

all 1-itemset. If 1k > , join pairs of itemset that differ by just one item. For each 
generated candidate itemset ensure that all subsets of size k are frequent. The 
first pass of the Apriori algorithm simply counts item occurrences to determine 
the frequent 1-itemsets. A subsequent pass, say pass k, consists of two phases. 
First, the frequent itemsets 1kF −  found in the 1k −  pass are used to generate 
the candidate itemsets Ck, using two step processes: self-join and prune.  
 Self-join 1kF − : Generate set Ck by joining 1kF −  itemsets that share the first 

1k −  items.  
 Prune: Remove from Ck the itemsets that contain a subset k-itemset that is 

not frequent. 
Second, the database is scanned and the support of candidates in Ck is 

counted.  
Example: Let a store promote certain computer accessories, and the store 

manager bundles some accessories with other discounted accessories. The man-
ager wants to know which accessories the customers pay mostly when purchased 
together. Table 1 contains transactions with items. 

Let minsup = 2 and mincof = 70%. We need first to generate a maximum fre-
quent itemset. The transaction database in Table 1 is applied in the Apriori al-
gorithm, as can be seen in Figure 2. The set of candidate 1-itemsets, C1, obtained 
and then scanned the database to count the support of each itemset. The set of 
frequent 1-itemsets, F1, whose support is equal to or greater than 2, the minsup 
value, are generated from C1. Items in F1 are joined to get candidate 2-itemsets, 
C2. The database is scanned, and the support of each candidate itemset in C2 is 
counted. The set of frequent 2-itemsets, F2, is determined based on the support 
count of each candidate 2-itemset in C2. From F2 pairs of itemset are joined that 
differ by just one item to get candidate 3-itemsets, C3. The support of each itemset  
 
Table 1. Transaction with items. 

Transaction ID Computer accessories items 

T1 Mouse, Keyboard, Monitor, Headphone 

T2 Webcam, Monitor 

T3 Mouse, Keyboard, Monitor 

T4 Printer 

T5 Mouse, Keyboard, Headphone 

T6 Webcam, Headphone 

T7 Mouse, Monitor, Headphone 

T8 Monitor, Headphone 

T9 Mouse, Keyboard, Monitor 

T10 Mouse, Webcam, Monitor 
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Figure 2. Generating maximum frequent itemsets using the apriori algorithm. 
 
in C3 is counted by scanning the database and F3 is generated based on the min-
sup value. The candidate of 4-itemset, C4, is created by joining itemsets that dif-
fer by just two items in F3. The support count of C4 itemset is less than the min-
sup value, so there is no frequent 4-itemsets, F4. Thus, in this case the maximum 
frequent itemset is F3. So, the maximum frequent itemset are: {Mouse, Keyboard, 
Monitor}, {Mouse, Keyboard, Headphone} and {Mouse, Monitor, Headphone} 
as can see in Figure 2. 
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Let generate association rules based on mincof = 70% for {Mouse, Keyboard, 
Monitor}: 

Rule 1: {Mouse, Keyboard} → {Monitor} 

{ } { }( )
{ }

Mouse,Keyboard Monitor

Mouse,Keyboard,Monitor 3 75%
{Mouse,Keyboard} 4

confidence

support
support

→

= = =
 

Rule 2: {Mouse, Monitor} → {Keyboard} 

{ } { }( )
{ }

{ }

Mouse,Monitor Keyboard

Mouse,Keyboard,Monitor 3 60%
Mouse,Monitor 5

confidence

support
support

→

= = =
 

Rule 3: {Keyboard, Monitor} → {Mouse} 

{ } { }( )
{ }

{ }

Keyboard,Monitor Mouse

Mouse,Keyboard,Monitor 3 100%
Keyboard,Monitor 3

confidence

support
support

→

= = =
 

Rule 4: {Mouse} → {Keyboard, Monitor} 

{ } { }( )
{ }

{ }

Mouse Keyboard,Monitor

Mouse,Keyboard,Monitor 3 50%
Mouse 6

confidence

support
support

→

= = =
 

Rule 5: {Keyboard} → {Mouse, Monitor} 

{ } { }( )
{ }

{ }

Keyboard Mouse,Monitor

Mouse,Keyboard,Monitor 3 75%
Keyboard 4

confidence

support
support

→

= = =
 

Rule 6: {Monitor} → {Mouse, Keyboard} 

{ } { }( )
{ }

{ }

Monitor Mouse,Keyboard

Mouse,Keyboard,Monitor 3 42.9%
Monitor 7

confidence

support
support

→

= = =
 

If the desired mincof is 70%, then all interested rules that satisfy the mincof 
are rules 1, 3, and 5. Based on rule 1, 75% of the customers who purchase 
{Mouse, Keyboard} also purchase a Monitor. Also, based on rule 3, 100% of the 
customers who purchase {Keyboard, Monitor} always purchase {Mouse}. 

Although the research in the Apriori algorithm has grown the recent years 
[15], the drawback of the Apriori algorithm is the necessity of scanning the 
whole database many times. Based on the Apriori algorithm, many new algo-
rithms were designed with some modifications or improvements. Generally, 
there were two approaches: one is to reduce the number of passes over the whole 
database or replace the whole database with only part of it based on the current 
frequent itemsets, and another approach is to explore different kinds of pruning 
techniques to make the number of candidate itemsets much smaller [16]. Direct 
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hash and pruning (DHP) [17] and partitioning [18] are modifications of the 
Apriori algorithm. Another mining technique is to simultaneously mine both 
frequent and infrequent itemsets [19]. 

Associate rule mining aims to extract interesting correlations from a raw da-
taset that contains a huge number of database transactions and items in each 
transaction. Computing such a large scale of raw data in classical computing is 
very expensive. Leveraging the quantum search algorithm can solve such a 
problem significantly faster than the classical algorithm. Grover’s search algo-
rithm gives a quadratic speedup compared to an exhaustive classical algorithm 
for the same problem. 

2.2. Quantum Algorithms for Association Rule Mining 

Quantum algorithms for association rule mining [20] [21] was proposed using a 
quantum counting algorithm [22]. The quantum circuit design that was pro-
posed in [20] [21] presented experimental implementation for 2 × 2 (two trans-
actions and two items). The experiment for 2 × 2 required 9 qubits. Let T, the 
number of the transaction and I, the number of the items, the required number 
of qubits is equal to 2TI + 1 for each iteration to find the maximum frequent 
k-itemset. Also, for each iteration, the whole database is a search space.  

To find the maximum frequent k-itemsets from n items, we are interested on-
ly in the subspace of states of Hamming weight k. We propose an efficient me-
thod that the search space is reduced from 2n-dimensional Hilbert space to an  

n
k
 
 
 

-dimensional subspace. Also, we presented an efficient quantum circuit  

design that the required number of qubits reduced significantly compared with 
[20] [21]. We present a new quantum design method for association rule mining 
to generate the maximum frequent k-itemsets, which required fewer qubits, and 
the search space based only on the candidate k-itemset to discover the maximum 
frequent k-itemsets. We modified Grover’s search algorithm [12] by employing 
the Dicke state [23] to create the superposition for k-itemset, quantum counter 
[24] [25] to count the frequent of k-itemset and quantum comparator to check 
the frequent k-itemset equal or greater than to minsup threshold. We start to 
transform the transaction database into a binary matrix such that the item value 
is “1” if the item is present in a transaction and “0” otherwise. The database is 
converted to binary matrix N MA ∗ , where each row corresponds to transaction in 
T, each column corresponds to an item in the set of all items I, and N is the 
number of transactions, and M is the number of items. A Boolean function in 
the sum-of-product (SOP) form is generated from the binary matrix such that 
each row of the matrix corresponds to one product term of the SOP function 
expression. In the presented case, the term is a product of variables for all items 
that have a value of one.  

Apriori algorithm for associate rule mining, the maximum frequent k-itemset 
is required to scan the database for every 1-itemset, 2-itemset, etc. until to find 
the maximum k-itemset. The candidate itemset generated during an early itera-
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tion are generally of larger magnitude than the maximum frequent k-itemset, 
which likelihood can be found in later iterations. Therefore, the initial candidate 
itemset generation is the key issue in improving the performance of association 
rule mining [17]. In this case, we started the search from the maximum k-itemsets 
as the candidate to search the maximum frequent k-itemsets, which may be a bet-
ter chance to be the actual or close to the maximum frequent k-itemsets rather 
than starting the search from candidate 1-itemsets. Thus, the database size and 
the computation cost are reduced substantially. We choose only all the terms 
that have the maximum k-itemset from the SOP function. We built the quantum 
oracle design from the optimized SOP function that contained only the maxi-
mum k-itemset combined with the quantum counter and quantum comparator. 
We run an experiment and perform analysis using QISKIT, an IBM quantum 
simulator [26].  

3. Quantum Oracle Design 

First, let us create a binary matrix in Table 2 such that the item value is “1” if the 
item is present in a transaction and “0” otherwise. The binary matrix is based on 
items from Table 1. 

To simplify, we change each item name to a letter so that we can build the 
SOP function. Let us observe that the SOP expressions used here are different 
from those applied in binary circuit synthesis. This is because here we can use 
repeated products or products included in other products, which can’t happen in 
SOP expressions used for binary circuit synthesis. Therefore, our expression 
compiled from Table 2 is as follows:  

abde cd abd f abe ce ade de abd acd+ + + + + + + + +  

Let minsup = 2 and we need to find the maximum frequent 3-itemset. First, 
extract all itemsets equal to or greater than the 3-itemset.  
 
Table 2. Binary matrix corresponds from Table 1. 

Transaction ID 
a b c d e f 

Mouse Keyboard Webcam Monitor Headphone Printer 

T1 1 1  1 1  

T2   1 1   

T3 1 1  1   

T4      1 

T5 1 1   1  

T6   1  1  

T7 1   1 1  

T8    1 1  

T9 1 1  1   

T10 1  1 1   
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abde abd abe ade abd acd+ + + + +  

Second, we decompose any itemset that is greater than 3-itemset. In this case, 
we have abde  which is decomposed into abd abe ade bde+ + +  such that: 

abd abe ade bde abd abe ade abd acd+ + + + + + + +  

Third, we build the quantum oracle for SOP function expression: 

2abd abe ade bde abd abe ade abd acd+ + + + + + + + ≥         (1) 

Each term in the traditional quantum oracle design for the SOP function is a 
Toffoli gate, and the outcome is stored in an additional ancilla qubit. One large 
Toffoli gate that is controlled for all results is used to compute the output of the 
SOP function. The problem with the traditional quantum oracle architecture is 
that one additional ancilla qubit is needed for each term. We proposed that each 
term of the SOP function be connected to a quantum counter and then mirror 
the term back before computing the next term. In [13] [14], more information 
on this design is provided.  

3.1. Grover’s Search Algorithms 

Grover’s Algorithm [22] searches an unordered array of N elements to find a 
particular element with a given property. In classical computations, in the worst 
case, this search takes N queries (tests, evaluations of the classical oracle). In the 
average case, the particular element will be found in N/2 queries. Grover’s algo-
rithm can find the element in N  queries. Thus, Grover’s algorithm can be 
used to search the maximum frequent k-itemset for associate rule mining. 
Grover’s algorithm is a quantum search algorithm, which speeds up a classical 
search algorithm of complexity ( )O N  to ( )O N  in the space of N objects, 
hence Grover gives a quadratic speed up. 

The SOP Boolean function in Equation (1) contains n variables from the given 
binary matrix in Table 2, which is used to represent the search space of 2nN =  
elements. To apply the SOP Boolean function in Grover’s algorithm, these N 
elements are applied in a superposition state which is the input to the oracle. If 
the oracle recognizes an element as the solution, then the phase of the desired 
state is inverted. This is called the Phase inversion of the marked element. Grov-
er’s search algorithm uses another trick called inversion about the mean (aver-
age), which is also known as diffusion operation or amplitude amplification. In-
version about the mean amplifies the amplitude of the marked states and shrinks 
the amplitudes of other items. The amplitude amplification increases the proba-
bility of marked states, so that measuring the final states will return the target 
solution with a high probability near 1. 

As shown in Figure 3(a), the n qubits in the superposition state result from 
applying a vector of Hadamard gates to initial state 0 n . Next applied is re-
peated operator G which is called the Grover Loop. After the iteration of the 
Grover Loop operator ( )O N  times the output is measured for all input qu-
bits. Oracle can use an arbitrary number of ancilla qubits, but all these qubits 
must be returned to value 0  inside the oracle. The number of required iterations  
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(a) 

 
(b) 

Figure 3. (a) Schematic circuit for Grover’s algorithm [22]. (b) Grover operator G. 
 

for the Grover operator is: 
4

NR
M

 π
≤  
 

 where N is number of all search space  

elements and M is number of solutions. The Grover Loop G is a quantum sub-
routine which can be broken into four steps as shown in Figure 3(b). 

1) Phase inversion: apply the oracle. If the oracle recognizes the solution, then 
the phase of the desired state is inverted. 

2) Apply the Hadamard transform nH ⊗  (
1 11
1 12

H  
=  − 

). 

3) Zero state phase shift: Perform the condition phase shift, in which all states 
receive a phase shift of -1 except for the zero state 0 . 

4) Apply the Hadamard transform nH ⊗ . 
Grover’s search algorithm is started to create the superposition by using Ha-

damard operator H. Hadamard operator of n qubits creates 2nN =  quantum 
states. Hadamard operator of nH ⊗  applied 0 n⊗ : 

{ }0,1

10
2 n

nn

n
x

H X⊗⊗

∈

= ∑  

1 11
1 12

H  
=  − 

 ( )11 0 1
2

H −  ( )10 0 1
2

H = +  

( )44 10 0000 0001 1111
16

H ⊗⊗ = + + +  

For maximum frequent k-itemsets, all N states are not solutions, but the solu-
tion would be only in Hamming weight k-itemsets. Hamming weight in binary is 
the number of ones in the binary number. k-itemsets is Hamming weight of 
k-itemset. For instance, finding the maximum frequent 2-itemset from 4 items, 
the solution will be only in 6 states with Hamming weight 2 which are equal to 
0011, 0101, 0110, 1001, 1010, 1100. So, using the Hadamard operator for four 
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items creates 16 quantum states (0000, 0001, …, 1111) which are not required to 
search from the possible solutions, but the possible solutions are only in 6 quan-
tum states of Hamming weight 2. 

3.2. Dicke State 

The search space of search algorithms has a critical role in terms of performance 
in both classical and quantum computing. In Grover’s search algorithm starts 
preparing superposition states for the search problems. The Hadamard operator 
is the traditional way to create 2n superposition states for n qubits. There are 
many real problems such as symmetric Boolean function [27], Johnson graph 
[28], and frequent patterns for associate rule mining that the possible solutions  

are in the form of Hamming weight, a pure symmetric state in 
n
k
 
 
 

 states. For  

problems such as these, a proper quantum superposition state can be achieved 
using the Dicke state [23]. Finding the maximum frequent k-itemsets from n 
items, we are interested only in the subspace of states of Hamming weight k. The 
Dicke state n

kD  is an equal-weight superposition of all n-qubit states with 
Hamming Weight k (i.e., all strings of length n with exactly k ones over a binary).  

n
kD  creates 

n
k
 
 
 

 symmetric states. Below we illustrate practical examples of 

the Dicke state. 

{ } ( )

1
2

0,1 ,n

n
k

x wt x k

n
D X

k

−

∈ =

 
=  
 

∑  

where 
( )

!
! !

n n
k n k k
 

=  − 
 and 0 k n< < . There are n qubits and n k−  of them 

are 0 and k are 1. For instance,  

{ } ( )

( )

4

4
2

0,1 , 2

1
6

1 0011 0101 0110 1001 1010 1100
6

x wt x

D X
∈ =

=

= + + + + +

∑
 

4
2D  is Dicke state of 4 qubits that has 6 symmetric states and each state 

have 2 ones.  

{

}

5
3

1 00111 01011 10011 01101 10101
10
11001 01110 10110 11010 11100

D = + + + +

+ + + + +
 

5
3D  is Dicke state of 5 qubits that has 10 symmetric states and each state 

have 3 ones.  
Dicke state creates arbitrary symmetric pure states 0 1n k k⊗ − ⊗ . Using the 

Dicke state increases the rate of the correct solution since the search is only in 
subspace. The classical bitstring can be converted to the Dicke state by a recur-
sive unitary operation called Split & Cyclic Shift (SCS) unitary ,n kSCS  [23]. To 
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build n
kD  state, we start from ,n kSCS  where the original sequence is multiplied  

by a factor of k
n

 and then shift the first zero to the end and shift the whole 

sequence forward by multiplying by a factor of n k
n
− .  

1
, : 0 1 0 1 0 1 0n k k n k k n k k

n k
k n kSCS
n n

⊗ − ⊗ ⊗ − ⊗ ⊗ − − ⊗−
→ +  

Dicke state given as input string 0 1n k k⊗ − ⊗  generates the entire Dicke 
states n

kD  by recursive unitary operation ,n kSCS . 

5,3
3 2: 00111 00111 01110
5 5

SCS → +  

{ }3 300111 0011 1
5 5

→ ⊗  

3 2 20011 0110 1
5 4 4
  → + ⊗ 
  

 

3 2 1 2001 010 1
5 4 3 3

2 2 1011 110 0 1
4 3 3

  → + ⊗  
  

  + + ⊗ ⊗  
  

 

3 2 1 2 1 1001 01 10 0 1
5 4 3 3 2 2

2 2 1 1 101 10 1 110 0 1
4 3 2 2 3

   → + + ⊗ ⊗        
   + + ⊗ + ⊗ ⊗         

 

( )

( )

3 2 1 1001 010 100 1
5 4 3 3

2 1 1011 101 110 0 1
4 3 3

  → + + ⊗  
  

  + + + ⊗ ⊗  
  

 

( )

3 2 1 1 1001 010 100 1
5 4 3 3 3

2 1 1011 101 110 0 1
4 3 3

  → + + ⊗  
  

  + + + ⊗ ⊗  
  

 

3 2 1 1 10011 0101 1001
5 4 3 3 3

2 1 1 10110 1010 1100 1
4 3 3 3

  → + +  
  

 + + + ⊗ 
 

 

{ }1 00111 01011 10011 01101 10101 11001
10

→ + + + + +  
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{ }2 201110 0111 0
5 5

→ ⊗  

2 3 10111 1110 0
5 4 4
  → + ⊗ 
  

 

2 3 2 1 1011 110 1 1110 0
5 4 3 3 4

   → + ⊗ + ⊗   
   

 

2 3 2 1 1 1 101 10 1 110 1 |1110 0
5 4 3 2 2 3 4

    → + ⊗ + ⊗ + ⊗          
 

2 3 1 1 1 1011 101 110 1 |1110 0
5 4 3 3 3 4

   → + + ⊗ + ⊗   
   

 

2 1 1 1 10111 1011 1101 1110 0
5 4 4 4 4
  → + + + ⊗ 
  

 

{ }1 01110 10110 11010 11100
10

→ + + +  

{

}

100111 00111 01011 10011 01101 10101
10
11001 01110 10110 11010 11100

→ + + + +

+ + + + +
 

The transformation or mapping of ,n kSCS  is constructed by 1-controlled and 
2-controlled Y-rotation ( )2yR θ  gate between two CNOT, where  

( )
cos sin

2
sin cosyR
θ θ

θ
θ θ

− 
=  
 

. Dicke state is constructed recursively by smaller 

n
lD , where l k≤ . 

1 1

1 1 1

0 0 1

0 0 1 0 0 1 0

n k k l l

n k k l l n k k l ll n l
n n

⊗ − − ⊗ + − ⊗

⊗ − − ⊗ + − ⊗ ⊗ − − ⊗ − ⊗→
−

+
 

In Figure 4 and Figure 5 presented are the explicit constructions of ,n kSCS . 
To get more in-depth view of this construction can refer to [23]. The Ry gate is a 
single qubit rotation gate through angle θ radian. The Ry gate rotation is around 
Y-axis by angle θ. If the controlled qubits for Ry gate are all active, then  

the original sequence is multiplied by a factor of l
n

 and then shift the first 

zero to end and shift the whole sequence forward by multiplying by a factor of 

n l
n
− . If the controlled qubits for Ry gate are not all active, then the two CNOT 

gates cancel each other.  
The full circuit of Dicke state 5

3D  is constructed recursively by ,n kSCS  as 
can be seen in Figure 6 which contains Ry gate in between two CNOT gates. The 
Ry gates are controlled either one-qubit or two-qubits. 
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Figure 4. Construction of ,n lSCS  of a two-qubit gate [23]. 

 

 

Figure 5. Construction of ,n lSCS  of a three-qubit gate [23]. 

 

 

Figure 6. Dicke state 5
3D  circuit, where l

n
 gates are shorthand for Y-roatation 12cosy

lR
n

− 
  
 

 [23]. 

3.3. Quantum Counter 

Quantum counter [24] [25] is used to count the number of terms in the SOP 
Boolean function. Quantum counter block is a sequence of n-Toffoli followed by 
Feynman (CNOT) gates which is called Peres gate [29], as shown in Figure 7. 
The first qubit is applied a constant 1 with other variables combined, and the 
Peres gate is then turned into a quantum counter. (This qubit will be next taken 
from the term of the SOP formula to activate the counter block realized from 
Peres gates). For simplicity of explanation, we assume that the counter block is 
built from Toffoli and CNOT gates, as shown in Figure 7. 

Here z is the least significant qubit and x the most significant. The outputs of 
CNOT and two of the Toffoli gates are 1 z⊕ , 1 z y⋅ ⊕ , and 1 z y x⋅ ⋅ ⊕ , respec-
tively. When 000xyz = , the first Toffoli gate outputs  
1 1 0 0 0 0 0 0z y x⋅ ⋅ ⊕ = ⋅ ⋅ ⊕ = ⊕ =  and the second 1 1 0 0 0 0 0z y⋅ ⊕ = ⋅ ⊕ = ⊕ = .  
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Figure 7. Three-qubit quantum counter. 
 
The outputs of the qubits y and x are both zeros. The output of the qubit z is 
1 1 0 1z⊕ = ⊕ = . Hence the circuit incremented 000 by 1 to 001. Quantum counter 
circuit indeed outputs the value input +1. 

If we connect the first control input of the quantum counter block to a circuit, 
then the output of the connected circuit (a term of the SOP) will either activate 
or deactivate the counter. When the output of the connected circuit is equal to 1, 
the output of the counter block is incremented by 1. When the output of the 
circuit is equal to 0, the output of the counter block is unchanged. 

3.4. Quantum Comparator 

In Table 3, the truth table of one-bit comparator which contains equal, greater 
than and less than.  

For 1-qubit comparator, to check equal ( 1 1x y⊕ ) or greater than ( 1 1x y ), we 
add both values 1 1 1 1x y x y+⊕ . To build this circuit requires 5 qubits, 2 Toffoli, 
4NOT, and 2CNOT gates, as can be seen in Figure 8(a). For more than 1-qubit 
comparator, the circuit would be huge in terms of the number of qubits and 
gates. To minimize the required qubits and gates, we use “not less than” such 

1 1x y  which required only 3 qubits, 1 Toffoli, and 2 NOT gates as can be seen in 
Figure 8(b). The output from the quantum counter would be compared with the 
minsup value. In this case we have 4-bit quantum counter compared with min-
sup = 2 (0010). Every qubit from the quantum counter output is compared with 
every bit of the minsup value. For instance, let 4 3 2 1x x x x  quantum counter out-
put and 4 3 2 1y y y y  minsup values, we build the quantum circuit for 4-bit com-
parator ( )( )( )( )4 4 3 3 2 2 1 1x y x y x y x y . In Figure 9 for 4-bit quantum comparator, 
we rename 4 3 2 1x x x x to 3 2 1 0counter counter counter counter  and 4 3 2 1y y y y  to  

3 2 1 0comparator comparator comparator comparator . The quantum comparator 
output is out0. 

In Figure 9, the four-bit comparator is compared the minsup value 0010 
with the out of quantum counter. Every n-qubit comparator requires 3n + 1 
qubits. The n- iancilla  qubits are used to store the obtained value from the 
comparison.  

Figure 10 is the complete quantum oracle circuit design for associate rule 
mining. The oracle circuit contains the circuit for each term in the SOP function 
expression connected with the quantum counter for each term and the quantum 
comparator connected with the quantum counter output. The 4 3 2 1 0q q q q q  
represent the items and control_counter_0 is the control bit for the quantum  
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Table 3. Truth Table of one-bit comparator. 

1 1x y  
1 1 1 1x y x y⇒= ⊕  1 1 1 1x y x y⇒>  1 1 1 1x y x y⇒<  

00 1 0 0 

01 0 0 1 

10 0 1 0 

11 1 0 0 

 

 

Figure 8. One-qubit comparator (a) equal or greater than. (b) Not less than. 
 

 

Figure 9. Four-bit quantum comparator build using IBM Qiskit simulator. 
 

 

Figure 10. Full quantum oracle circuit for 2abd abe ade bde abd abe ade abd acd+ + + + + + + + ≥ . 
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counter. If the control bit is active (1), then the counter value is incremented by 
1. If the control bit is 0, then the counter keeps its value. The number of required 
qubits for the quantum counter is equal to 2log 1T +   , where the number of 
required qubits for the quantum comparator required is 23 log 1T +   . Note 
that if 2log T  is integer value, then add 1 to the 2log T  value. The SOP func-
tion 2abd abe ade bde abd abe ade abd acd+ + + + + + + + ≥  contains 9 terms 
that requires 2log 9 4=    qubits for the quantum counter. The quantum 
comparator compares the output of the quantum counter 4-qubit with minsup 
value 4-qubit. The quantum comparator required four additional ancilla qubits 
for computation and one qubit for the output. In associate rule mining, we need 
the maximum frequent of k-itemset that is equal to or greater than to minsup = 
2. In this case, 4-qubit from the quantum counter compared with 0010. The 
output is 0out  is equal to 1 when frequent of k-itemset equal to or greater than 2.  

Let us observe that the SOP function above is not used as a logical function, 
but it used as a pattern matching for our problem. This general idea can be used 
for other problems that require counting matching patterns or counting satisfied 
constraints. Some constraint satisfaction problems that can be formulated as 
such the SOP function above can refer to [30]. 

Figure 11 is the complete quantum algorithm circuit design for the associate 
rule mining, which is a modification of Grover’s search algorithm. The Dicke 
state is used for superposition preparation, oracle, and diffuser to recognize the 
solution states. We applied this oracle in Grover’s search algorithms for R = 2  
 

 

Figure 11. Full quantum algorithm circuit design for the associate rule mining. 
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iterations from this formula: 
4

NR
M

 π
≤  
 

 where M = 3 is the number of  

solutions in Figure 2 in the Apriori algorithm, and N = 10 is the number of all 
search space elements from the Dicke state of 5

3D . We measured only 

4 3 2 1 0q q q q q  for the items but for verification the measurement can be added to 
out0 which is equal to 1 only if the k-itemset is greater than or equal to the min-
sup. As can be seen in Figure 12 the values with high probability are 10,011, 
11,001 and 11,010 for abcde  respectively based on this SOP function:   

2abd abe ade bde abd abe ade abd acd+ + + + + + + + ≥  

In Figure 13, we generalized our design to handle for associate rule mining to 
generate the maximum frequent k-itemset. As can be seen from Figure 13, the 
input of Dicke state is 0 1n k k⊗ − ⊗ , where n is the number of items and k is the  
 

 

Figure 12. Histogram of measured value from Figure 11. 
 

 

Figure 13. Proposed algorithm design for associate rule mining. 
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large itemset to check whether is the maximum frequent k-itemset or not. Each 
term from the SOP function is connected to the first qubit (Control Counter) of 
the quantum counter. The remaining number of qubits for the quantum counter 
is equal to 2log T   , and the number of qubits of the quantum comparator is 
equal to 23 log 1T +   , where T is the number of terms in the SOP function. 
Note that if the 2log T  is integer value, then add 1 to the 2log T  value. The 

0out  is connected to the diffuser to amplify the solution. If 0out  is equal to 
one, then the oracle has recognized the solution. Finally, the Dicke state qubits 
for the items are measured. For checking purposes, the 0out  can be added to 
the measurement in order to check the solutions with a high probability that 

0out  is equal to 1. 
Scaling the required number of qubits in design is critical in the current gen-

eration of quantum computers because the number of qubits determines the de-
gree of computational complexity. The more qubits a quantum processor pos-
sesses, the more complex and valuable the quantum circuits can run [31]. Thus, 
to scale and optimize the number of qubits that can accommodate in quantum 
algorithm design is directly reflected on the performance. 

We compare the number of qubits that need in our design and the proposed 
design in [20] [21]. The number of required qubits in [20] [21] is equal to: 

2 1TI +                             (2) 

Our proposed design, the number of required qubits is: 

( )2 2

2 2

3 log 1 2, If log is integer value

3 log 2, If log not integer

I T T

I T T

 + + +   


+ +   
          (3) 

where T is the number of transactions and I is the number of items. For in-
stance, 8 × 5 (8 transactions and 5 items), the number of required qubits in [20] 
[21] is equal to 81 qubits, while our design requires only 19 qubits. 
 

 

Figure 14. Histogram between our purposed design and other design in [20] [21]. 
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As can be seen in the histogram in Figure 14, based on the equations in (2) 
and (3), for 10 transactions and 5 items, 10 × 5 requires 101 qubits for the design 
in [20] [21], while our proposed design just requires 19 qubits. According to the 
design in [20] [21], one qubit is needed for every item, as well as one qubit for 
every transaction and one qubit for the output qubit. A large transaction data-
base typically contains massive transactions and large item sets. As a result, the 
number of qubits will be unreasonably high, even for large quantum computers. 
Our proposed quantum architecture employs the Dicke state, which reduces the 
search space into a sub-search space. In addition, we employ a quantum counter 
and a quantum comparator that can handle more transactions and items while 
still performing well with a small number of qubits. 

4. Conclusion 

We presented a novel quantum design for association rule mining to discover 
the maximum frequent k-itemset. We converted the transaction database into a 
new type of SOP Boolean function and then reduced the SOP function into large 
k-items with only Hamming weight that satisfies the minimum support thre-
shold. In addition, we proposed using the Dicke state to prepare the superposition  

n
k
 
 
 

 states for Grover’s search algorithm instead of the conventional Hadamard  

operator, which would require 2n states. We reduced the SOP function to large 
k-items where the likelihood of the maximum frequent k-itemset can be found. 
Then we design an advanced quantum oracle with a quantum counter and 
quantum comparator. Using these three different quantum blocks, Dicke state, 
quantum counter, and quantum comparator, we achieved to reduce search space 
and the required number of qubits in the design. We have then shown a full im-
plementation of our design on the IBM Qiskit simulator and observed the cor-
rect results. We compared our proposal design with [20] [21] design that our de-
sign requires fewer qubits. We can solve many transactions and items by scaling 
and optimizing the search space and required qubits. For future improvement, a 
fully quantum design for association rule mining can be developed using our pro-
posed design to generate association rules from a maximum frequent k-itemset. 
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