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Abstract 
The existing quantum cryptography is a classical cryptography in nature and 
basically insecure because of its classical (conventional) bits, classical encryp-
tion algorithm and classical (public) channel. A novel topic about successful 
communication between the legitimate users, Alice and Bob, is discussed with 
probability of solution uniqueness of Bob’s decryption equation. We find, by 
probabilistic analysis, that success of communication between Alice and Bob 
is probabilistic with a probability bigger than 1/2. It is also novel to define in-
security of the quantum cryptography by probability of solution uniqueness 
of the search equation of Eve, the eavesdropper. The probability of Eve’s suc-
cess to find the plain-text of Alice (and Bob) is greater than 1/2, and so the 
quantum cryptography is seriously insecure. 
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1. Introduction 

Bennett and Brassard, Ekert and Bennett established the quantum cryptography 
by publishing the theoretical quantum key distribution (QKD) protocols, BB84, 
E91 and B92 [1] [2] [3].  

Some authors (E. Biham, M. Boyer, P. O. Boykin, T. Mor and V. Roychowd-
hury; P. W. Shor and J. Preskill; D. Mayers; D. Gottesman and H.-K. Lo; H.-K. 
Lo, H. F. Chau and M. Ardehali; R. Renner, N. Gisin and B. Kraus; M. Boyer, R. 
Liss and T. Mor; H.-Y. Su) proved security of BB84 [4]-[13], others (Q. Zhang 
and C.-J. Tang; K. Tamaki, M. Koashi and N. Imoto; K. Tamaki and N. Lütken-
haus; K.Tamaki, N. Lütkenhaus, M. Koashi and J. Batuwantudawe; M. Lucama-
rini, G. D. Giuseppe and K. Tamaki) proved security of B92 [14]-[19], in differ-
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ent theoretical frameworks by defining security of QKD protocols differently.  
However, J.Z. Zhao argued that the previous proofs were neither unique nor 

exhaustive, which meant that proof of security of the theoretical QKD protocols 
was not completed or achieved [20]. The research proved, by quantum mechan-
ics, that the theoretical QKD protocols were insecure in an updated theoretical 
framework with an updated definition of security of QKD protocols [20]. 

This research shows, by probabilistic analysis, that the existing quantum 
cryptography is a classical cryptography in nature. Success of communication 
between the legitimate users, Alice and Bob, is probabilistic. The probability of 
success of searching for the plain-text by the eavesdropper, Eve, is bigger than 
1/2, and so the quantum cryptography is seriously insecure. 

2. Quantum Cryptography Is a Classical Cryptography in  
Nature 

Quantum cryptography based on the theoretical QKD protocols, BB84, E91 and 
B92, is a classical cryptography in nature because: [1] [2] [3] 

1) The key, the plain-text and the cipher-text are classical ones because they 
are constructed by classical (conventional) bits; 

2) The encryption algorithm is classical OTP (One-time Pad) encryption algo-
rithm;  

3) Alice sends the encryption algorithm and the cypher-text to Bob through 
the classical (public) channel. 

The analysis below is valid for BB84, E91 and B92 protocols. 

3. The Fundamental Equations of the Theoretical QKD  
Protocols 

3.1. Alice’s Encryption Equation  

At the end of any theoretical QKD protocol, Alice encrypts her plain-text fol-
lowing the encryption equation  

( )OTP ,s tk p C=                         (1) 

where OTP is the OTP (one-time pad) encryption algorithm [21], ks is the key, pt 
is the plain-text, C is the cipher-text. Each of the key, the plain-text and the cy-
pher-text is of n bits long because of the OTP encryption algorithm [21]. Then 
she sends the cipher-text and the encryption algorithm (for Bob’s decryption) to 
Bob during the communication between them. 

3.2. Quantum State of the Plain-Text and Bob’s Decryption  
Equation 

Bob receives the cypher-text and the OTP encryption algorithm [21] sent by 
Alice to him. He knows that the length of the plain-text is n, equivalent to the 
length of the key, because of the OTP encryption algorithm [21]. Then, Bob es-
tablishes the quantum state of the plain-text, superposition of N (N = 2n) states 
of jp  (of n bits),  
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for any theoretical QKD protocol, BB84, E91 and B92.  
After that, Bob establishes his decryption equation 

( ) ( )OTP , 0 1s jk p C j N= ≤ ≤ − ,                 (3) 

where OTP is the OTP encryption algorithm [21], ks is the key, pj is the bit string 
of jp , C is the cipher-text. 

Bob’s decryption is to solve the decryption equation, Equation (3), to find the 
plain-text pt.  

3.3. Quantum State of the Key and Eve’s Search Equation 

Eve intercepts the cipher-text and the encryption algorithm sent by Alice to Bob. 
She obtains the knowledge of the length of the key and the length of the plain-text, 
n, which is equivalent to the length of the cipher-text intercepted. Then Eve es-
tablishes the quantum state of the key, K , superposition of N (N = 2n) states 
of ik  (of n bits): 
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        (4) 

where n is the number of the bits of the key of any one of BB84, E91 and B92. 
Eve also establishes the quantum state of the plain-text (2). 
After that, Eve establishes her search equation         

( ) ( )OTP , 0 1,0 1i jk p C i N j N= ≤ ≤ − ≤ ≤ −              (5) 

where OTP is the OTP encryption algorithm [21], ki is the bit string of ik , pj 
is the bit string of jp , C is the cipher-text.  

Eve’s searching is to solve the search equation to find the plain-text pt. 

3.4. Summary of Variables  

ki: the bit string of the i-th component of the quantum state of the key;  
pj: the bit string of the j-th component of the quantum state of the plain-text;  
ks: the bit string of the key, whose value is set by Alice;  
pt: the bit string of the plain-text, whose value is set by Alice;  
C: the bit string of the cypher-text produced by Alice’s encryption; 
q1: the probability of solution uniqueness of Bob’s decryption equation; 
q2: the probability of solution uniqueness of Eve’s search equation. 
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4. Probability of Successful Communication between Alice  
and Bob 

There is no doubt that there exists at least one solution of Equation (3) because 
of Alice’s encrypting (Equation (1)). Furthermore, Equation (3) is probable to 
provide a unique solution for successful communication between Alice and Bob, 
though the maximum of solution multiplicity of Equation (3) may reach the big 
number N. 

Suppose that the probability of uniqueness of solution of Equation (3) is 
( )1 1 1q q < , then the probability of double solution of the equation is 2

1q … The 
total probability of all possible solutions of the equation should be 1. Then we 
have 

( )1 12 3 1
1 1 1 1

1 1

1
1

1 1

N
N

q q qq q q q
q q

−
= + + + ⋅⋅⋅ + = <

− −
.            (6) 

It is from Equation (6) that 

1 11 q q− < ,                          (7)   

then  

1
1
2

q > .                           (8) 

From Equation (8) we know that the probability of uniqueness of solution of 
Equation (3) is bigger than 1/2, that is, the probability of successful communica-
tion between Alice and Bob is bigger than 1/2. Solving Equation (3) is to search 
P

 
(expressed by Equation (2)) for the jp

 
whose bit string, pj, satisfies Eq-

uation (3). Bob can use Grover’s fast quantum mechanical algorithm for data-
base search for his searching to find pt [20]. Bob succeeds with the probability 
bigger than 1/2.  

5. Probability of Successful Searching by Eve 

There is no doubt that there exists at least one solution of Equation (5) because 
of Alice’s encrypting (Equation (1)). Furthermore, Equation (5) is probable to 
give a unique solution for Eve’s successful search, though the maximum of solu-
tion multiplicity of Equation (5) may reach a big number N2. 

Suppose that the probability of uniqueness of solution of Equation (5) is  
( )2 2 1q q < , then the probability of double solution of the equation is 2

2q … The 
total probability of all possible solutions of the equation should be 1. Then we 
have 
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It is from Equation (9) that 

2 21 q q− < ,                        (10) 

then 
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2
1
2

q > .                              (11) 

From Equation (11) we know that the probability of uniqueness of solution of 
Equation (5) is bigger than 1/2, that is, the probability of Eve’s successful sear- 
ching for the plain-text is bigger than 1/2.  

6. Eve’s Searching by Grover’s Fast Quantum Mechanical  
Algorithm for Database Search 

Eve searches the quantum state of the plain-text (Equation (2)) for the plain-text 
by Grover’s fast quantum mechanical algorithm for database search. She suc-
ceeds as solution of the search equation, Equation (5), is unique: 

1) Defining a function ( ),i jh k p  (using the search equation, Equation (5)): 

( ) ( )
( )

1, OTP ,
,

0, OTP ,

i j
i j

i j

k p C
h k p

k p C

 == 
≠

                (12)  

2) Repeating the following operations (a) and (b) for ( )O N  times (Grover 
Iteration) [22] [23]: 

(a) Applying the oracle operation [22] [23]: 

( ) ( ),1 i jh k pO
j jp p→ − ,                  (13) 

where ( ),i jh k p  is the function defined by Equation (12). 
(b) Performing Grover operation (in terms of inversion about average opera-

tion) 

D P ,                           (14) 

where the diffusion transform D can be implemented as 

D WRW= ,                        (15) 

where W is the Walsh-Hadamard Transform Matrix and R is the phase rotation 
matrix [22] [23]. 

3) Measuring the resulting state of P  gives tp , the plan-text, with a 
probability of ( )1O  [22] [23]. 

7. Discussions 

1) Success of communication between Alice and Bob is taken for granted so 
far in the theory of the theoretical QKD protocols, with a default probability 1. 
However, the research in this paper shows that success of communication between  

Alice and Bob is probabilistic with a probability 1 1
1 1
2

q q < < 
 

.  

2) Eve’s interception and quantum computation are free of detection of Alice 
and Bob because the quantum transmission between them is not disturbed. Eve’s  

probability of successful searching for the plain-text is big ( 2
1 1
2

q< < ), and so  

the existing quantum cryptography based on the theoretical QKD protocols is 
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seriously insecure. 
3) The strategy of the existing quantum cryptography should be adjusted. P. 

Ndagijimana, F. Nahayo, M.K. Assogba, A.F.-X. Ametepe, and J. Shabani pro-
posed a random number generation model using the thermal noise theory, in-
tending to exploit the laws of quantum physics associated to basic principle of 
cryptology for the implementation of new cryptographic primitives, towards 
post-quantum cryptography [24].    

8. Conclusion 

The existing quantum cryptography based on the theoretical QKD protocols is a 
classical cryptography in nature. Successful communication between the legiti-
mate users, Alice and Bob, is taken for granted so far in the theory of QKD, but 
proved probabilistic in this research. The probability of Eve’s successful search-
ing for the plain-text is big, and so the quantum cryptography based on the 
theoretical QKD protocols is seriously insecure. Insecurity of the quantum 
cryptography is a logical result. Adjustment of the strategy of the existing quan-
tum cryptography is necessary.  
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