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Abstract 
The application of floating photovoltaics (PVs) in hydropower plants has 
gained increasing interest in forming hybrid energy systems (HESs). It en-
hances the operational benefits of the existing hydropower plants. However, 
uncertainties of PV and load powers can present great challenges to scheduling 
HESs. To address these uncertainties, this paper proposes a novel two-stage op-
timization approach that combines distributionally robust chance-constrained 
(DRCC) and robust-stochastic optimization (RSO) approaches to minimize 
the operational cost of an HES. In the first stage, the scheduling of each device 
is obtained via the DRCC approach considering the PV power and load forecast 
errors. The second stage provides a robust near real time energy dispatch ac-
cording to different scenarios of PV power and load demand. The solution of 
the RSO problem is obtained via a novel double-layer particle swarm optimiza-
tion algorithm. The performance of the proposed approach is compared to the 
traditional stochastic and robust-stochastic approaches. Simulation results de- 
monstrate the superiority of the proposed two-stage approach and its solution 
method in terms of operational cost and execution time. 
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1. Introduction 

Hybrid energy systems (HESs), formed by hydropower units (HUs), floating 
photovoltaics (FPVs), and battery energy storage systems (BESSs), have received 
significant attention worldwide due to technological advancements and the in-
creased use of smart control devices. However, the intermittent characteristics of 
renewable energies and load fluctuations introduce many uncertainties into HESs 
and have a significant impact on their economic performance [1]. To address 
this problem, researchers have optimized the energy dispatch of HESs by sto-
chastic optimization (SO) and robust optimization (RO) methods to obtain the 
expected cost and worst-case cost, respectively. Works using SO methods can be 
found in [2]-[9], where stochastic solution strategies are developed for the op-
timal economic operation of HESs. The uncertainties are modeled by large sce-
narios to obtain a reliable solution, and this approach creates a computational 
burden. Consequently, scenario reduction methods are applied. The solutions 
obtained comprise the best and worst solutions. In contrast, an RO method de-
rives a solution in the worst-case scenario within the uncertainty set, and this 
approach is more relevant in practice. Therefore, the uncertainties in HES eco-
nomic dispatching can also be handled by RO methods. 

Works in [10]-[15] presented robust dispatching methods to maximize eco-
nomic performance, in which the uncertainty sets are constructed for all energy 
sources. These problems are modeled as a two-stage approach, where the first 
stage decision deals with the unit commitment and the second stage decision 
deals with the economic dispatch to adjust the output power of generation units. 
In this case, RO methods offer the worst scheduling plan. As the worst-case sce-
nario is rare, the RO methods will be overly conservative. Some papers have in-
tegrated SO and RO methods into a scheduling model, such as in [16] [17]. How-
ever, SO and RO are combined considering two separate groups of uncertainty, 
such as the uncertainty related to power and electricity prices. Thus, both solu-
tion methods require separate implementations. 

In the context of HES scheduling based on SO and RO methods, we highlight 
works [18] [19], in which a mathematical formulation is proposed for day-ahead 
(DA) scheduling that minimizes the expected and worst-case costs. The solution 
approach can address the stochastic DA scheduling problem and seeks to deter-
mine the optimal plan that is robust against an uncertainty set of renewable energy 
generation. As an alternative paradigm, a distributionally robust optimization 
(DRO) approach was developed in [20], which combines the SO and RO me-
thods. The DRO provides a robust solution that cannot be obtained by SO and 
reduces the conservativeness of the solution given by RO [21]. 

There are some similarities between our paper and [18] [19], where both pa-
pers comprehensively consider the uncertainties through all possible scenarios. 
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Considering the advantages of RO and SO methods, papers [18] [19] formulated 
a two-stage optimization approach that combines RO and SO methods to reduce 
the conservativeness of traditional RO methods. However, the first stage deci-
sion is made before the realization of uncertainties. This is unable to provide a 
robust solution against any scenario. In addition, there is a need to adopt a de-
composition algorithm to solve the problem. Therefore, we propose a novel two- 
stage approach in which the decision in the first stage takes into account the 
source-load forecast errors. Furthermore, we design a novel robust-stochastic 
approach in the second stage to address all possible source-load scenarios. The 
proposed two-stage approach is more robust, efficient, and tractable. The main 
contributions of this paper are summarized as follows 

• Develop a novel two-stage approach for optimal scheduling of a hybrid HU- 
FPV-BESS system that combines the DA and near real time approaches using 
distributionally robust chance-constrained (DRCC) and robust-stochastic opti-
mization (RSO) approaches. The two-stage approach can effectively deal with 
the realization of the uncertainties of PV power and load. 

• To the best of the authors’ knowledge, this is the first attempt to design a 
novel approach to schedule a hybrid HU-FPV-BESS system considering several 
cost parameters and operational constraints. This provides an efficient assessment 
tool for the feasibility study of integrating an FPV with a BESS in the existing 
hydropower plant. 

• Propose a new solution procedure of an HES-based RSO problem via a coe-
volution process of a particle swarm optimization (PSO) algorithm, namely, the 
hybrid binary PSO-PSO (HBPSO-PSO) algorithm. This method is simple and ef-
fective for solving RSO problems. 

This paper is organized as follows: Section 2 presents the mathematical model 
used in the studied HES, including the cost functions and operational constraints 
of each device. In Section 3, the problem formulation is described. Section 4 
provides a solution methodology. In Section 5, numerical simulations are con-
ducted to verify the performance of the proposed approach. Finally, the conclu-
sion is given in Section 6. 

2. System Modeling 

The studied HES is shown in Figure 1, which is composed of five HUs, one FPV, 
and one BESS. The hydropower plant is mimicked from the Nam Theun 2 pow-
er plant located in Laos, in which a technical study for integrating the FPV-BESS 
is ongoing. Each HU has a capacity of 200 MW. The PV has a total capacity of 
200 MW. The nominal capacity of the BESS is 50 MWh. PVs and BESSs have 
been installed after the hydropower plant to maximize operational benefits, re-
sulting in water savings and increasing economic gains. The owner of the HES is 
an independent power producer (IPP) that has to sell the power to the client. 
Thus, the power flow is only possible in one direction. 

The principle of the power purchase agreement is described as follows: 
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Figure 1. HES architecture. 

 

1) The IPP submits the DA bid to the client, i.e., how much energy can be 
produced within the next day. 

2) The client will decide the time and the amount of power to be delivered. 
3) The maximum load demand is related to the maximum installation power 

of the hydropower plant. 

2.1. Cost Function 

• Cost function of the HUs 
The cost function of the HUs is made up of the startup cost (SUC) and the 

maintenance cost (MC). 
The SUC is expressed as follows [1] 

off cold
i i

off cold
i

i
i i

i i i

i

HSUC MDT T MDT T
SUC

CSUC T MDT T

 ≤ ≤ += 
≥ +

             (1) 

where iHSUC  and iCSUC  are the hot/cold startup costs, respectively. on
tT  is 

the duration that the HU is ON. MUT is the minimum uptime. off
tT  is the du-

ration that the HU is OFF. MDT is the minimum downtime. cold
iT  is the cold 

startup time. i is the index of the HU. 
The MCH is assumed to be proportional to the HU power and is expressed by 

[13] 
( ) ( ),hui hu iMCH t K P t T= ⋅ ⋅ ∆                     (2) 

where huK  is the maintenance cost coefficient, huP  is the output power of a 
HU, and ΔT is the time step. The output power of the HU can be written as  

( ) ( ),hu iP t g Q t H Tη ρ= ⋅ ⋅ ⋅ ⋅ ⋅ ∆                    (3) 

where huP  is the output power (w), η is the turbine-generator efficiency (%), ρ 
is the water density (1000 kg/m3), g is the acceleration due to gravity (9.81 m/s2), 
Q is the water flow (m3/s), and H is the water head (m). 
• Cost function of the FPV system 

The cost function of the FPV consists of the maintenance cost (MCP), which 
is expressed by 

( ) ( )pv pvMCP t K P t T= ⋅ ⋅ ∆                      (4) 
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where pvK  is the maintenance cost coefficient and pvP  is the PV power. 
• Cost function of the BESS 

The total cost of a BESS (BC) is the summation of the operational cost (OCB) 
and maintenance cost (MCB). 

The OCB of a BESS is associated with the charge and discharge powers, which 
is described by [13] 

( ) ( ) ( )ch ch ch disch disch dischOCB t C P t T C P t Tη η= ⋅ ⋅ ⋅ ∆ − ⋅ ⋅ ∆        (5) 

where chC  and dischC  are the costs related to BESS charging and discharging, re-
spectively. chP  and dischP  are the battery charge and discharge powers, respectively. 

chη  and dischη  are the battery charge and discharge efficiencies, respectively. 
The MCB of a BESS is assumed to be proportional to the BESS power and is 

expressed by [13] 

( ) ( ) ( )bess ch ch disch dischMCB t K P t T P t Tη η = ⋅ ⋅ ⋅ ∆ + ⋅∆           (6) 

where bessK  is the maintenance cost coefficient. 
• Reserve cost 

The reserve cost is represented by the reserve power, which is written as 

( ) ( )res resRC t C P t T= ⋅ ⋅ ∆                     (7) 

where resC  is the cost of reserve power per MW/h and resP  is the reserve power. 

2.2. Constraints 

• Power balance 

( ) ( ) ( ) ( ) ( ) ( ),1load ch hu i disch pv
n
i iP t P t y t P t P t P t
=
 + = ⋅ + + ∑          (8) 

where loadP  is the load demand, which also means the injected power to the 
grid, and y is the unit status of HUs. n is the total number of HUs ( 1, ,5n = � ). 
• Minimum/maximum power limits 

( )_ _pv min pv pv maxP P t P≤ ≤                      (9) 

( )_ , , _ ,hu min i hu i hu max iP P t P≤ ≤                    (10) 

( ) _0 ch ch maxP t P≤ ≤                        (11) 

( ) _0 disch disch maxP t P≤ ≤                      (12) 

( )_ _load min load load maxP P t P≤ ≤                    (13) 

where _pv minP  and _pv maxP  are the minimum and maximum powers of the PV, 
respectively. _hu minP  and _hu maxP  are the minimum and maximum powers of the 
HUs, respectively. _ch maxP  and _disch maxP  are the maximum charge and discharge 
powers of the BESS, respectively. _load minP  and _load maxP  are the minimum and 
maximum load powers, respectively.  
• Ramp rate limits 

( ) ( )1pv pv pv pvDR P t P t UR− ≤ − − ≤                 (14) 
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( ) ( ), , ,1hu hu i hu i hu iDR P t P t UR− ≤ − − ≤                 (15) 

where pvDR  and huDR  are the ramp-down limits of the PV and HU, respec-
tively. pvUR  and huUR  are the ramp-up limits of the PV and HU, respectively. 
• Minimum up/down time of the HUs 

( ) 0i
on

iT t MUT− ≥                       (16) 

( ) 0i
off

iT t MDT− ≥                       (17) 

• Limit of the stored energy in a BESS 

( )min maxE E t E≤ ≤                        (18) 

where minE  and maxE  are the minimum and maximum limits of the stored 
energy (in MWh), respectively. The stored energy of the BESS is expressed as 

( ) ( ) ( ) ( ), ,1 ch i ch disch disch iE t E t P t T P t Tη η+ = + ⋅ ⋅ ∆ − ⋅∆         (19) 

• Limit of charge/discharge cycles: This constraint avoids the frequent charge/ 
discharge cycle of the BESS, which reduces the lifetime degradation. 

cycle maxN N≤                          (20) 

where cycleN  is the charge/discharge cycle of the BESS and maxN  is the maxi-
mum allowed cycle per day. 
• Reserve power constraint: The reserve power is indispensable to compensate 

for the intermittent of PV power. 

( ) ( )res pvP t P t≥                        (21) 

where ( )resP t  is the maximum reserve power at time t,  
( ) ( ) ( ) ( ) ( )_ , , _1res hu max i hu i b res disci

n
hiP t y t P P t P t P t

=
   = ⋅ − + −   ∑ . _b resP  is the  

maximum discharge power of a BESS, ( ) ( )_ ,b res min disch iP t E t E Tη = − ⋅ ∆  . 

3. Problem Formulation 

The two-stage scheduling approach defines the optimal operation of an HES 
based on the uncertainties of PV power and load forecasting. The global objec-
tive (22) is to minimize the total DA operational cost procured by the IPP. The 
main steps of DA scheduling include 1) forecasting and generating PV and load 
powers; 2) defining the optimal output power of each device; and 3) submitting 
the bids to the client. 

( ) ( )
1

min max min ,
H Z

n

U
e Y f X U+ ∑                  (22) 

The first stage decision variables are 

{ },, , , ,hu i bessH y P P α β=                     (23) 

where α  and β  are the participation ratios of each HU and a BESS according 
to uncertainties, respectively. They are bounded between 0 and 1. Note that 

( ) ( ) ( )bess disch chP t P t P t= − .  
The second stage decision variables are 
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{ },U y θ=                          (24) 

{ }Z φ=                           (25) 

where θ  and φ  are the compensation ratios of each HU and a BESS, respec-
tively, according to the change in PV and load powers. They are bounded be-
tween 0 and 1. 

3.1. DA Optimization Problem Based on a DRCC Approach 

The first stage of the proposed approach minimizes the total cost of HUs, PV, 
and BESS, considering the PV power and load forecast errors, as follows 

( ) ( ) ( ) ( )
, , 1
min
hu bess

i i

n

y P P i
SUC t MCH t MCP t BC t

α β =

 + + + ∑         (26) 

Subject to constraints (8)-(21). From constraints (8) and (21), we can model 
the chance constraints to take into account uncertainties. 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ),1 i i

load load ch

hu i pv pv dischi
n

P t t P t

y t P t R t P t t P t S t

ζ

ζ
=

 

+ +

= ⋅ + + + + +∑
    (27) 

( ) ( ) ( ) ( ) ( )
( ) ( )

_ , , _1
n t

i hu max i hu i b res dischn

pv pv

iy P P t R t P t P t S t

P t tζ
=

   ⋅ − + + − +   
≥ +

∑     (28) 

( ) ( ) ( ) ( )load vi i pR t t t tα ζ ζ = ⋅ −                    (29) 

( ) ( ) ( ) ( )load pvS t t t tβ ζ ζ = ⋅ −                     (30) 

( ) ( )1 1n
ii t tα β

=
+ =∑                        (31) 

( ) ( )_ , , _ ,hu min i hu i hu maxi iP P t R t P≤ + ≤                   (32) 

( ) ( ){ }, _ ,Pr 1ihu i hu max iP t R t P+ ≤ ≥ −                   (33) 

( ) ( ){ }, _ ,Pr 1ihu i hu min iP t R t P+ ≥ ≥ −                   (34) 

( ) ( ) ( ){ }_Pr 1disch b resP t S t P t+ ≤ ≥ −                   (35) 

( ) ( ){ }Pr 0 1dischP t S t+ ≥ ≥ −                      (36) 

where r is the joint probability distribution. pvζ  and loadζ  denote random va-
riables that indicate the PV power and load forecast errors, respectively. є is the 
confidence level (=5%). 

3.2. Near Real Time Optimization Problem Based on an RSO  
Approach 

In the second stage, the output power of each device is adjusted taking into ac-
count the worst scenarios of PV power and load. Inspired by the concept pre-
sented in [22] [23], we can design robust scheduling for any scenario of PV 
power and load. The rapid variation of PV and load powers can act on the oper-
ation of the HUs and BESS. Thus, there is a case that induces the least impact on 
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the total operational cost; that is, in this case, the total operational cost is the 
lowest. Thus, the total operational cost with the least impact is formulated as 
follows 

( ) ( )min ,LF U f U Z=                      (37) 

where U represents the operational cost of the HUs under the variation of PV 
and load powers and Z represents the operational cost of the BESS. 

Likewise, there is a case that causes the worst impact on the total operational 
cost, and this case corresponds to the highest total operational cost. The total 
operational cost with the worst impact is formulated as follows 

( ) ( )max ,UF U f U Z=                     (38) 

Consequently, for a certain operation of the HUs, the total operational cost is 
( ) ( ) ( ), ,L Uf U Z F U F U ∈  . 
For each scenario of PV power and load, we take into account the case that 

causes FU(U), that is, the worst impact on the total operational cost. Therefore, 
the optimization problem taking into account the worst impact of scenarios of 
PV power and load on the total operational cost of an HES is represented as fol-
lows 

( ) ( )max max -min ,LF U f U Z=                  (39) 

The max-min problem is a robust two-layer optimization problem. Each value 
of U is related to Z, which results in the highest total operational cost. The values 
of U (the optimization variables of the inner layer) have a direct impact on the 
values of Z (the optimization variables of the outer layer). 

In the second stage, the cost of reserve power and the deviation cost of HUs, 
PV, and BESS operation are considered. Thus, the startup of HUs can be read-
justed. The objective function of the second stage is taken from (39) and repre- 
sented as follows 

( ) ( ) ( ) ( )
, 1

max min
n

y i
i iRC t MCH t MCP t BC t

θφ =

 + ∆ + ∆ + ∆ ∑       (40) 

Subject to constraints (8)-(21), where ∆MCH is the deviation cost of HU 
maintenance. ∆MCP is the deviation cost of PV maintenance. ∆BC is the devia-
tion cost of BESS operation which includes the deviation cost of operational 
(∆OCB) and maintenance (∆MCB). 

4. Solution Methodology 

This section presents the solution procedure of the proposed two-stage approach 
for DA scheduling of an HES. The first stage consists of the DRCC approach to 
deal with PV power and load forecast errors, while the second stage involves an 
RSO approach that adjusts the first stage solution in accordance with scenarios 
of PV power and load. The general concept for the two-stage scheduling ap-
proach of an HES is described in Figure 2. 
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Figure 2. Structure of the two-stage scheduling approach. 

4.1. First Stage Problem: DRCC Approach 

The optimization problem with chance constraints (33)-(36) is nonconvex and very 
hard to solve. Nevertheless, there are solutions to find the convexity of the men-
tioned model. DRO is one of the prominent methods to solve chance-constrained 
optimization problems and can be used to transform the chance-constrained 
formulation into a DRCC formulation. The latter can be converted into a deter-
ministic second-order cone programming (SOCP) problem. 
• Reformulation of the DRCC approach 

pvζ  and loadζ  are assumed to follow Gaussian distributions with known 
means and variances; then, the chance-constrained formulation is equivalent to 
an SOCP problem [24] [25] [26]: 

2 2
_ , ,

1 T T T T
i load i pv hu max i hu i loai i d vi piP Pα σ α α σ α α µ α µ−

+ ≤ − − −



      (41) 

2 2
_ , ,

1 T T T T
i load i pv hu min i hui i i lo iadi pvP Pα σ α α σ α α µ α µ−

+ ≤ − + + +



     (42) 

2 2
_

1 T T
load pv disch max disch load pv

T T P Pβ σ β β σ β βµ βµ−
+ ≤ − − −




      (43) 

2 2
_

1 T T
load pv disch min disch loa

T T
d pvP Pβ σ β β σ β βµ βµ−

+ ≤ − + + +



     (44) 

where pvµ  and pvσ  are the mean and variance of the PV power forecast error, 
respectively. loadµ  and loadσ  are the mean and variance of the load forecast 
error, respectively. Equations (41)-(44) are deterministic SOCP problems that 
can be efficiently solved by an optimization technique. Here, _ 0disch minP = . 

4.2. Second Stage Problem: RSO Approach 

The objective of the second stage is to determine solutions against the worst-case 
realizations of PV power and load. As part of our paper, we propose a formula-
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tion and solution procedure of an RO approach aimed at minimizing the total 
operational cost of an HES according to scenarios of PV power and load. The 
proposed approach was developed via the coevolution of HBPSO and PSO algo-
rithms, namely, the HBPSO-PSO algorithm. 

The intergeneration projection genetic algorithm (IP-GA) was proposed in 
[22] to solve a nonlinear optimization model considering an uncertain parame-
ter. The authors of [23] were inspired by the concept of [22] and proposed the 
intergeneration projection evolutionary algorithm (IP-EA) for optimal schedul-
ing of household appliances, aiming to minimize the cost of electricity. In this 
paper, we adopt the HBPSO-PSO algorithm to solve the RSO problem for HES 
scheduling. The IP-GA is composed of an inner genetic algorithm (GA) and 
outer GA, while the IP-EA is composed of an inner GA and outer PSO algorithm. 
Our proposed algorithm is composed of an inner HBPSO algorithm and an out-
er PSO algorithm. The main advantage of the two-level structure of the men-
tioned algorithms is that an optimization problem can be solved directly without 
decomposition of the original problem [23]. 

( ) ( ) ( ) ( )
, 1

max min
n

y i
i iRC t MCH t MCP t BC t

θφ =

 + ∆ + ∆ + ∆ ∑         (45) 

where 

( ) ( ),hu hi u iMCH t K P t T∆ = ⋅∆ ⋅∆                   (46) 

( ) ( )pv pvMCP t K P t T∆ = ⋅∆ ⋅∆                    (47) 

( ) ( ) ( )BC t OCB t MCB t∆ = ∆ + ∆                   (48) 

( ) ( ) ( )ch ch ch disch disch dischOCB t C P t T C P t Tη η∆ = ⋅∆ ⋅ ⋅ ∆ − ⋅∆ ⋅∆       (49) 

( ) ( ) ( )bess ch ch disch dischMCB t K P t T P t Tη η ∆ = ⋅ ∆ ⋅ ⋅ ∆ + ∆ ⋅∆         (50) 

Subject to constraints (8)-(21). 
The new equations of power balance (8) and reserve power (21) are expressed 

as 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ), ,
1

load load ch

n

hu i hu i pv pv disch disch
i

i

P t P t P t

y t P t P t P t P t P t P t
=

+ ∆ +

 = ⋅ + ∆ + + ∆ + + ∆ ∑
  (51) 

( ) ( ) ( )res pv pvP t P t P t≥ + ∆                    (52) 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

_ , , , _1 hu max i hu i hu i b res disch dischi

p p

n

v

i

v

y t P P t P t P t P t P t

P t P t
=

   ⋅ − + ∆ + − + ∆   
≥ + ∆

∑  (53) 

( ) ( ) ( )_s load load loadP t P t P t= + ∆                  (54) 

( ) ( ) ( )_s pv pv pvP t P t P t= + ∆                   (55) 

( ) ( ) ( )_ ch cs h hcP t P t P t= + ∆                   (56) 

( ) ( ) ( )_s disch disch dischP t P t P t= + ∆                 (57) 

( ) ( ) ( ) ( ),hu i load pi vP t t P t P tθ  ∆ = ⋅ ∆ − ∆               (58) 
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( ) ( ) ( )( )bess load pvP t t P t P tφ  ∆ = ⋅ ∆ − ∆                 (59) 

( ) ( )1 1n
ii t tθ φ

=
+ =∑                       (60) 

where pvP∆  and loadP∆  are the variations in PV and load powers, respectively, 
compared to the forecast values. huP∆  and bessP∆  are the amount of compen-
sated powers of HUs and a BESS in accordance with the variations of PV and 
load powers, respectively. ∆P can be a negative or positive value. _s pvP  and 

_s loadP  are the scenarios of PV power and load, respectively. _s chP  and _s dischP  
are the charge and discharge powers of a BESS with respect to scenarios of PV 
power and load, respectively. Note that ( ) ( ) ( )bess disch chP t P t P t∆ = ∆ − ∆ . Here, we 
consider ( ) 0chP t∆ = . 
• Scenario generation and reduction of PV power and load demand 

To better model the change in PV and load powers, a large number of scena-
rios should be generated. However, this requires a high computational time to 
resolve the problem. Therefore, a scenario reduction technique is used to reduce 
the total number of scenarios by omitting repetitive or low-probability scenarios. 
The scenario reduction method can maintain a good approximation of the un-
certain behavior of the system. In this work, an autoregressive moving average 
method [27] [28] is used to generate 100 scenarios of PV and load powers. Then, 
a forward selection method [29] is used to reduce them to 20 scenarios. 

Since the flowchart of PSO has already been presented in many research stu-
dies, therefore, we emphasize the implications of binary and continuous (stan-
dard) versions of PSO in problem-solving, as shown in Table 1. By using the 
combination of these two versions, we can obtain the hybrid version, namely 
HBPSO. In this study, all versions of PSO include the modification in velocity 
updating where the time-varying inertia weight with a constriction coefficient is 
inserted. 

The solving procedure of problem (45) is illustrated in Figure 3, based on the 
HBPSO-PSO algorithm. The inner HBPSO algorithm achieves the optimal oper-
ation of the HUs, while the outer PSO algorithm finds the operation of the BESS 
under the worst impact on the total operational cost. More precisely, the worst 
case is obtained via the outer PSO algorithm. Then, we can obtain the worst cost 
under the change in PV and load powers. 

5. Simulation Results 

In this section, the simulation results of the two-stage approach are presented. It 
is worth mentioning that the DRCC formulation in the first stage is converted to 
a deterministic SOCP problem. Thus, it is suitable to solve the problem using a 
standard PSO algorithm. The simulations are implemented in MATLAB, in-
stalled on a PC with an Intel Core i5 processor running at 2.5 GHz with 8 GB of 
RAM. The forecasted PV and load powers and their scenarios are shown in Fig-
ure 4(a), Figure 4(b). The black line represents the forecast values, and the 
green lines represent their scenarios. The water in the hydro reservoir is as-
sumed to always be satisfied to produce energy. 

https://doi.org/10.4236/jpee.2023.117001


X. Chierthaichingpangxao et al. 
 

 

DOI: 10.4236/jpee.2023.117001 12 Journal of Power and Energy Engineering 
 

To demonstrate the effectiveness of the proposed two-stage approach, different 
simulation cases are conducted. First, the cost derived by the proposed two-stage 
approach is compared with SO and RSO approaches. Second, a sensitivity analy-
sis is carried out to study the impact of forecast errors on the operational cost. 
Third, the performance of an FPV-BESS system is analyzed. Finally, the compar-
ison of the HBPSO-PSO algorithm with another algorithm is performed. 

 

 
Figure 3. Flowchart of the HBPSO-PSO algorithm. 

 
Table 1. PSO implementation. 

 Binary variable Continuous variable 

Particle 
position 

{ }x y∗ =  
First stage: { }, , ,besshux P P α β=  

Second stage: { },x θ φ=  

Velocity 
update 

( ) ( )1 1 2 2
1k k k k

i i best bes i
k

i tV w v c r P x c r G xφ+ = ⋅ ⋅ + ⋅ ⋅ − + ⋅ ⋅ −  

where k is the iteration number. i is the particle number. x is the particle position. v is the particle velocity. bessP  and 

bestG  are the personal and global bests, respectively. 1c  and 2c  are the acceleration coefficients. 1r  and 2r  are the 
random numbers between 0 and 1. 

The time-varying inertia weight is max min
max

m

k

ax

w w
w w k

k
−

= −  and 
2

0 0 0

2

2 4C C C
φ =

− − −
. 

where minw  and maxw  are the minimum and maximum values of the inertia weight, respectively. maxk  is the maxi-
mum iteration. 0C  is a constant coefficient, where 0 1 2C c c= +  and 0 4C > . 

Particle 
update 

1 if

0 if

k k
ij ijk

ij k k
ij ij

u s
x

u s

 <= 
≥

 

where k
iju  is a random number between 0 and 1, and k

ijs  is the sigmoid function 

( 1

1 e
k
ij

k
ij v

s
−

=
+

). 

1 1k k k
i i ix x v+ += +  
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(a) PV power: forecasted value (black line) and generated scenarios (green lines) 

 
(b) Load demand: forecasted value (black line) and generated scenarios (orange lines) 

Figure 4. PV power and load profiles. 
 

The parameters used for PSO are as follows: N is 5000; minw  and maxw  are 
0.4 and 0.9, respectively; 1c  and 2c  are 2.05 and 2.05, respectively; and maxk  
is 20. The error mean and standard deviation are given as follows: pvµ  and 

loadµ  are 28 MW and 86 MW, respectively. pvσ  and loadσ  are 9 MW and 23 
MW, respectively. The characteristics of each device are given in Appendix A. 
The initial status of all HUs is assumed to be three (3), which means that the 
HUs are already committed (ON) for three hours before the simulation window 
(period). 

5.1. Performance Analysis of the Proposed Two-Stage Approach 

As mentioned previously, the proposed approach is a combination of DRCC and 
RSO approaches to schedule an HES. To demonstrate the relevance of the pro-
posed approach, the profiles obtained by the worst-case scenario of the proposed 
approach are illustrated in Figure 5. We can notice that the output power of 
HUs obtained by the proposed approach is reduced during the daytime despite 
the increase in load demand. 

On the other hand, the BESS discharges between 9 - 15 h, which leads to the 
diminution of the stored energy, as shown in Figure 6. Thus, the results given by 
the proposed approach provide insight for operators and planners to deal with 
forecast errors and all possible scenarios of PV and load powers. In addition, this 
approach can help to improve the system’s resiliency and enhance the efficient 
use of available energy resources. 
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Figure 5. Load, hydropower, and FPV power pro-
files (third scenario). 

 

 
(a) Battery power                       (b) Stored energy 

Figure 6. Battery power and stored energy (third scenario). 
 

Table 2 gives the average operational costs of SO, RSO, and the proposed ap-
proach under 20 scenarios of PV power and load (over 10 optimization runs). 
The two-stage approach takes into account the forecast errors of PV power and 
load in the first stage and their scenarios in the second stage. Note that the SO 
and RSO approaches did not include the forecast errors of PV power and load. 
Thus, the optimization problem is formulated under a one-stage problem where 
the same cost functions are used. 

First, the SO approach derives the best solution among all the approaches, i.e., 
it yields the lowest operational cost among the best- and worst-case approaches. 
Second, the cost obtained by the RSO approach is the highest since it takes into 
consideration the worst-case operation of HUs and a BESS under the worst im-
pact of scenarios of PV power and load. By this fact, the proposed two-stage ap-
proach provides the cost between that obtained by the SO and RSO approaches. 
The reason is that the proposed approach has considered the forecast errors, so 
it is more practical to adjust the output power of HUs and a BESS against the 
change in PV power and load compared to the traditional RSO approach. 

5.2. Sensitivity Analysis of the Proposed Approach 

The PV power and load forecast errors (in the first stage) can influence the total 
operational cost. Therefore, we investigated the operational costs under the vari-
ation of the forecast errors, as depicted in Table 3. We used the variable λ to 
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represent the variation factor of the forecast errors. If the mean errors of the PV 
power and load forecasts are equal to the initial (real) values given by historical 
data, then λ = 1. If the mean errors of the PV power and load forecasts are oppo-
site to the initial values, then λ = −1. If the mean errors of the PV power and 
load forecasts are nil, then λ = 0. Note that λ = 0 and λ = −1 indicate that the 
considered mean errors are diverted from the real values. We can see that the 
decrease in λ can cause an expansion in the total operational cost. This can be 
explained by the fact that the uncertainties can be better handled if we have suf-
ficient knowledge of the error means of forecast values. 

5.3. Performance Analysis of an FPV-BESS System Using the  
Two-Stage Approach 

Figure 7 explores the benefit of an integrated FPV-BESS system in a hydropow-
er plant. As we can observe in Figure 7(a), the operational cost is slightly re-
duced by considering the PV-BESS system. Furthermore, the water volume re-
quired by HUs is obviously decreased since the output power of the HUs is 
compensated by the PV power to satisfy the load. Moreover, Figure 7(b) shows 
that the available time of the HU is more appropriate when integrating an 
FPV-BESS, resulting in the reduction of the running time of the HU. 

 
Table 2. Operational cost given by 20 PV power scenarios. 

 
SO RSO Proposed approach 

Best Worst Best Worst Best Worst 

Cost ($) 56,101 58,077 58,115 60,064 56,519 58,674 

 
Table 3. Costs given by the proposed approach with respect to the variation of λ (over 10 
optimization runs). 

 
λ = −1 λ = 0 λ = 1 

Best Worst Best Worst Best Worst 

Cost ($) 57,993 59,713 57,337 59,027 56,519 58,674 
 

 
(a) Operational cost and water volume        (b) Number of available HUs 

Figure 7. Comparison between hydropower with and without FPV-BESS system (third 
scenario). 
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Figure 8. Convergence characteristics of the 
HBPSO-PSO algorithm (third scenario). 

 
Table 4. Comparison between HBPSO-PSO and HBGA-GA. 

 Cost ($) Time (s) 

HBPSO-PSO 12,469 205.9 

HBGA-GA 12,949 247.2 

5.4. Performance Analysis of the HBPSO-PSO Algorithm 

In this subsection, we analyzed the computational efficiency of the second stage. 
The convergence characteristics of the inner and outer layers of PSO are shown 
in Figure 8. Both layers exhibit the ability to converge toward optimal values. 
However, the inner layer has a higher convergence speed than the outer layer. 
This difference can be explained by the fact that the decision variables of the 
outer layer are influenced by those of the inner layer. Note that Figure 8 only 
depicts the cost obtained in the second stage, while the operational cost procured 
by the first stage is $46,205. 

Table 4 is dedicated to comparing the computational efficiency of HBPSO-PSO 
with that of the hybrid binary GA-GA (HBGA-GA) algorithm. We set the same 
population size and the maximum number of iterations for both algorithms. The 
presented results consist of the average values over 10 optimization runs. We can 
see that HBPSO-PSO derives a cost of $12,469 within 205.9 s, which is better 
than that of HBGA-GA. 

6. Conclusions 

In this paper, a two-stage approach is proposed for optimal DA scheduling to 
minimize the operational cost of an HES. The optimization in the first stage 
provides a solution based on the DRCC approach considering the PV power and 
load forecast errors. By using the DRCC approach, we can obtain a deterministic 
SOCP form, which can be effectively solved by a PSO algorithm. The second 
stage derives a robust near real time solution for each scenario of PV power and 
load based on the setpoint from the first stage. 

The key findings can be summarized as follows: 1) Numerical results show 
that the proposed approach enhances the scheduling of an HES, leading to a di-
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minution of the operational cost compared to that of traditional RSO. 2) The 
proposed approach provides robust scheduling of an HES against all possible 
scenarios of PV power and load. 3) The interaction between the first and second 
stages enables the readjustment of the ON/OFF status of the HUs that minimizes 
the SUC and RC. 4) The proposed HBPSO-PSO algorithm can effectively solve 
RSO problems and is very simple to implement compared to the methods found 
in the literature. 

This paper has focused on finding the lowest operating cost without taking 
into account the tradeoff between cost and running time. Future works can be 
focused on the implementation of the tradeoff strategy of the proposed method, 
especially in a large power system. Also, the network stability criteria should also 
be further included. 
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Appendix A. Simulation Parameters of the Devices 

Parameter Value 

HSUC; CSUC 300$; 400$ 

MUT; MDT 3 h; 2 h 
coldT  2 h 

huk  2.45$/MWh 

hu huUR DR=  100 MW/min 

_hu minP ; _hu maxP  80 MW; 200 MW 

bessk  0.3$/MWh 

ch dischη η=  95% 

ch dischc c=  60$/MWh 

minE ; maxE  5 MWh; 45 MWh 

_ _ch max disch maxP P=  10 MW 

pv pvUR DR=  50 MW/min 

maxN  5 

pvk  0.26$/MWh 

_pv minP ; _pv maxP  0; 200 MW 

resC  2$/MWh 

_load minP  80 MW 

_load maxP  1000 MW 
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