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Abstract

We present here a two-step method of classification and calculation for decay
rates in the Standard Model. The first step is a phenomenological classifica-
tion method, which is an extended and improved schematic experimental
formula for decay width originally introduced by Chang. This schematic
formula separates decays into seven classes. Furthermore, from it is derived a
process-specific interaction energy m,. The second step is a numerical calcu-
lation method, which calculates this interaction energy my, numerically by
minimization of action from the Lagrangian of the process, from which fol-
lows the decay width via the phenomenological formula. The Lagrangian is
based on an extension of the Standard Model, the extended SU(4)-preon-
model. A comparison of numerically calculated and observed decay widths
for a large selection of decays shows a good agreement.

Keywords

Particle Decay, Decay Width, Interaction Energy, Minimization of Action,
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1. Introduction

The particle decays in the Standard Model are characterized by their decay width
I (or equivalently decay rate I', =T'/7), and are described by the famous Fer-
mi’s golden rule, i.e. an integral with parameters.

A closed expression for I' can be found in only a few cases, otherwise there are
empirical formulas, or simply data tables.

We present here a two-step calculation method for calculation of general de-
cay rates in the Standard Model.

The first step is a phenomenological classification method, which is an im-

proved and generalized schematic formula for decay width originally introduced
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by Chang [1]. It is a general parameterized approximation formula with some
special cases, which is in good agreement with measurements.

It introduces seven classes of particle decays, where the interaction constant is
roughly class-specific. In other words, it allows to extrapolate and make assess-
ments for decays, for which there is no analytic formula. Furthermore, it sup-
ports the notion of decay-mediating virtual particle with interaction energy m,.

The second step is a numerical Lagrangian calculation method for interac-
tion energy m,, which calculates the interaction energy of the process numeri-
cally by minimization of action from the Lagrangian of the process. From the
interaction energy follows the decay width using the phenomenological formula.
A comparison of numerically calculated and observed decay widths for a large
selection of decays shows a good agreement.

The starting point for decay rate I', =T'/7, or equivalently, its decay width T,

of a n-body process
F(P()(k,m)—)P(p],ml)P(pz,mz)P(p3,m3)--~P(pn,mn))

is the Fermi’s golden rule

2
dF:m|M(k’pl’p2’p3"“’p”) d'py d'p, d’p;
2 (2n)' 2m*E, (2n) 2m*E, (2n) 2m’E,
d3
m(my m*s* (k=(p,+p,+ ps++-+p,))

We demonstrate in chap.2 at selected examples, how to derive I' from Fermi’s
golden rule in a closed form, which in general has to be done numerically.

For 2-body decays and 3-body decays we can (approximately) split-off the ki-
nematic factor /. of I, taking the transition matrix out of the integral.

The phenomenological classification method is described in chap.3 and chap.
5, and the calculated T,

The phenomenological formula for the decay width is [1].

are compared with measured I' ), in chap.6.

2
r=G"m! |F;"’ (x)|2 = %ml" |F;'" (x)|2 ,where B"(x) Legendre polynomial m =
1

m, . G
lorm=171+1,/=isospinI, x= —L massratio, G=—— with G= interaction

m, \ /Cl
constant, m;, is the initial mass, &is the mass-power-coefficient.

We introduce and derive the interaction energy m in the form

> 2
r=|M[ 1.m, = [8’:1"2 j Iom,.

X
The numerical calculation method is based on an extended version of the
Standard Model (SM) introduced by Helm [2], called the extended SU(4)-preon-
model (SU4PM). In SU4PM, the Pauli SU(2)-weak interaction is extended to
SU(4)-hypercolor (hc) interaction with four charges, 15 hc-boson fields and two
subparticles called preons, and SU(2)-weak interaction becomes a Yukawa-

approximation via massive (W, Z)-bosons.

DOI: 10.4236/jmp.2024.153014

272 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.153014

J. Helm

The SU4PM model allows to calculate the masses of the SM remarkably well,
reducing 29 parameters of the SM to 7.

In chap. 7, we calculate the interaction energy m, numerically by minimiza-
tion of action of the SU4PM Lagrangian of the particles in the decay process, and
we obtain a good agreement between the calculated values m,,, and observed
values my, .

A remark about units: in particle physics it is customary to use the convention
h=c=1, and we adopt it here as well, except in places, where quantities have to
be distinguished, e.g. decay width I' is an energy and is measured in MeV:
[[]=MeV , whereas decay rate ', =’/ is measuredins™: [I,]=s"".

Other quantities are transformed from each other by # and ¢ e.g. mass
m=E/c*,time t=h/E ,length x=rc/E ,angular momentum p=E/c.

The contents of the paper is as follows.

In chap. 2, first some important decays are discussed, and in 1.8 and 1.9 the
general decay width formula for 3-body and 2-body decays.

In chap. 3 the phenomenological formula for the decays is presented, and is
discussed for some important decays.

Chap. 4 shows the data of the most important particles.

In chap. 5, the phenomenological formula values and the observed values for
the decay width, together with the decay interaction energy m, are discussed.

In chap. 6 the phenomenological decay width, the observed decay width, and
the interaction energy are shown in a table and in a plot, and generally characte-
rized.

In chap. 7, we present a calculation method and a reaction model using elec-
tromagnetic, color SU(3), and extended weak SU(4) interaction based on SU4PM
model.

Here, the theoretical background and the calculation software is discussed,
and the calculated results for m, , are compared to the observed values m,,

from chap. 5, and shown in a table and in plots.

2. Selected Particle Decays with Theoretical Background

In this chapter we discuss some well-understood particle decays, with decay
width described by an analytical formula [3] [4] [5] [6] [7].

2.1. Neutron

The free neutron decays into a proton, electron, and antineutrino [8] is shown in

Figure 1.
n—>p+e +v,

The rest energy (m” —m,—m, )c2 =782keV is carried away by eand v

The transition matrix of the decay is [8] [10]
M =(G,pr“n-G,pr“ysn)(er, (1~ )v)S(E, ~E, - E,~E,)

from the interaction Hamiltonian [10]
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Figure 1. Neutron decay [9].

Vv

— G _
Hiy =Gl (177” [I_G_A%jn](e]/y (1_7/5)‘/)

with G,/G, =1.255+0.005

E(G,)=——=296.7 GeV

V GV
G, =1.1663787(6)x107° GeV ™ is the Fermi weak coupling constant,
V., =0.97417(21) (Vis the CKM-matrix),
and the weak V-constant is
G, =GV, =1.135x10"GeV>, G,=G.V, A and A is the hadronic strong

interaction correction.

We compute the neutron decay probability per unit time using Fermi’s golden
rule [11]:

i->f

2% (f1H] i>|2 p(Ef) , where p(E/) = final state energy density

or in differential form [11]

dI = |M(k1’k29k37k4 )|2 d3k2 d3k3 d3k4

2n)' & (k, —k, —k, —k
2m, (2n) 2E, (2n) 2E, (2n)’ 2E4( J &'k~ ks k)

(1)
where k=p,, k,=p,, ky=p,, k,=p,, m=m, with the (dimensionless)
transition matrix M (kl,kz,k3,k4)=< f|Ho i>6 (E, —E,-) of the interaction

Hamiltonian H,, .

1

Here E, p., E,, and p, are the electron and antineutrino total energy and mo-
mentum A is the neutron-proton mass difference A =1.29333205(51)MeV .
Integration over the antineutrino and electron momenta gives the beta elec-

tron energy spectrum

dr G +3G .
G436 g (A-E
E- o Eer(A-E)

Additional integration over electron energy yields
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5
me

r:(G5+3Gj)2 :
T

Jr

Here f; is the phase-space term, i.e. the value of the integral over the Fermi
energy spectrum, including Coulomb, recoil order, and radiative corrections.
The decay width of the decay becomes [8]
m;
2m T F

5
I(n— pev,)=(G} +3Gj)%fR =Gy} (1+32%) @)
T

where G,=G,V,,, G,=G.V A, A=1255, V,=0974,

G, =1.166x107° GeV >
with the phase-space term [9]

fR(§)=%(Z§4—9§2—8)<§2 —1)1/2+%§ln(§+(§2 _1)1/2)) é::mn v

£ =1.6332
here the transition probability per unit time is W =T'(n — pev,)/h.

The neutron lifetime 7, becomes

2’
T, :h/r(HQPEVE)Znggl.SS
Vv A eJ R

2.2. Muon

The muon decays into an electron, an electron-antineutrino and a muon-neutrino

is shown in Figure 2.
H—oe +V,+v,

For the muon decay we derive the formula for the decay width I [6] [12].
The interaction Hamiltonian is the current-current interaction

2 5

_ =5 _ 1-
H, = 2@;} u, (kzasz){}’! T}/J”l (kl’sl)u4 (k4,s4)[}/# Ty]% (k3,s3)

From the transition matrix element

Figure 2. Muon decay [9].
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5 5

_ 1- _ 1-
.//:g—zuz(kpsz)()/“ 27 ]ul(kl,sl)u4(k4,s4)(;/ﬂ 27 Ju3(k3,s3)5(E1—E2—E3—E4)
w

2

G _.¢g
Nave
we obtain after some y-algebra averaging over the spins and trace-manipulation.

|M(k,,k2,k3,k4 )|2 =64G’ (k,-k;)(k, -k,) and for the decay rate we have

Fermi’s golden rule

dr= |M(kl’kz’k3ak4 )|2 d’k, &'k, &%,

with and G= G, gis the weak dimensionless interaction constant,

(2n)' 8* (k —k, —k; —k,)

2m (2n)' 2E, (2n)' 2E, (2n) 2E,
64G? &’k &’k &’k 4
dr = k -k )k, -k 2 3 4 2n) 8*(k, —k, —k, — k

m (URBE 4))(275)3215,9 (2m)' 2E, (271:)32Ek4( n) 9~k —k = k,)
In the muon rest frame &, =(m,0,0,0) and (& -k;)=mE, and with

ki =k, +k +k,

G’ k, &'k, &k, IR

ek TR | 5 08

in spherical coordinates
ol 2
mG ‘l@‘

8 (’"_2"%‘)( -

&) + [ +z\zz3uzz4\cosa)\;z4\

. sin@ dod|k,|d’k,

- |2 - 12 - || =
with variable u’ :‘kS‘ +‘k4‘ +2‘k Hk ‘cos@
mG” [k,| || a’%,
T e : (m_z‘k3‘) ‘k4‘

and with £'= k&,

we obtain

jdu&(m u —‘k‘ ‘

)

d_l"_mGzEz(m 2Ej
de 2n’ 2 3

= (3)

2 ~2 mf2 5.2
mG E2(1—4—EjdE, r-ma
40

and the decay time 7z =#I",

where m =0.1056584 GeV

3
r=h 192n _=1330x10" GeV,

(0.1056584 GeV)’ (1.17x10~ GeV )

or in seconds, multiplied by #=6.58x10%s-GeV,
we obtain the lifetime 7=2.17 us.

2.3. Tauon

The decay modes of the tauon are
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TOUTV, VY,
Te+V,+v,
T>d+u+v,

To>Ss+u+v,

The leptonic modes give a factor f, =2, the hadronic modes a factor

£, =3V +3

=299,

Vs

and m, =16.82m,

e (1)

tye (7)=

(i +£3)(m.fm,)

2.4. Pions

~=3.23x10"s

The particle data for the pions are shown in Table 1.

Charged pion decays

The diagram of charged pion decays is shown in Figure 3.

The 7* mesons have a mass of 139.6 MeV/¢& and a mean lifetime of 2.6033 x

10°* s. They decay due to the weak interaction. The primary decay mode of a

pion, with a branching fraction of 0.999877, is a leptonic decay into a muon and

a muon neutrino:

+ +
T+,

T +V,

The pion-muon decay width is [14]

Table 1. Parameters of the pions.

G2
= f>—mm’
I 8n T

2
2
M
2
mﬂ

main
particle symbol antipart. composition mass (MeV/c?) I ¢ S C B lifetime(s) d
ecay
ch-pion " v ud 139.57018 + 0.00035 1= 0 0 0 0 2.6033 +0.0005 x 1078 4" +v,
n-pion  7° (uit - dd ) / V2 13976600006 1 0 0 0 0  84+06x10Y7  y+y
+
u u
W+
d Y

Figure 3. Feynman diagram of the dominant

leptonic pion decay [13].
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where f, isthe (dimensionless) pion decay factor, f, = 13041 MeV 0.934.

m

T

The second most common decay mode of a pion, with a branching fraction of
0.000123, is also a leptonic decay into an electron and the corresponding elec-

tron antineutrino. This “electronic mode” was discovered at CERN in 1958
7t e +v,
T e +v,
The suppression of the electronic decay mode with respect to the muonic one
is given approximately (up to a few percent effect of the radiative corrections) by

the ratio of the half-widths of the pion-electron and the pion-muon decay reac-

tions:

® o

-m

o P

—m

2
J =1.283x107*

NN
RSN

and is a spin effect known as helicity suppression.

Also observed, for charged pions only, is the very rare “pion beta decay” (with
branching fraction of about 107®) into a neutral pion, an electron and an electron
antineutrino (or for positive pions, a neutral pion, a positron, and electron neu-
trino).

7t —>x’+et +v,
7 >r'te +v,

The rate at which pions decay is a prominent quantity in many sub-fields of
particle physics, such as chiral perturbation theory. This rate is parametrized by
the pion decay constant (£,), related to the wave function overlap of the quark
and antiquark, which is about 130 MeV.

Neutral pion decays

The 7’ meson has a mass of 135.0 MeV/¢ and a mean lifetime of 8.4 x 107" s.
It decays via the electromagnetic force, which explains why its mean lifetime is
much smaller than that of the charged pion (which can only decay via the weak
force).

The neutral pion decay is shown in Figure 4.

The dominant 7° decay mode (anomaly-induced neutral pion decay), with a

branching ratio of BR = 0.98823, is into two photons:

> y+y
Y
q
T semmnaes E s q
q
Y

Figure 4. Anomaly-induced neutral pion decay [13].

DOI: 10.4236/jmp.2024.153014

278 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.153014

J. Helm

The second largest 7° decay mode (BR = 0.01174) is the Dalitz decay (named
after Richard Dalitz), which is a two-photon decay with an internal photon con-

version resulting a photon and an electron-positron pair in the final state:
7’ sy+e +et
The third largest established decay mode (BR = 3.34 x 107) is the double Da-

litz decay, with both photons undergoing internal conversion which leads to
further suppression of the rate:

7’ —>e +ef +e +e
The fourth largest established decay mode is the loop-induced and therefore

suppressed (and additionally helicity-suppressed) leptonic decay mode (BR =
6.46 x 107%):

7’ —>e +e'
2.5. Pion-Nucleon Interaction and Decays
The Lagrangian is [6] [15]
L=ig(x)7:6-4(x)v (v)

with pion ¢(x)=(d¢.4,.4,), nucleon y (x)= (y/p W, ) , and Pauli-matrix-vector
o , explicitly

L =ig(v7p,%)7s(¢1 f3i¢2 g Z%j(w,,,%) (4.0,.4)

with Feynman diagrams shown in Figure 5.

and with the corresponding hadronic transformations

0 0 - +
po>" p,n>" n, n>" p, p>" n

e -
p p n n
= - - T
[ |
[ I
I (I
i I
p I I n
- — - L
n n p
e BB o
I 1
i 1
(I + A
I 1
p i p p 1 n
— —— e
g 2g

Figure 5. Nucleon interaction via pions.
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2.6. Kaons

Kaons exist in charged form ch-kaon = (K K ’) and neutral form n-kaon =

(K 'K 0), where n-kaon appears in nature as a symmetric and antisymmetric

mixture of dand s: the long-lived kaon-L and the short-lived kaon-S.

The particle data for the kaons are shown in Table 2, their decay reactions in

Table 3, and their quark decay processes in Figure 6.

Table 2. Parameters of the kaons.

particle symbol antipart. composition mass (MeV/c?) I¢ JF¢ C B lifetime(s) main decay
uo+v #
x +r°
ch-kaon K* K us 439.677 £0.016 1/2 0 0 0 1.2380 +0.0021 x 10°®
VAR A
7’ +et +v,
n-kaon K° K° ds 497.611 £0.013 1/2 0" 0 0
_ -
kaon-S  Ki K (ds—sd)/N2 4976110013 12 0 0 0 8954+0004x10" T T
T+
Tt te +v,
- Tt v
kaon-L K K (ds+sd )/\/5 497.611+0.013 1/2 0 0 0 5116+0.021x10° KTV
2 +x’+7
VAR AR N
Table 3. Main decay modes for K* [16].
Reaction Mode Branching ratio
u+v, leptonic 63.55% £ 0.11%
zt+x° hadronic 20.66% + 0.08%
VA A hadronic 5.59% * 0.04%
r+7+x hadronic 1.761% + 0.022%
7’ +et+v, semileptonic 5.07% * 0.04%
Tty v, semileptonic 3.353% =+ 0.034%
u
d .
sinf
°c W
\ :
Ve S H
K K° u v,,;
v, d u
/
sinf_ coso,

Figure 6. Quark diagrams for X" and X° decays involving strangeness changing neutral currents [10].
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KO0 decay and CP-violation
The full kaon-L and kaon-S contain a CP-violating term:

P [K°+1?°+8K°—1?°]
el V2 N
1 K°-K" K°+K°
K,= 5 +é
Vi+e \/5 \/E

£=2.25x10" CP violation factor.

2.7. The Kaon-Pion Decay Detailed Theory

In [17] a semi-empirical formula for the transition matrix element A,, in
l"(K+ (k)= 7" (p)7" (p,)7 (ps )) is derived.
First, the kinematic momentum variables s, s, s,, s; are introduced
2 2 2
si=(k=p) > s,=(k=p,) s;=(k=p;)> 5, :(m2 +m{ + my +m32)/3
8, =S, 5, — S,

(m,2+m22)/2’ re m;

We obtain for 4,, (xy) the expression

then, the Dalitz plot variables x = are defined.

A4, (x,y)z(—Zal +O‘3)+(_ﬂ1 +%ﬂ3 _\/573jy
_(241 +2§3)(y2 +§x2j+(§1 +§3 _53')()/2 _éxzj

with the constants:
o, =(91.71£0.32)x10°, @, =(-7.36+£0.47)x10°*,
B, =(-25.68+0.27)x107", B, =(-2.43+£0.41)x107°, y,=(2.26£0.23)x10"
¢, =(-0.47+0.15)x10"", ¢, =(-0.21+0.08)x10°",
& =(-1.51£030)x107", & =(-0.12%0.17)x107°, &'=(-0.21£0.51)x107°
and my =m; =m, S, :(pl +p2)2 :(El +E2)2 _(ﬁl +ﬁ2)2 .
We obtain the following expression for the differential transition width from

Fermi’s golden rule:

2
dr— |M(kap1,P2,P3)| d’p, d’p, d’p,
2m (2n)' 2E, (2n)’ 2E, (2n) 2E,

(2717)4 54(k_p1 D _p3)

or, with Dalitz variables

2
|M(k’plnp29p3)| d3p1 d3p2 d3p3
2 (an) 2o g7 (28 2+ (25) 2 5]
we choose k=0, k*=m, ie Dby=—(D, +P,)
Sy :(k_l’l)z :(m_El)z_ﬁf :(m_El)z _(Elz_mlz):m2+m12_2mEl
s2=(m—E2)2—]3§=m2+rr112—2mE2
B =E —m, p;=E;—m
P> =P +P; +2P,p,c080, = E + E; —2m] +2\/E12 —my \/Ez2 —my cosf,,
m=E +E, +E,

dlr'=

(27:)4 5*(k=p,—p,—ps;)
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5=(p+p:) =(m=(B+E)) (5 + 5,

=(m- E+E) (E12+E22—2m12+2\/E12—m12\/E22—m1200s912)

( +P2)
—2E,E, —2m(E, +E,)+m’* +2m} —=2\JE> —m? \|EZ —m? cos6),

Elz\lml + Py Ezz\/ml +5;
12
By =i +(5+ ) = (B2 + B2 =i + 2B = 2 =i cos0),)

_s,-s _2m(E - E,)

x
2 2
m m

Csy—s, 2EE,—2m(E +E))+2m* 3+ m? =2 E —m? \JEZ —m? cos@,

2 2
m; m

y

. 1
We insert |M(k,p1,p2,p3 )|2 pr A, (x,y)|2

and calculate T as an integral over |p|=|p|,

|=|B,| 6. integration

d’p,6° (P, + P, + P,) cancels out

A, (xy)| 4n(E -m)d|p | 2n(E; —m!)d|p,| 1
2m (2n) 2, (27:)32E2 (2n) 2E,

T P

dr= (2n)' 8(m—E, ~E, ~ E,)

and changing to £, E,, 6, d| p1| =

|P1|:VE2_m12 > |p2|=\/E2 _ml

4. (o) JEZ - m2dE[E2 — ndE,

8m(2n)’

dl' =

sin6,d6),

X

1/2
(Ef + B2 —2m? +2\JE —m? \JEL —m cosle)

1/2
xé’(m—El -E, —(Ef +E -2m] +2\/E12 -m’ \/Ej —m cos@lz) j
we solve dI for E, [2]:

2E'm—m’ —mm +E, (3m2 +m’ ) +cos (6, ){(Ef —m} )[

(m2 —m! )(4E12 —4Em+m* —m’ )Dl/z

+4m! (E12 -m/ )005(4912 )
E, =

2(E,—m)" + 2(E12 -m/ )cos(&12 )

and m—E, - E, =\/E12 + B2 —m} + 2\ E? —m? \JE2 —m cos6,

(m—(E, +E,)) ~E*~EX +m’
2\JE} —m] cosb,,

now we carry out the integration over E, with the delta-function:

-

[ 2
=\ E, —m;

A 7(x,y)|2 B (m—(El +E2))2 —El2 —E22 +m12 siné,,d6,

8m(2n)’ ! 2cos0, m—(E +E,)
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and after simplification
2
A, (x, B B 2
R RRI™ 4
8m(2m) m—(E, +E,)
The integration boundary in £ is my <E, <(1+ f.,, (m.m,6,))m,, in 6,
0<6,<mn

where felbl(m,ml,ﬁlz)zm is the relative momentum, at which , becomes

1

complex

m’m; (m2 (1-cos(26,,))+2m; +6m; cos (26, )) "
+m; (cos(46,,)—cos(26,,))

4(m2ml2 —m sin(6, )2)

3 22 3 4 ; 2
2m’m; —4m’m} —2mm; +4m;'sin(6,,)" -

S (m:mla‘glz) =

Numerical integration yields for m, = m(7Z'+) =0.139 GeV,
m=m(K")=0493GeV [2].
I'(m;,m)=0.033x107'° GeV, the measured decay width is 0.0297 x 107 GeV

(see below).

2.8. The General 3-Body Decay

We use the momentum notations I'( B, (k,m)—> P(p,.m, ) P(p,.m,)P(p,.m,))
[14] [18].

We start again with Fermi’s golden rule:

i - |M(k, D1 P2 D3 )|2 d’p, d’p, d’p,
2m (2n)’ 2E, (2n)’ 2E, (2n)’ 2E,

(27:)4 5t (k—p—p,—ps)

(5)
we choose k=0, k’=m, ie Dy =—(P+ D)
pi=El-mi, p;=E —m
P2 = PP+ P2+ 2P Py 0080y, = B2+ E2 —m} —mi? + 21\[E2 —mi \JE2 —m? cos6,
m=FE +E, +E,

E, :lez"'ﬁf > E2:\/m§+f722 >

E; =\/m32 +(131+ﬁ2)2

1/2
=(E12 +E; +m; —m} —m; +2\/E12 —mlz\/Ez2 -m; 005612)

now we calculate I as an integral over |p,|=|p,|, |p,|=|B,| 6. integration
d’p,8° (P, + P, + P,) cancels out

|M(k,pl,p2,p3)|2 47'l',<E12 —mlz)dlp]| 2TE(E22 —mf)d|p2| 1

dF: 2m 3 3 3
(2n) 2E, (2n)'2E,  (2n)2E,

(2n)' 5(m—E, ~E, — E,)

E]dE]

P 2
JE -m? (B

and changing to E,, E,, 6,,: d|P1| =
|p1| = VEIZ _m12 ’ |p2| = VE22 _m22
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dr =

| (k plvp2’p3 |
8m(2n)

\/E2 —mlszl\/Ez2 —-m;dE,

$in6,,d6,,

X

12
(Ef T+ Bl =} —m? +2\JEY —m} \JE2 —mi? cos@lz)

12
xé(m—El —E2—(E,2+E22+m32—m12—m22+2\/E12—m,2\/E22—m§ cos@lz) j

we solve for E, [2]:

E, = [m<—2E12 -m’ —m] er32)+E1 (3m2 +m+m —m32)+c0s(4912)(m4 +2m’m}

+m =2m*m} +my —2m’m} —2<m12 +m22)m32 +mi +2E; (Zm2 —mzz)
—4E1m(m2 +m —m; —m; ) +2m] (E12 -m] )cos(26’12 ))1/2)

/(-2(8 ~m) +2(E} =m)cos(6,.)’)

1/2
and m—El—E2:(Ef+E22+m32—m12—m22+2\/E12—m12\/E22—m§ cos@lz)

(m—(E1 +E2))2 _E12 —E22 —m32 +m12 +rr122
2\/E12 —m] cosé,

_ [ 2
= Ey, —m;

now we carry out the integration over E, with the delta-function:

I|M k plspzsp3)| dE (m—(El+E2)>2—E12—E22—m32+m12+m§ sin6,,do,,
8m(21r) ! 2cos6,, m—(E, +E,)

and after simplification

J~|M k > P1s Pas Ps | \/E -m \/E
8m ( 27:) m—(E, +E,)

setting |M (k. p1, pss D )| =1 we obtain the partial kinematic factor for 3-body

decay Ir{ o ,ﬁ)

s sin§,, d6,,dE|

m m m

1 E}—m?JE*-m?
:f 7 \/ 2 ! \/ L 2 sinf, d6,dE, =m, (m,ml,mz,m3) (6)
8m(27‘c) m—(El +E2)
The integration boundary in £} is m, < E, < (1+f@1b1 (m,m;,m,,my,6, )) m, , in
6, 0<6,<n
where ., (m,m,,m,,m,,6,,) = m is the relative momentum, at which E,
m,

becomes complex

S (m’ml ,mz,m3,l9,2)

_ 3 2.2 3 2 2 2.2 2.2
_(Z(m m; —2m°m; +mm, —mml(m2 +m; )+m1 my —m; m;, COS(2(912))

—(—(m2 (m2 —4mm, +6m. —2m; —2m32)—4mm13 +m +4mm, (mf +m32)
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—2m] (m22 +m ) +my +m; —2m,"m;’ )(4m2ml2 —2m’m; +2mim,’ cos(26’12 ))
\l/2
-i—4(—m3m1 +2m’m} —mm; +mm, (mz2 +m32)+m12m§ (cos(2912)—1)> )

/ (2(2m2m12 —mm3 +m}m; cos(26, )))
(6a)
The kinematic factor [, (m,m,,m,,m;) can be calculated numerically.
The total kinematic factor results from I.,(m,m,,m,,m;) by symmetrization

over all 6 index permutations

Ims(m,m,,mz,mB):(lr3 (m,ml,mz,m3)+lr3(m,ml,m3,m2)+-~-)/6

Here is the plot of 7, (1,m,,0.1,0.1)10° shown in Figure 7.
Example: F( H—> eVevﬂ) with kinematic factor:
Irs, (m(u),m(e),0,0)=0.3835.

2.9. The General 2-Body Decay

We use the momentum notations I'(F,(k,m)—> P(p,,m )P (p,,m,)) [14]
[18].
We start again with Fermi’s golden rule for 2-body decay [11]:

. |M(k, P1s P )|2 d’p, d’p,

2n)' 5% (k—p, - p, 7
2 (2n) 2E, (21t)32E2(n) (k=pi=p:) )

drr

we choose k=0, k’=m,ie p,=—-p,
=2 2 2 =2 2 2
b =Ef —m, py =E;—m,

m=FE +E,

2 =2 2 =2 2 2 2
E1=w/m1 +pr E2=\/m2+p1 =\/E1 +my —m; =m-FE,

54(k_P1_p2):5(m_E1 _Ez)53 (1_51+l_52)

I, (1,m,,0.1,0.1)
400 |

300
200

100

0.2 03 0.4 0.5

Figure 7. Plot of I, (1,m,,0.1,0.1)10°.
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now we calculate T as an integral over |p,|=|p,|, integration d’p,6° (p, + p,)

cancels out
EdE,

and changing to E,: d|P1|:T’ P1|: Ef —m}
Ef —m;
2
M k, , 2 _ 2
N ALY, f2)| B B
8(2n) E} +m; —m/

from +E’ +m; —m] =m—E, we obtain the solution [2]

2 2 2
m-+m. —m
E _ 1 2
10— >
2m

the integration dE,6(m—E, —E,) cancels out and we obtain, setting
|M (k.. psopy)| =1

r=_" \lElzo_ml2
4(2n) JE, +m —m

1 <m4 +mt+mi =2m’m} —2m’m; —2mm; )I/z ®
- 8mm (m4 +mt+mi =2mm} +2m*m; —2m’m] )1/2
we obtain the kinematic factor for 2-body decay 1., (m,m,)
r 1 (m4 +m' +my —2m’m} =2m*m; —2m’m; )1/2
Iy (mymy,my) = — (8a)

. 12
8n (m4 +mt+mi =2mm! +2m’m; —2m12m22)

The total kinematic factor for 2-body decay results from the symmetrized
I, (m, m )
I, (m,m1)+1rz (m,mz)
2

Iy, (m’ml’mz) =

As an example, here is the plot 7, (1,m,,0.5) shown in Figure 8.
Example: I'(z — uv), with kinematic factor: I, (m(x),m(x),0)=0.0251.

I, (1,m,,0.5)

r2s (
0.030 ]
0.025
0020}
0.015

0.010f

0.005 |

0.1 0.2 0.3 0.4 051

Figure 8. Plotof I, (1,m,,0.5).

DOI: 10.4236/jmp.2024.153014

286 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.153014

J. Helm

3. The Theoretical Background and the Phenomenological
Decay Formula

Schematics: decay width phenomenological formula, interaction energy

G (decay) = interaction constant

phenomenological formula F(G,k,l,m, m,,mf) =Gm* |17'” (x)
k = -1,1,3,4,5interaction type, / = Iisospin, m = I;,

(ml,m , ) = (ingoing energy, outgoing energy)

‘ 2

phenom. decay width l"ﬂ,,c(é,k,l,m,m,,m f)

measured T, ~T (G,k,l,m,m,,mj)

v

observed interaction energy

My exp =My (F’II ’mr)

interaction energy m, (T,I.,m,)=

3-body decay

II-m,- jm
r

I =1y, (m,my,m,) for 2-body decay, I.=1I(m,m,m,m,) for

decay time z=n/T

In this chapter, we follow the following scheme underlying the phenomeno-
logical formula by Chang [1] for decay width, the derived interaction energy,
and resulting decay time.

The phenomenological formula is a semi-empirical scheme for the calculation
of the decay width T of a decay: I' (G,k,l,m,ml.,mf)=(~}2mf P (x)|2, de-

pending on (mi,m /.) = (ingoing energy, outgoing energy), interaction constant

cale

(decay dependent) G, interaction type k= -1, 1, 3, 4, 5, and extended isospin /
with the traditional notations /=, m= I,
From the decay width, the decay time follows immediately 7 =7/T.

The agreement between the phenomenological I',,. and the observed values

calc

I, isremarkably good (see chap. 6).

obs
The interaction energy m, (I',/.,m,) between the incoming and the out-
going state in the process (corresponding to the energy of the mediating particle
in the Feynman diagram, e.g. W~ boson in the neutron decay), can be calcu-
lated from T using kinematics factors 7. (m,m,,---).

The kinematics factors describe the statistics of the process and depend on the
involved particle masses.
In 1.8 and 1.9 we calculated the kinematic factor and obtained for decay width

the general formula T = |M|2 Irm,.

14
m; (I.m,
The formula for interaction energy m, (I',1.,m,)=— [ L j is derived

22\ T

below in chap. 3.1.

3.1. The Phenomenological Decay Formula and Interaction
Energy

The phenomenological decay formula
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The phenomenological formula for the decay width is [1]

r :szi"

(o = ot | o ©

m
where P"(x) Legendre polynomial m=/ or m=1[+1, /=isospin I, x =L
m

mass ratio, G = % with G = interaction constant, m, is the initial mass.
C]
The constant C, is process-dependent, standard value C, =4n, with excep-
tions for muon: C, =192n°, and for neutron: C, =2r’.
The G constants are: for kaons G* = g7 =2.06x10™", for pions
G* =g; =2.18x107", for leptonic decays 4 — A'e v, (AS =0)

G=G,=1.02x10" [sz =1.16x10" GeV?, for hyperons

m,

G=g, =581x107GeV or G=g,, =1.4x107" GeV 2.
The interaction constants for hyperons in [1] were given by
m,

G:gh=6.2><107[?J or G:gh.:1.28><108[

i

32
ﬂ} , they have been cor-

m,

rected, since G must not depend on initial mass m; , also the power coefficient &
and the data tables were corrected accordingly.
The power coefficient is

k=1 for a dimensionless G, like in pion decay

F(ﬂ'—)yvy) = szixz(l—xz)2 =¥x2 (1—x2)2, G’ =g, =2.18x10"
T

k=5 for a dimensional G, [G] = GeV 7, like in muon decay
2 5
1"(/1 —>ev, vﬂ) =G*m’ <l—x2)4 :lG;%(l—xz )4
T
k=3 for a dimensional G, [G] =GeV', like in 1t decay
~ 3
F(ﬂo - )/7) =G’m} (l—xz)
k= -1 for a dimensional [GJ =GeV , for kaon decays with G = g,,

G >
G, [GJ =GeV 2, for non-kaon hyperon decays

k = 4 for a dimensional
with G=g,,
soinall cases [I'] =m, i.e. the dimension is energy, as it must be.

The extended isospin1 [5] [19] includes higher generation quarks,
I(s)=1(c)=1/2 and I(/)=1 for leptons /as well as /(y)=1 for the pho-
ton.

The extended isospin has the following values shown in Table 4.

The angular momentum in decay width: /=|Al|= |Ii +17,| is the difference

/|
or sum of the initial and final isospin.

The interaction energy

The interaction energy my is the (excitation) energy of the mediating virtual
exchange boson (for pure weak decays: W or Z-boson).

We can deduce the interaction energy from the phenomenological formula in
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Table 4. Extended isospin.

I(p)=1/2, I(n)=1/2
but I(ud)zl(dd):l(uu)zl

I(n)=1

the following way.
We consider the phenomenological formula for k=5 (e.g. muon decay) in the
form I' = szf (l—x2 )4 , where x = ﬂ
mi
We separate the kinematic factor as in chap. 2.8 and 2.9 in the form
r=|M|" I.m,.
So we conclude I, = (1—x2 )4 , M?=G*m.
In analogy to the weak interaction mediated by the W-boson (as in muon
G, g’
5=

decay chap.3.3) G=—L

V2o o8M

ansatz for the matrix element A/ and the interaction energy m,

(g weak interaction constant), we make the

2
m:

i

- 2
&my

The decay width with the matrix element A/ and the kinematic /. factor be-
comes then
m? Y m m\"*
= |M|2 Im; = [—’j I.m, oringeneral —*=f, (?’j , where
m.

2
m

X i

s
fi=—"=.
NP

From this formula we can derive a general semi-empirical formula for the

interaction energy m,, where the kinematic factor is dimensionless [/.]=1,

my =—i (—]Fm"jw (10)
X 2\/5 T

where 1. =1, (m;,m,,m;) for2-body decay,
It =15 (m;,my,my,m,) for 3-body decay (see 1.8, 1.9)
4 =2
For k=1 m_; _ 446G |P,’" (x)|2 with the phenomenological formula
m

X r

r=Gm,

i

B (x)f (10a)
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~2 2 5
For k=5 % 646 |P,m (x)|2 with T'=G*m’ (l—xz)4 =GF—m"3(1—xz )4
my r 192m
(10b)
~2
For k=3 — =% |pn (1) with [=G*m(1-x° ) (10¢)
my I

3.2. Derivation of Angular Momentum Dependence in the
Phenomenological Formula

Laplace operators in spherical coordinates reads [1]

2
!//:L2 ﬁ rza—l// +—.1 i(siné’a—l’yj+ ,12 6(/;
re\ or Op ) sin@ 06 060 ) sin” 0 0p
WAy
2m

quantum Kinetic energy is E,, (v)=—

with the ansatz y = R(r)©(6,¢)

for rigid rotator r=const and we obtain the angular momentum spectrum

2
,1 i(siné’a—lyj+ - 12 0 V; =1(I1+1) with kinetic energy
sin@ 06 060 ) sin” 60 0p

I R1(1+1)
“ar 8l
where /is the angular momentum quantum number
with eigenfunctions
|2 _i(1_|m|)!
!

v, =N, B" (cos@)exp(imp), |l7[/1m (20+1) P,‘m‘ (cos 9)2

A (1+|m))!
[—|m|)!
and decay width T = A|(//,m|2 = ﬁgl+||2:;‘(2[+l)plm (cos g)2
with x=cos€=pj and x:M, m=1[ or m=1[-1
|p m;

m/2 _
Legendre functions P" (x)= F(ll )(i—k—xj ,F (—l,l +1;1 —m;lTx)
-m)\1-x

with hypergeometric function ,F

associated Legendre polynomials
m _ m A7 2 m/2 ! k' k—m l (l+k_l)/2
P (x)=(-1)"2'(1-x%) kz:,:n(k—m)!x [kj[ 1

B (x)=x(21+1) B (x), B (x)=(-1) (21-1)n(1-+)",

P (x) = —(2A+1)V1- P (x)
P()O(x)zl, P10(x)=x, Pl—l(x):%(l_xz)l/Z) Pll(X)Z—(l—xz)]/z)

1
P (x) = E(3x2 —1)
and the decay width becomes T, (x)= Cx*“") (1 -x )l , a=12

In the following, the angular momentum Z is replaced by the isospin 1
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3.3. Muon Decay Theory

The analytical formula from the Feynman diagram is

25
Fm,u

1927°

1"(,u —>ev,v, ) = [6], G Fermi-constant (11)

exact formula with corrections [10]

— G;mz mf a 3 mz
F(ﬂ-)eVeV”)ZlngE}f W 1+f;c ; 1+gm—2+ (lla)
L

7 w
x(25 2 m 4 m m
(x)==| == || 1+x| Zlog—~£~-3.7 |+x°| =log’ —“~—2log—~+C |+---

1 (%) 2[4 j{ (3 gme J {9 8 m, gme

(11b)
and the phenomenological formula
4
Gym, m’ Grm’ 4
F(y—)evev”)zwzn’}’ (l—mzj :1927;3[ (1—x2) (1], I=4 (11¢)
"

This is the general formula for a leptonic weak 3-body decay, setting initial
mass m; =m,.

The (charged) weak interaction in the Feynman-Gell-Mann form reads

GF

weak \/E

J,=L,+H, and L,(x)=2e,(x)y,v,(x)+--- istheleptonic current,

H J “J; [6] (9.1), where J, is the charged leptonic-hadronic current

H,(x)=2u,(x)y,d, (x)+-- isthe analogous hadronic current.
In the standard model, the (charged) weak interaction is mediated by the
massive W-boson W, with mass M, for the charged current, with the Lagran-

gian
___ & 7 T
Lweak - 2\/5 (J#Wu + W‘u']‘u) (12)
G g2
where the effective interaction constantis G =—2 = -
V2 &my,

We can use the total current and use an excited intermediate W-boson, which
includes the hadronic part, with the total mass my > M, and calculate it from

Gr

V2

the effective measured coupling constant G =—%, setting g= 1:

G? = _1
64m’y

The isospin numbersare /=Al =1, +1,=3+1=4 and m=1[=4.

3.4. Pion Decay Theory

The analytical formula from the Feynman diagram is

2
& m;

2
Gz m2 Gz 5 mZ m2
F(ﬁ%ﬂvﬂ):g—:”f;nzdm;(l—m—gj ~ 22Ma T - | (01, (1320)]

(13)
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G Fermi-constant, and the phenomenological formula

4t m? m 4

4

2 2
F(r— v, )= S0 ﬂ(pm—gj SO ey 1 a3

The (charged) weak interaction has the form

_Gr (,u, v, )Jl (u,d) with the leptonic current

H weak \/5

J*(uv,)=Hy* (1-ys)v and the hadronic current J*(u,d)=uy*d for

7~ =ud ([6],(13.6)).
Using the same procedure as above with the excited intermediate W-boson,

we calculate M, from the above two formulas:

G_[m_] G G _ g

— and —£=-—=C-
8m \ my 4n 2 osml

and setting g, = 1 and initial mass m, =m,
4
we obtain [ﬂ] =64G".
my
The isospin numbersare /=Al=1,+1,=2+1=3 and m=/-1=2.
3.5. Kaon Pion Decay Theory

The kaon-pion decay is shown in Figure 9.
The generalized and isospin-adapted 3-body semi-leptonic formula (from the

muon) decay is

4
4 ) 4 m2
F(K* >tz )= =S [ )y M (14)
32x1927 | m? ;

and the phenomenological formula

2

. . GZ 2

F(K*—wriz*ﬁ’)z Mice | Ma [1], where G=2gJa (14a)
4n my., 1

From these two formulas setting g = 1 we obtain for m,:

4
m_i:8><1927t2G2 =32x192n’glax
my

The interaction is mediated by W-boson and a gluon: it is a weak-hadronic

transformation.

ol c

wl
f
b}
=7
[te}
ol c
+

Figure 9. Kaon decay.
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The isospin numbersare /=Al=1,-1,=3-1=2 and m=1[=2.

3.6. Neutron Decay Theory

The quark process of the neutron decay is shown in Figure 10.

The analytical formula from the Feynman diagram is [8]
m; m,
T(n— pev,)=(G} +3Gj)%fR =G§Vlfi(1+3/lz)ﬁfR (15)
G, =GJV,, G,=G.V A, A=1255, V,,=0974, G, =1.166x10"GeV"'

with the phase-space term [9]

fe =L(2§“—9§2—8)V§2—1+lélog(~f+\/§2—1) with ¢="""r 553,
60 4 m

e

so fp=1.6332
and the phenomenological formula for decay width is

m;

2 4
F(n—)peve)szmf[l—m—éj [1], /=4 (15a)

with initial mass m, =m, and final mass m,=m,+m, and obtain with the
same ansatz as for F(y —>ev,v, ):

G? = 1

1927 32M 3
The neutron decay involves in fact only 2 quarks

I'(n— pev,)=T(dd > udev,)
so the isospin numbers are /=Al=1,+1,=3+1=4 and m=[=4 with
I, =1(ud)+1(e)+I1(v)=1+1+1=3 and I,=1(dd)=1.

3.7. Theory of 3-Body Eta-Pion Decay

The eta-pion decay is shown in Figure 11.
The generalized and isospin-adapted 3-body semi-leptonic formula (from the

muon) decay is

udu Ve

udd
n

Figure 10. Neutron decay.
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/I
TCO +
T] " n
=
Figure 11. Eta-pion decay.
4
4 4 m2
T(por'ntn)=—S32 |2\ T/ (16)
(77 ) 32x1927° mf( m,2
and the phenomenological formula [1]
G m2 '
I(nor’zr 7 )=—"m|1-—L 16a
(77 ) 4n ! { ml.2 J (162)

From this setting g= 1 we obtain for m,:

4
m

—-=8x1927°G’
my
The decay is mainly hadronic, but the kinematics is one of a 3-body decay, so
we can use the generalized 3-body semi-leptonic formula from above.
The intermediate boson here is 7°, so m, o m(;ro) and the isospin num-

bersare /=Al=1,+1,=3+1=4 and m=1I/=4.

3.8. Theory of 2-Photon Meson Decay

The formula for the radiative 2-photon meson decay is:
a’m;

T (17)
641’ m;,

F(ﬂ'o —))/;/):

where m, =m(z°) and m, =F,

T

F, _2my pseudoscalar weak decay con-
V4

stant [20].
the phenomenological formula is
3
G'm; m;
F(ﬂo—n/y): 47:1 ( —m—é (172)
dra

From this we obtain for m: m, =——

The intermediate boson here is the strongly excited 7z°, so m, o 10m(7r°)

and the isospin numbers are /=Al=1,+1,=2+1=3 and m=1[=3.

3.9. Theory of 1-Photon Hyperon Decay

The photon hyperon decay is shown in Figure 12.
The interaction becomes for the transition s —dy
H,, = c?aw (a+bys)sq“A’a, where A", ¢* are the photon and its mo-

mentum.
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w Y

B B

Figure 12. Photon hyperon decay.

For the analytical formula we can use the extended isospin-adapted expression

from the pion decay (here l"(Z+ - p;/) )

2
2.5 2 2
Grmy M|y _ M
2

2

&n m; m;,

Gra’m} m Y
r(z Apy)zf”#[ -m—gj (18)
where m, = m(E*) and m, =m(p), f, isthe hadronic correction factor the

phenomenological formula is
; G (\_mi |
F(E —)p]/)z i (l—m—in (18a)
. . . ol a
From this we obtain for m,: m} = e or my = 3G

and the isospin numbers are /=AI=1,+1,=(1/2+1)+1/2=2 and m=/=2.

3.10. The Generalized Weak Decay Formula

We have seen in 2.3 for the muon decay that the decay interaction has the

Feynman-Gell-Mann form

H _ifﬂjy where GF/«E:gz/(gM;’)

weak \/E
or in generalized form (in natural units)

Hy =E50(2,) (19)

int — 2 u
8my

where gis the (dimensionless) interaction constant, m;, is the interaction energy
(excitation energy of the intermediate boson), /; and /, are the currents involved,
e.g. the lepton current (J,) =2(x)7,(1-7;5)v.(x)-

The current has dimension /ength-, so the formula in cgs units reads
2

H,, :(hc)3 8512 Ji (7, )”, so H,, has dimension energy/lengtlr’, i.e. energy
X

density, as it should be.
The decay width (energy) becomes then

r=[H, (x)d’x (19a)

int
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4. Particle Data

In the following Table 5 we present the data for the particles involved in the de-
cays [6] [19] [21].

Table 5. Particle data.

name Mass [GeV] e-charge color-charge chirality spin isospin

e 0.000511 -1 0 0 1/2 1
nue 3x1078 0 0 1 1/2 1

u 0.0023 2/3 3 0 1/2 172

d 0.0048 -1/3 3 0 1/2 172
mu 0.106 -1 0 0 1/2 1
numu 1.1x 10" 0 0 1 1/2 1

c 1.34 2/3 3 0 1/2 172

s 0.106 -1/3 3 0 1/2 172
tau 1.78 -1 0 0 1/2 1
nutau 9.8 x 107" 0 0 1 1/2 1

t 171 2/3 3 0 1/2 172

b 42 —(1/3) 3 0 1/2 172
W~ 80.4 -1 0 1 1 1
Z 91.2 0 0 0 1 1
gamma 0 0 0 0 1 1
g 0 0 8 0 1 0
H 125.1 0 0 0 0 0

p 0.93827 1 3 0 172 1/2

n 0.93956 0 3 0 172 1/2

Lambda 1.1157 0 3 0 1/2 1/2
Sigma+ 1.1894 1 3 0 1/2 1
Sigma0 1.1926 0 3 0 1/2 1
Sigma— 1.19745 -1 3 0 172 1

Xi0 1.31486 0 3 0 172 1/2

Xi- 1.3217 -1 3 0 1/2 172
rho+ 0.7751 1 3 0 1 1
rho0 0.77526 0 3 0 1 1
omega 0.78265 0 3 0 1 0
phi 1.01946 0 3 0 1 0
K*+ 0.89166 1 3 0 1 1
K*0 0.89581 0 3 0 1 1
pi+ 0.13957 1 3 0 0 1
pi0 0.134977 0 3 0 0 1
eta 0.54786 0 3 0 0 1
eta' 0.95778 0 3 0 0 1
K+ 0.49368 1 3 0 0 1
Ko 0.49761 0 3 0 0 1
KSo0 0.49761 0 3 0 0 1
KLO 0.49761 0 3 0 0 1
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5. Decay Width and Interaction Energy for Different
Types of Decays

In this chapter, we compare the observed decay bandwidths with the ones calcu-
lated from the semi-empirical formula. As we shall see, there is in general a sa-
tisfactory agreement between the observed and the calculated values [1] [22].

Here, my is calculated according to the formula in 2.1 from the observed de-

m; | I.m, v (20)
my =—¢—=| —
" 2\/5 1—‘obs

cay width T,

5.1. Strange Hyperon Decays with Pions
Here we have [23]

: G -1 2
r=Cly,| = (1-%7), [as|=1, I=AT=1, m=1, x=—L, k=-1

with g, =5.81x107 GeV
A—pr, A>nr’, G=g, resp. G=g, /2
o pr’, T onrt, o, G=g,
E°>Az’, B >An, G=g, resp. G=g, /\2
The data for the strange hyperon decays with pions are shown in Table 6.
The decays can be roughly ordered according to the interaction energy.
Lambda into nucleon pion m, =400 GeV .

Sigma into nucleon pion m, ~400GeV .

5.2. Two-Body Non-Strange Decays of Mesons

F=C|l//3‘2|2=f—2mix2(l—x2), AS=0, I=AT=3, m=2, x="L, k=1
T m;
t>lv, G=g,

K*—>lv, G=g,

K\ >z'z, G=2gadd3, K —>r'z", G=2ga443/\2

K* > 77, G=2ga\443

K)>n'n, G=2ga, K, >z, G=2g1a/x/§

Table 6. Strange hyperon decays with pions.

decay Tcalc [GeV] Tobs [GeV] rel. Awidth [, I, I1=AI G[GeV] x my G formula
A— pr 1.61032 x 107° 1.599 x 107 0.00813008 1/2 3/2 1 6.2x 107  0.966066 352.232 G=g,
A —nrx’ 8.74088 x 10-16  8.96 x 10-16 0.0145089 1/2 3/2 1 438 x 1077 0.963106 423.206 G= ghl/\/z
> pﬁo 4.20623 x 107" 4.233 x 107 0.00590598 1/2 3/2 1 6.2x 107 0.902343 426.379 G=g,
>t >t 4.00357 x 107 3.966 x 107> 0.00630358 1/2 3/2 1 6.2x 107  0.907289 424.288 G=g,
DIy 422472 x 107 4.444 x 107 0.00562556 1/2 3/2 1 6.2x107  0.90119 430.76 G=g,
2 5 Ax’ 1.95069 x 107"° 2.259 x 107" 0.0110668 1/2 3/2 1 6.2x 107 0.951186 471.39 G=g,
E o> Anr 3.99332 x 107° 4.011 x 107 0.00623286 1/2 3/2 1 438 x 1077 0.949739 399.863 G= ghl/ﬁ
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The data for the non-strange two-body meson decays are shown in Table 7.
The decays can be roughly ordered according to the interaction energy
Pion-lepton m, =100 GeV,

Kaon-lepton: m, =400 GeV,

Kaon-pion: m, =600GeV,

Short-lived K-pion: m, ~150 GeV,

Long-lived K, -pion: m, =~3200 GeV .

5.3. Three-Four-Body Decays of Strange Mesons

F:C|y/,’m|2=f—;mi(l—x2)], |AS|=1, I=Al=2, m=2, x:’;;—j, k=1

except K* = n*n 7"y, where Al=1, m=1

K*>7'lv, G=g, %

K’ > zlv, G=ga
K* > rn'n, G=253ga

K* >nn'n’, G= 2.53g1\/%

K) > 277", G:Zglx/g
K) >nnx°, G=2g1\/;/«/3/2
a

0 0_+ - _
K, »>rn'nev,, G=g —
T
. a
K* >z nl'v, K" >2°zl'v, G=g —
n

a
K* > 2°zy, G=g|—
- o[ )

K* >rir‘ny, G=ga2
The data for the three-four-body decays of strange mesons are shown in Table

The decays can be roughly ordered according to the interaction energy

Table 7. Two-body non-strange decays of mesons.

decay width_calc[GeV]width_obs[GeV] rel. Awidth 7, I, /= Al G x my Gformula
7t —> u*vy 2.50122 x 107" 2.528 x 1077 0.000791139 1 2 3 1.47648 x 1077 0.759476 96.3675 G=g,
7t —>e'v, 3.24552 x 107 3.11x107% 0.0186495 1 2 3 1.47648 x 1077 0.00366125 107.988 G=g,
K" > y*vﬂ 3.3949 x 1077 3.372x 1077 0.00266904 1 1.43527 x 1077 0.214714 383.074 G=g
K" —>e'v, 867067 x102 8238x 1072 0.0581452 1 1.43527 x 1077 0.00103508 387.415 G=g

Kg —> 7'z 5.0423x107° 5084 x 107" 0.00354052 1 9.28211 x 1077 0.560961  146.47 G=2g,a443

Ky —>7°7z°0 25002 x 107" 2.255x 107°  0.00798226 1 6.56344 x 107 0.542501 174.823 G=2g,a443/\2
K>z’ 1.12741x 1077 1.112x 1077 0.00719424 1 4.41006 x 107 0.556123 667.317 G =2g,a+/443

K' >7z'7 256934x 102 2543x107%  0.0247739 1 2.09528 x 107° 0.560961 3082.85 G=2gua

[ NSRS HEE S E "I ST SRR )
O S e S N I )

K! >’z 127399x 107 1119x 107 0204647 1 1.48159 x 10° 0.542501 3679.59 G =2g,a/\2
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Table 8. Three-four-body decays of strange mesons.

decay Wiﬁé};;; le Wi[dét;/?bs rel. Awidth I, I, /=Al G X my Gformula
K" —>7''v, 252543 x 107 2.565x 107" 0.0105263 1 3 2 8.67078 x 10 0.274445 2168.89 G =g,Ja /2
K'>7r'u'v, 17138x107 1.764x 107 0.0272109 1 3 2 8.67078 x 107° 0.488124 1899.19 G =g,vJa /2
K} > 7tev, 5.04792x107%® 5217 x107® 0.0120759 1 3 2 1.22623 x 107 0.281508 1830.36 G=ga
K] >7z'uv, 3.40719x 107 3.478 x 107" 0.00920069 1 3 2 122623 x 107 0.493499 1602.52 G=ga
K >a'zn 297836 x 107 2971 x 107 0.00538539 1 3 2 3.10237 x 107 0.84814 127.367 G=2.53ga
K' >z 9.19439x 107 9.34x107° 0.0289079 1 3 2 155119 x 107 0.829533 191.076 G =2.53g,va/2
K} > 7°7°7" 2.71785x 107 2518 x 107'® 0.0353455 1 3 2 245247 x 10°°0.813752 159.959 G =2gJa
K >’z x" 150061 x 107 1.617x 107 0.0185529 1 3 2 2.00243 x 10°° 0.832212 167.813 G =2g,vJa /\[3/2
K* >tz e'v, 2.01491 x 1074 2,174 x 1072 0.0367985 1 3 2 3.33475x 1071°0.566462 8453.24 G=ga/n
K'>7n'nu'v, 6.69205x 1072 744x 1072  0.642473 1 3 2 3.33475x107°0.780141 6435.05 G=ga/n
K" > 7°z%'v, 1.06991 x 102" 1.169 x 102! 0.182207 1 3 2 2.35802 x 107'°0.547855 10293.3 G = gla/ (n«/i)
K —>7'7n'u'v, 38545x102 4.2x 1072 0.5 1 3 2 235802x107°0.761534 7981.24 G= gla/ (n«/i)
K} > n’n'ev, 212372x 1072 2,764 x 102" 0.0209841 1 3 2 3.33475x 1071°0.552758 8671.14 G=ga/n
K, >’z uv, 7.58984x 1072  8.x 1072 0.0725 1 3 2 3.33475x 107 0.76475 6715.43 G=ga/n
K >a'z'y 137146 x 107 1462x 107 0.0581395 1 1 2 8.55396x 10700556123 570721 G=ga/\3/2
K* 5>riz'ny 6.05074x 107" 553x 107 0385172 1 0 1 7.40795x 107 0.84814 357406  G=ga~2

K, K} into pi2lepton m, ~1.8 TeV

K, K} into3pi m, ~150GeV

K', K} into 2 pi2lepton m, ~7..10 TeV
K into 2pi photon m, ~5.7 TeV

K" into 3 pion photon m, ~3.5TeV

5.4. Three-Body Decays of Strange Hyperons

I'= C|‘//1,m

2

G
a2

with g,, =1.4x107° GeV¥?
A—plv, G=g,\3

> >nlv, G=g,,2

m,
AS|:1, I=AI=2, m=2, x=—-, k=4
m

i

The data for the three-body decays of strange hyperons are shown in Table 9.

The decays can be roughly ordered according to the interaction energy

A into pi 2lepton m, =1.2 TeV

Y into pi 2lepton m, ~1.7 TeV

5.5. Non-Strange Leptonic Three-Body Decays

A'— Aev(AS =

0)

F=Cly,,| =G’ (1-3*)", 1=AI=4, m=4, k=5
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7t > 'y, G=G,/J192x50%°

n—spev., G=G,/\192x1757°

T Ae'v, G=G,/\192x657°

W eVy,, ey, T ouvy., G=G,/\1927

The data for non-strange leptonic three-body decays are shown in Table 10.
Here pure-leptonic transitions are bi-quark transitions

n— pev becomes du— uuev

2" — Aev becomes uu —>udev

The decays can be roughly ordered according to the interaction energy
lepton into lepton 2 neutrino m, =700 GeV

piinto pi 2 lepton m, ~300 GeV

neutron decay n ->p e ve m, =100 GeV

Y into A 2lepton m, =800 GeV

5.6. Three-Body Decays Eta-Pions
The decay width is [24]
2
F=cly [ =L0(1-x), 1=a1=4, m=4, k=1
’ 4r

n—or'7z", norz 2, G=00145
n—ozzy, G=0.00213
The data for three-body eta-pion decays are shown in Table 11.

The decays can be roughly ordered according to the interaction energy

Table 9. Three-body decays of strange hyperons.

width_calc width_obs

deca rel. Awidth 7, I, I=AI G[GeV?? x m Gformula
y [GeV] [GeV] 7 f G[ ] X
A—pe v, 2.21509 x 107*® 2.081 x 107** 0.0168188 1/2 5/2 2 2.42 x107% 0.841428 1504.53 G= & \/g
A—pu v, 3.99111 x 107 3.93x107" 0223919 1/2 5/2 2 242 x 107 0.935977 1037.67 G= & \/g
2 one v, 4.42673x 107" 4.526 x 107'® 0.0393283 1/2 5/2 2 2.8x 10 0.785061 1879.71 G=g,2
S oau v,  1.69761 x 107 2.003 x 1078 0.0888667 1/2 5/2 2 28x10° 0873155 154645 G=g,,2
Table 10. Non-strange leptonic three-body decays.
width_calc ~ width_obs
decay - N rel. Awidth 7, I,/= Al G X my Gformula

[GeV] [GeV] !
M —>eVy, 301736 x107°2.954x 107 0.014218 1 3 4 1.50165x 107 0.00482075 717.027 G =G, /192"
T —>e vy, 4.02938 x 107 4,041 x 107 0.00296956 1 3 4 1.50165 x 1077 0.000287079 717.105 G= Go/m
T > u vy, 3.97253 x 1073.932 x 107** 0.00305188 1 3 4 1.50165x 1077 0.0595506 695.878 G= GO/\/W

T

7" > 7'e'v, 2.63622x 102,619 107 0067583 1 3 4 2.12366x 10° 0970753 468.38 G =G,/[192x50m"

n—>pev, 7.12154x10787.239 x 102 0.000897914 1 3 4 1.13514x10° 0999171 20469 G=G,/\192x1757"
TC > Ay, 1.67174x 10701642 x 107 0.249695 1 3 4 1.86257x 10°° 0.938466 70324 G=G,/\192x651"
> Aew, 25218x107° 255x 107 00470588 1 3 4 1.86257x10° 0932157 74033 G=G,/\192x657
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Table 11. Three-body decays eta-pions.

width_calc

decay (GeV]

width_obs

(GeV] rel. Awidth 7, I, I=ArI G X my Gformula

n—'z’z"  3.88428 x 1077
no>x 77’0 3.09444 x 1077

n—o>atry  5.94407 x 107®

4226 x 107 0.00851869 1 3 4 0.0145 0.739114  0.26643 G =0.0145
2.951x107 0.0176211 1 3 4 0.0145 0.755881 0.25729 G =0.0145
6.097 x 10°®  0.021978 1 3 4 0.00213  0.50951 7.4388 G =0.00213

eta into 3 pion m, = 0.3 GeV
eta into 2 pion photon m, ~1GeV

5.7. Photon-Radiative Decays

The decay width is [24] [25] [26]
|2 _ szf

4r

r=Cly., (1-x*), 1=4I=3, m=3, k=3

2
. e ,
with a:E, g, =0.138
4 2
egph m;,
64m

pseudoscalar mesons P—>yy, P=x",n,n' theory T'(P—yy)=

x=0, G=2rnaCg,", Clzl,\/S/_4,\/5/_3
2 G'm] 2
T=Cly,,| :?(1-)&) , [=A[=2, m=2

g,, =9.769x10”, G=Cg,,

hyperons A—>ny, " > py, 2° 5Ay, B2, 5 537y,
C =4/7/2,2,1,\/8,1/\2
The data for photon-radiative decays are shown in Table 12.
The decays can be roughly ordered according to the interaction energy
pi, eta into 2 photon m, =20 GeV
A, Z into nucleon photon m, =130 GeV
Xi into A photon m, =180 GeV
Xi into X photon m, =~100,...,200 GeV

6. Characterization and Calculation of Different Types of
Decays Based on Interaction Energy

6.1. Table of Decays Based on Interaction Energy

In the following Table 13, are shown the collected decay data from chap.5.
In the above table, the decays are grouped according to type and interaction
energy my.
Consider the general decay
B, >R+P+H+Ph

In the table above, the column P, contains the structure of the original par-

ticle, the column P, contains the structures of the outgoing particles, separated by
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Table 12. Photon-radiative decays.

decay wi?é};;/c]alc wi[dct;};;/(;bs rel. Awidth I, [, /= A4l G X my G formula
>y 786x10°  7.84x10° 00687023 1 2 3  0.00632905 0.  23.8527 G=2nag,’
n—y 6.4 x 1077 6.55x 1077 0.21875 1 2 3 0.00707609 0. 21.334 G=2rag, '\/5/7
n' -y 4,57 x 107° 467 x10° 0.0547046 1 2 3 0.0081707 0. 18.476 G=2nag, '\/5/_3
A—>ny 3.88647 x 107'® 3.96 x 107  0.0368098 1/23/2 2 1.82761 x 107® 0.842126 164.32 G=g, 7/2
Tt —>py 103154 x 1077 9.81x 107'® 0.0487805 1/23/2 2 1.9538x 107® 0.78886 161.01 G :2gph
' > Ay 233984 x 107% 2.34x 107 0.150943 1/23/2 2 9.769 x 10~° 0.848531 224.40 G= Em
=2 20}/ 7.50752 x 107'® 7.87 x 107 0.120787 1/23/2 2 2.76309 x 107® 0.907017 131.51 G= gp,,\/g
E Yy 491693x 1077 4.99x 107 0.179688 1/23/2 2 6.90773 x 107° 0.905992  263.09 G=g, /\/5

slash, the rows m,, -+, m, and my contain the respective mass.
The configuration is described either by quarks (like A = uds) or by / (lepton)

orbyZ, W.

The scheme in the last column describes the QHCD/QCD model of the inte-
raction energy with number of active hc-bosons, e.g. sd’(2h) > Z > 7°(2h) for the

decayE > A 7

E.g. the generic decay A/Z 5> n mhas the incoming configuration P,, = uds and

the outgoing generic configuration 7, = (n = udd)/(#° = (uu’-dd’)), with the in-
teraction energy my =~ 400 GeV, and the decay scheme sd’(2h) > Z > 7°, where
the significant incoming current is sd interacting via 2 hc-bosons, the inter-
mediate boson is the Z-boson, and the outgoing current is 7° = (uLT —dd ) / NE
The number of active hc-bosons (or active gluons, in the pion-mediated decays)
determines roughly the energy level.

Discussion of the results

The table reveals a simple principle for the scheme:

49, >b—>p or gqq,>b— p, where g, ¢, are quarks in the incoming
quark-current, b is the mediating boson »=W,Z,z", p are the outgoing par-
ticles, p=7z°,7,W,y,where p can be represented as one or more quark-currents
except for the photon y, which is itself the electromagnetic current.

The resulting interaction energy my in the table above is not distributed un-
iformly, but accumulates around certain values, the energy classes.

E, =150GeV for 1 hc-boson

E,, =400 GeV for 2 hc-bosons

E,, =700 GeV for 4 hc-bosons

E, 1500 GeV for 6 hc-bosons
E,, #3500 GeV for non-diagonal 12 hc-bosons outgoing W (1hcb)

E, 1,5, 5700 GeV  for non-diagonal 12 hc-bosons outgoing W (3hcb)

E, s =7500 GeV for all 15 hc-bosons outgoing W (3hcb)

E, 55, #9000 GeV  for all 15 he-bosons outgoing W (6hcb)

E,~03GeV for 3 gluons (color interaction, factor 1000 weaker than

hc-interaction)
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Table 13. Decays based on interaction energy.

decay P, P, m[GeV] m,[GeV] my[GeV] my[GeV]  my,,[GeV] scheme
A>nm uds udd/(uu'-dd’) 1.1157  0.93956  0.134977 0. 387.719 sd‘(2h) > Z > n0(2h)
Z>nmn uds udd/(uu'-dd’) 1.1894  0.93956  0.134977 0. 427.142 sd‘(2h) > Z > n0(2h)
ESAT uss uds/(uu'-dd") 1.31486 1.1157 0.134977 0. 435.627 sd‘(2h) > Z > n0(2h)
m+->1v ud' 2rL— 0.13957 0.106 1.1x 107 0. 102.178 ud‘(lh) > W->W
K+>1v us' 2rL— 0.49368  0.106 1.1x 107! 0. 385.244 us‘(Zh) > W->W
K+ > n+ n0 us' ud'/(uu'-dd’) 0.49368 0.13957  0.134977 0. 667.317 sd‘(4h) > Z > 2n0(3h)
KSO>nn (ds'+sd’) 2(uu'-dd") 0.49761  0.13957 0.13957 0. 160.647 ds‘(1h) > Z > 2n0
K+>n+nn us' ds'/2(uu'-dd") 0.49368 0.13957  0.134977 0.134977 159.222 us‘(1h) > W > mt+ 2n0
KLO>n0nm ds' (uu'-dd')/2(uu'-dd) 0.49761 0.134977  0.134977 0.134977 163.886 ds‘(1h) > Z > n0 210
KLO> ntm (ds'-sd") 2(uu'-dd") 0.49761 0.13957  0.13957 0. 3381.22 ds‘(12h) > Z - 2n0(4h)
K+->m0lv us' (uu'-dd')/W 0.49368 0.134977  0.106 L.1x 107 2034.04 us‘(6h) > W > 10 W(6h)
KLO> m+1lv ds' ud/W 0.49761  0.13957 0.106 1.1 x10"  1716.44 ds‘(6h) > Z > n+ W(2h)
K+ >m+n—1v us' 2(uu'-dd)/W 0.49368 0.134977  0.134977 0.106 7444.14 wus‘(15h) > W -> 210 W(6h)
K+>m0m0lv us' 2(uu'-dd")/W 0.49368 0.134977  0.134977 0.106 9137.27 ﬁi((:::)) > W= 2n0
KLO>m+m0lv us' ud'/(uu'-dd')/W- 0.49761  0.13957  0.134977 0.106 7693.29 us‘(15h) > W > 210 W(6h)
K+ > m+ m+ -y us' ud'/(ud'+u'd) 0.49368  0.13957 0.27914 0. 3574.06 1;5(6(}1)2}1) > W mmem
K+->n0n+y us' (uu'-dd")/ud' 0.49368 0.134977 0.13957 0. 5707.21 2(8)112;3;1;/\/ i
A>plv uds uud/W 1.1157  0.93827 0.106 1.1x 107 1271.1 su‘(6h) > W > W(1h)
2->nlv dds udd/W 1.1197  0.93956 0.106 1.1 x10™*"  1713.08 su‘(6h) > W > W(2h)
wt>evev 7 7 178  0.000511 3.x103 1.1x107"  717.06 [v‘(4h)>W->W
T VeV 1 1 1.78 0.106 1.1x10" 98x10" 695878 /v‘(4h) >W>W
e+ -> 70 Iv ud' (uu'-dd')/W 0.13957 0.134977  0.106 1.1x10" 46838 du(2h)>W->W
n->peve udd uud/W 0.93956  0.93827 0.000511 3.x1078 204.69 du‘(lh)>W->W
S+>Alv uus uds/W 1.1894 1.1157 0.106 1.1x 107" 721.78 ud‘(4h) > W->W
n - 0 0 w0 (uu'+dd'-2ss") 3(uu'-dd’) 0.54786 0.134977  0.134977 0.134977 0.26186 sd‘(3g) > m0 > 3710
n->n0mnoy (uu'+dd'-2ss") 2(uu'-dd") 0.54786 0.134977  0.134977 0. 7.4388 sd‘(6g) > m0 > 210 y
o/ >yy (uu'-dd") 0.134977 0. 0. 0. 21221 uu‘(8g) > 10 > 2y
AlZ>ny uds udd 1.1157 0.93956 0. 0. 162.669 sd(lh)>Z->Zy
Z0>Ay uss uds 1.31486 1.1157 0. 0. 224.404 sd‘(Ch)>Z->Zy
E0>Z0y uss uds 131486 11926 0. 0. 131.511 sd(lh)>Z->Zy
B->2-y dss dds 1.3217 1.19745 0. 0. 263.089 sd‘(2h) >Z->Zy (2h)

E ~7GeV for 6 non-diagonal gluons; E_~20GeV for all 8 gluons

For weak decays the energy span in m,is roughly:

EhlS _
Ehl

9000 GeV
150 GeV

>
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E
so the energy span scales like —*2=60~(n, )3/2

hl

6.2. The Interaction Energy and the Decay Width

In 2.1 a general relationship between the interaction energy m, and the decay
width /"was derived:

1/4
Loy, (ﬂj (21)
m

1/4
r

22

The following plot in Figure 13 depicts this relationship for all 54 decays of

where f, =

the quarks u, d, s and all leptons, dealt with in this chapter [2].

1/4
, m
The x-axis is x = [%j , the y-axis is y =—2, the labels consist of the first
m.

3 characters of the name of the corresponding decay, followed by the number in
the total decay table, e.g. pi0 ->y y has the number 47, and the label “pi047”.

One sees immediately, that the decays separate in two large groups: those with
X > 1000 are weak, i.e. hypercolor decays, those with x < 60 are strong (pure col-
or) decays.

If there are 1 or 2 photons on the right side, then the electromagnetic Lagran-

gian component is used in the calculation in chap.7.

mX/mi
_ il
10 o —K+ :-xE'I"‘KLD?!1
g ®—mu7 .j%milza
i 1 i
" Tkﬁiag ®—pisd0
1000 o kBl
- —Lam33
: il 5 — pi+10 —K+-12
E o -Siskr Sigd2 —O*Sigza pi+10 —K+
l ® —tau3d . g2 o
o AT :r:;{fgﬁj%z
i —e
I — piDa7 b s )
o o 0SB
100¢ ¢ — X053
F + etadd
r ®—etadd
® —etadb
10
ik
E ®—ch1445
R | L o e ] s ] g g ] i . s
. 100 1000 10° T T (i)

Figure 13. Interaction energy my in dependence of initial mass-energy m,and decay width T.
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In the pure-color decays only the color SU(3)-Lagrangian is used, in the weak
decays both the SU(3) and the hypercolor SU(4)-Lagrangian is used.

7. Numerical Calculation: Method and Results

Schematics: calculated, observed interaction energy

G (decay) = interaction constant

phenomenological formula F(G, kd,mymm, ) =G’m) ‘P/”’ (x)
k =-1,1,3,4,5interaction type, / = [isospin, m = I,
(ml,m g ) = (ingoing energy, outgoing energy)

2

observed interaction energy my,, =m, (T,I.,m,)

calculated interaction energy

Myeas = ZEm (ui)+inn (A,')
i j
S Y (4)+ T E (4)
i j

A 4

L=L,+L, +L, Lagrangian

fuh(

Losp =L, (ul’Au)+Le‘f(Ae)

L,(J(du),J(W))= W
m

X

S = minyields solution u,,4

8.2

My =E, =E,,

action S:jL(u, (x“),Ai (x”))d“x = min, condition E,, = E,

for SU(3)-QCD and SU(4)-weak-QFT(= QHCD)
Dirac part L, =i (ihD,y" ~mc)u, D,=0,-igd",A,, with hc-field 4°,, Lie structure constants

field part L, = —%F”“VFW, field tensor F*,, =0, 4°, —0,4°, +gf "4’ A

for SU(3)-QCD V¥ = (ul,uz,us) ,e.g. proton p= (u,u,d)

for SU(4)-weak- QHCD W =(u,_,u,,,u,_,uy, ) €.8. electron e =(r,_,0,7,_,0)
generations fi =14, f,=44, f,=154,

for QED D, =0,-igd,, F, =0,4,-0,4,

Lyyep =Ly (u,,Aﬂ,)wL L, (AN) , A,=15 4x4 Gell-Mann matrices

Loy =L, p (u.,AL.;)*'Lc/ (A( y ), 4, =8 3x3 Gell-Mann matrices

A, A, withenergy E(u),E(4,,).E(4,,),E(4,,), total energy

out

Introduction of extended SU(4)-preon-model SU4PM

In this chapter, we follow a theoretical scheme, different from the phenome-
nological ansatz from chap. 3.

We calculate the interaction energy directly from the minimization of the ac-
tion, based on the Lagrangian of the gauge-field theory of the underlying inte-
raction, SU(1)-QED for electromagnetic interaction with photons, SU(3)-QCD
for color interaction with 8 gluon-fields, SU(4)-QHCD for extended weak (hyper-
color hc) interaction with 15 hc-boson-fields [5] [10] [27]-[32].

The SU(4)-QHCD model of extended weak (hypercolor) interaction intro-
duced in [2], treats the Pauli SU(2)-weak interaction as a Yukawa-approximation
via massive (W, Z)-bosons and extends it to SU(4)-hypercolor interaction with
four charges, 15 hc-boson fields and two subparticles called preons.

With the weak interaction extended to SU(4)-QHCD, Standard Model (SM)
becomes the extended SU(4)-preon-model (SU4PM).

The SU4PM model allows to calculate the masses of the SM remarkably well,
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reducing 29 parameters of the SM to 7 [2] [29] [33].

In the following chap. 7.1 we present the basics of the SU4PM model, which
the numerical calculation of decays is based on.

In SU4PM, the action § =.[L(ui(x"),Ai(x“ ))d“x depends on the total La-
grangian L=1L, +L ,6 +L,, , where each Lagrangian contains the determining
fields in the process hyper-color L., color L, electromagnetic L, , e.g.
for the neutron decay L =L;cp, + Ly -

The minimization of action S = I L(ul. (x"),A,. (x"))d“x =min with condi-
tion E, =E,, , yields a solution in preons and fields u;,4, ;,4, ;,4,; with
energies E(ui),E(Ag!j),E(Aw.),E(Ae’j) , and interaction energy m,,, , where

Myear = ZEm (ui ) + ;Ein (Aj) = IZEnut (”i ) + ;Euut (Aj ) :

The calculated total energy my,, is compared to the observed value my,
derived from the observed decay width T, .
The agreement is quite good (see chap. 7.3).

7.1. The Configuration of the Standard Model in the Extended
SU(4)-Preon-Model

Every basic particle of the SM is assigned a preon and a hc-boson configuration
[2] [29] [32].
The preon configuration of a fermion (leptons and quarks) occupies two of

the 4 positions in a hc-quadruplet by a Dirac-bispinor, e.g. for electron with

rL— rR—
index pair (1,3) we have [ 0 ] in position 1 and [ 0 j in position 3,

according to the hc-charge. The hc-quadruplet has the hc-charges (-, L+, R-,
R+).

There are 3 possible hc-boson configurations for an index-pair (4/), which are
consistent with the SU(4)-symmetry: 1 hc-boson AJj corresponding to first gen-
eration of flavor = 1, 4 hc-bosons  Aij + Aij + Akl + Akl corresponding to flavor =
2 (the bar specifies the conjugate coupler, and (&) is the complementary index
pair, e.g. for electron it is (2,4)), and finally all 15 hc-bosons corresponding to
flavor = 3.

The fermions (leptons and quarks) have two independent preon-components
ul and 12, they form a bispinor with spin §= 1/2.

The bosons (weak boson W, Z, H) have only one independent preon-com-
ponent ul, which is a linear combination of two preons, the spins add up to §'=
1 for Wand Z or to §= 0 for H, e.g. for Z= 2

ul=((rL—)+(rR-))/¥3 and ZO:(&IN;MQE;D /JE . The weak

bosons Wand 20 are carrier of the residual weak interaction.

In the following, we present the basics of the SU(3)-color, the SU(4)-
hypercolor, and its Yukawa weak Pauli force in three tables Tables 14(a)-(c)
[29].

DOI: 10.4236/jmp.2024.153014

306 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.153014

J. Helm

Table 14. (a) SU(3) strong (color) interaction; (b) SU(4)-hypercolor interaction; (c) SU(2) weak Pauli interaction.

(a)

gauge-group = Lie-group SU(3) 8 generators Gell-Mann-matrices A, corresponding 8 massless spin-1 gauge
bosons, 3 charges (colors) r g b, short range, pure quantum, asymptotically free (confinement),

energy scale E,, =220 MeV , with the zero-shift constant in the Callan-Symantzik relation to remove the
singularity ¢, =0.69

confinement length scale

— e 089%10 " m~ r,

col

rcol

cut-off energy

M, = :’—C =233x10"eV 23 GeV

col

the pion 7 with mass 106MeV is the Yukawa field boson of the color interaction
Lagrangian [, = —i G, G"

with the field tensor G*, =0,4! -0, 4, +g f*““ A, A;
covariant derivative D, =0, —ig 4.4, /2, where gis the coupling constant, is the gluon gauge field, for eight

different gluons « =1,---,8 and where is one of the eight Gell-Mann matrices, a=1,---,8.

commutation relations with structure constants [4,,4,]=2i /"4,

(b)

gauge-group = Lie-group SU(4), 15 generators massless bosons spin = 1, short range, pure quantum

4 charges r,r,'r, 1, forr-preonand ¢, ¢,’q, q," for q-preon resp. with charge + or — and helicity Zor R,
antiparticle C(r,")=r,, C(r )=r'

the weak-interaction is the Yukawa-limit of the hypercolor interaction

L-R-symmetry breaking
SU(4)=SU(2), ®SU(1),®SU(1)

covariant derivative D, =0, —ig4;4, /2

em

commutation relations with structure constants
(4,2, ]=2i f"2,

field tensor G, =0,4; —0,4; +g [ 4, A
Lagrangian [, = —i G, G

The coupling from the Callan-Symanzik equation is
3

2
m
76 [log (/\,ﬂjj +¢ip

=2m(Z,)=180GeV in analogy to the QCD, and zero-shift

e (m) =4n ,

critical energy A

he

constant c¢g; =———=0.095
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Continued

(©)

gauge-group = Lie-group SU(2) 3 generators Pauli matrices 0, corresponding 3 massive gauge bosons

Z, W*, W7, short range, pure quantum, are Yukawa bosons of hypercolor interaction
cut-off energy M, =91.17 GeV,

=10""m
weak ~ 104 E em

1

length scale r

weak

energy scale E

=7eV
1

Lagrangian, 7, = 2 W “a F,F“ where

a __ a a abeyyrb c _
w,=0W'-ow!+gf"ww;,, F,=0,B -0,B,

where the physical gauge fields Z, W', W™ are

:ng +g'B,
'gZ +g72

Wi ==, i)

TR

Z/‘

— 3 1
=cos@, W, +sin6, B,

covariant derivatives left and right with Pauli matrices o,

i

i ' l i
D”R:(a# +l‘g'B}‘)R 5 D#L:(ﬁﬂ +5g Bﬂ —EgUW jL

7.2. The Interaction Model and the Lagrangian in Two Examples

Example 1: neutron decay n— pev

The basic idea of the Fermi model of weak 3-body decay in the Feynman pic-
ture mediated by the weak boson W is explained at the example of the neutron
decay n— pev with the decay scheme du(1h,3g) > W — W (1h).

The incoming Lagrangian is
L(dﬁ) = Loycop (x",{ul,uz } ,{Ag4}) + Lyep (x”,{ul,uz,O} ,{Acl,Acz,Ac3 }) with
the quark wavefunctions w, =d =r"q*, u,=u=r"q" inthe
hypercolor-SU(4)-preon model, and one hc-boson Ag, corresponding to the
SU(4) generalized Gell-Mann matrix A, and the SU(4) index pair {1,3} and the
interaction 7,” <> r,” in the hc-charge-quadruple (rL’,rL*,rR’,rR*) [2]. Fur-
thermore, there are 3 gluons {Ac,, Ac,, Ac,}, which carry the color interaction.

We recall that both L, and L., have the generic form.

Dirac part L, = ﬁ(ihDﬂy" —mc)u , covariant derivative D, =0, —igd" 4,,
with field 4°

field part L, = —%F “wE field tensor

u? auv

F¢,=0,4° —0,4" +gf" 4" A°, , where 1, are the Gell-Mann matrices,
with the structure constants f“* of the respective Lie algebra (SU(3) or SU(4))
and A, are the generators of the algebra,

From the preon composition of du results the following form of the SU(4)

quadruple wavefunction

T i YN B (RS YN =[(0M8M0][2D
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=00 =l ) (O )0 A

The outgoing Lagrangian is L(W):LQHCD(x”,{u3,u3},{Ag'4}) with the

weak boson W, =7,7r,~ and another hc-boson Ag',.

e (D))

The interaction Lagrangian is the Fermi current-current interaction with the

mediating exchange boson
uy"u, )(”;7/4”4 )

2
my

Ly, (J(du),J(W))= ( , with the notation Dirac-conjugate

N
U,

The interaction energy is
m,=E = E(u3)+mW +E(Ag'4)
=E, =E(u,)+E(u,)+m, +m, +E(Ag4)+23:Acl.
i=1

So we have in total two particle configurations, the incoming np and the
outgoing eV, each with an interaction Lagrangian, coupled by the Fermi cur-
rent-current interaction, and mediated by the corresponding W-boson
W=r"r,.

In the incoming system du we have to take into account the color interac-
tion of the quarks L. (dir)= Ly, (x",{ul,u2 }.{4c,, Acg, Ac, }) in the basic gluon
configuration with 3 rgb-gluons.

Feynman diagram of the decay n— pev, with the notation of the antipar-
ticle p=p° (conjugate), is shown in Figure 14.

The quark-hc-boson-gluon decay-scheme in the SU4PM model
di(1h,3g) > W — W (1h), where the mediating boson W =r, 77, acts via the
current-current-interaction Z;is shown in Figure 15.

In the decay-scheme the weak (SU(4)) interaction is carried on the left side by
1 h =1 hypercolor SU(4) boson Ag,, and the color (SU(3)) interaction by

3 g = 3 (anticoupler) gluons Ac, Ac; Ac,.

P(p.)

n(p,) V(P

Figure 14. Feynman diagram of the decay n— pev .
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u’ W \
< } *
. W :
3AC,; 1AQ, I-====-==---- | 1Aqg,
I |
_—yy v
d

Figure 15. Quark decay-scheme dﬁ(lh,3g) ->W - W(lh)

of the decay n— pev .

The incoming color Lagrangian is

Locp (x”,{u] 15,0}, {Ac,, Ac,, Acy }) , where the color triple is {u,u,,0}, on
which act the 3x3 color Gell-Mann matrices /.

On the right side, the weak (SU(4)) interaction is carried by 1 h = 1 hyperco-
lor SU(4) boson Ag, and there is no color interaction, as the mediating boson W
has only a weak charge, no color charge.

Example 2: 4-body kaon-pion photonic decay K* - z*z" 77y

We illustrate the calculation ansatz in more detail in the more complicated
and computationally much more challenging example of the 4-body kaon-pion
photonic decay K* — z* #* z~ y with the quark-hcboson-gluon decay scheme
us (12h,3g) >W — 7" n" n~ (6h,3g,1y).

The Feynman diagram of the process is shown in Figure 16.

The corresponding decay-scheme in the SU4PM model is shown in Figure 17.

The incoming Lagrangian is
L(us)= Loscp (x”,{ul,uz},{Agn }) + Locp (x",{ul,uz,O} {Ac,, Acg, Ac, }) , with
K" =u5s , with the quark wavefunctions u=r"¢", 5=r'q",

(o0 YNE (e ) (D) (02
=l v ) = w0 ) =[O Jo1())

and 12 non-diagonal hc-bosons Ag, corresponding to the non-diagonal SU(4)
generator matrices 4, and the SU(4) indices n={1,2,4,5,6,7,9,10,11,12,13,14} .
It contains also 3 gluons {Ac,,Ac;, Ac,} which carry the color interaction.
The outgoing Lagrangian is
L(7T+7Z'_7T+)=LQHCD (x”,{u3,u4,u5},{Ag’,}) o
, indices
+ Loep (x“,{u3,u4,u5},{Ac’2, Ac’S,Ac'7}) +L, (7r+7r’7r+)
i ={1,4,6,9,11,13} , with the pions and their corresponding wavefunctions
T =uddi=r, +r +q, +q,

Uy = Uy :(’f +‘1L7)/\/5’ Uy = Uy :(r"’+ +qR+)/\/§’

- _[(“31 _”41j (0] (OJ (”32 _”42JJ
T = s R s 2
Uz —ttyy ) \0)\0) \tts; — 14y
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m(py)

W .
—_— e > ()

A
v(Ps)
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Figure 16. Feynman diagram of the decay K" > 7" 7" 72"y .

¢ ™
! W
3'AC2571 2Agnd I ---------- I 1 Ae03ACZS7 6Ag 1469 1113
| |
¥ N
u '|'|'Jf

Figure 17. Quark decay-scheme uE(th,3g) >Wosnr'rtn (6h,3g,1;/) of

thedecay K™ >z 7"z y.

7 =ud =1, +r, +qL +qR , “51— nt+q,” )/\/5, u52:(rR++qR7)/\/§,

o (B 6

and the 6 hc-bosons Ag’;, which are the 6 couplers of SU(4).

It contains also 3 diagonal gluons {Ac’,,Ac’s,Ac’,} which carry the color
interaction.

The interaction Lagrangian is

Ly (J (), (7' 7 7)) = L'y )(u;yﬂu;:zu;yﬂu“ es7) , with the
X

notation Dirac-conjugate u,* .

The interaction energy is
my,=E :E(u3)+E(u4)+E(u5)+3m” +Z:E(Ag'l.)+2:E(A(:'[)+Ae0

=K, =E(u1)+E(u2)+mu+ms++ZE(Agn)+ZE(Ac,.)

So we have in total two particle configurations, the incoming K" =us and
the outgoing 77 7z", each with an interaction Lagrangian, coupled by the
Fermi current-current interaction, and mediated by the corresponding W-boson
W=r"ry»

In the incoming system K™ =us and the outgoing 7"z 7" we have to take
into account the color interaction of the quarks
Lo (u5) = Lycp (x”,{u, J1u,,0},{Ac,, Acs, Ac, }) and
L. (ﬂ*;r’ﬂ*) = Loy (x",{u3,u4,u5},{Ac’z,Ac'S,Ac’7}) in the basic gluon confi-
guration with 3 rgb-gluons.
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The outgoing photon is active in the additional third electromagnetic Lagran-
gian I, (ﬂ*ﬂ’ﬂ*) =1L, (x”,{u3,u4,u5 } ,{Aeo}) .

7.3. The Calculation Method

Now we minimize the action S = IL(x”,ui,Agi)rz sin@drdrd@de for the to-
tal Lagrangian L(x*,u,,Ag,)=L(du)+ L, (W)+L(J(dit),J (W))+Lc(dut)
under the constraint of energy conservation E(du)=E(W), as required in the
Feynman diagram of the process.

We have for the particle wavefunctions {u,,u,,u;} the normalization condi-
tion _”ul. |2 d’x=1 and for the field bosons we set up a boundary condition for r=
5, Ag,(r,)=0 and Ac(r,)=0 and the Lorenz-gauge-condition 8 ,(Ag,)" =0
and 9, (4c )" =0.

The energy, length, and time are made dimensionless by using the units:

fic

E(Eozlam

=0.196 TeV ), r(fm), fam/c) am = 10™'®* m. We can assume axial

symmetry, so we can set ¢ = 0 and use the spherical coordinates (z,r,0).

We choose the equidistant lattice for the intervals (z,7,6)<[0,1]x[0,1]x[0,x]
with 21 x 21 x 11 points and, for the minimization n,, in parallel, n,, random
sublattices of length 7, where n,,, = 8 or 16, and /,, = 25 or 50 or 100 according

to the complexity of the corresponding Lagrangian.

Iix, j]= {{(t,.l,rl.z,ti3 )1(i1,i2,i3) = random(lattice, j =1,-+-,1,, )} lix =1, -,nmb} .

For the Ritz-Galerkin expansion we use the 12 functions
Jie(r,0)= {bfunc(r,ro,dro )tk =0, -,nr} x {(cos"2 ,cos” 95in9),k2 = 0,-~-,n0}

The action §= J.L(x",u[,Ag[)r2 sinf@dtdrd@de becomes a mean-value on
the sublattice /[ix]

S’[ix] :;. > L(x,u;,Ag;)2nV,,, where V,,=n the
N(1]ix]) selfid,,
(t.r,0) -volume and [, =N(I[ix]) is the number of points. We impose the
boundary condition for Ag,(r=r,)=0 via penalty-function (imposing exact
conditions is possible, but slows down the minimization process enormously).

S is minimized n,, x in parallel with the Mathematica-minimization method
“simulated annealing”.

The proper parameters of the particles u, and the hc-bosons Ag, are:

par(p,)={Eu,a,,ru,,0u,dru}, par(Ag,)={EA4, a4},
par(Ac;)={EAc, aAc,}

The complexities and execution times (on a 2.7 GHz Xeon E5 work-station)
differ greatly for different decays.

For the neutron decay n— pev with the scheme du(1h)— W — W (1h)
(1hc-boson on both sides) and color interaction L(diz,3g) with basic 3 gluons
complexity (Lagrangian) = (3.7 + 4.8) x 10° terms, minimization time t (minimiza-
tion) = 111s.

The mathematical details of the calculation, and the results can be studied in
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depth in the corresponding Mathematica programs [34].

7.4. Discussion of Calculated Decays

Table 15 of decays with calculation results mX and experimental values mXexp
according to the formula in 2.1 from the observed decay width I'obs, is as follows
[34].

Table description

The scheme (last) column describes the model of the decay, on which the cal-
culation is based, where the notation ¢’is used for the antiparticle g .

Here the calculation result (my,,) and the value from decay time (my,,,) are
given in GeV.

my(er) is the calculated my-value with uncertainty erin GeV.

E,, specifies the calculated color interaction energy in GeV and the number of
active gluons on left side of the process, e.g. 250 (3 g), E.,, is the electromagnetic
energy of the involved photons, if any.

<r12> and <drl2> are the mean radius in am-units (1 am = 107® m) and its
quantum “smear-out” in the left-side (incoming) part of the scheme.

The mean boson amplitude (hypercolor, color, electromagnetic) of the in-
coming and outgoing system Agi Aci Aei expressed in units am ' is given in
column four.

my = E(B,,, ) where for weak decays the mediating boson is B, , =W or
ed =2 -
Classification according to my: strong decays

B

There are here 3 strong (color) decays: pion and eta decays, with scales
my ~(0.3,7.5,20)GeV , mediated by a pion
n -> n0 70 n0, n -> 0 n0 y, m0/n ->y 'y

Strong decays have an assessed upper limit of interaction energy m, for strong
decays: E =N, M, _ ,where M

c¢,max comp

1+2-generation M, =m, =13GeV for charm-quark, and maximum number

is the maximum energy-mass, for

max

of components N,,,, =3+15, where 3 stands for 3 quarks, and 15 stands for 15

hc-bosons, so E, ., =18x1.3=23.4GeV .

Classification according to my weak decays

The minimum interaction energy m, for weak decays is
womin = My =80.4 GeV .

The weak decays considered here can be put into 3 categories.

E

- low interaction energy 100 - 400 GeV
n—pev, my; ~200GeV
schematic photonic A/X/E—y..., m, =130..260 GeV
schematic pionic A/X/E—>7..., my ~400GeV
schematic one-pion K -7, m, ~160GeV
schematic leptonic K /7 —/Iv, m, =130...180 GeV
-middle interaction energy 700 - 1700 GeV
schematic nucleonic A/ —(p/n)v, my =1300...1700 GeV
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Table 15. Decays with calculation results mX and experimental values mXexp.

decay P, P AgiAci Aei <r12> <dr12> Ecol Eem mX(er)cal mX exp scheme
A>nm uds udd/(uu'-dd") 387.719 sd‘(2h) > Z > n0(2h)
I>nm uds udd/(uu'-dd") 427.142 sd‘(2h) > Z > n0(2h)
E>AT uss uds/(uu'-dd') ig;g; é:gig 0472 0461 195(3g)  505(71)  435.627 sd‘(2h) > Z > n0(2h)
m+>1v ud' 2rL- {0.171,0.323}  0.195 0.559 0 112(16) 102.178 ud‘(lth) > W->WwW
K+->1v us' 2rL- 385.244 us‘h) > W->W
K+ > i+ n0 us' ud'/(uu'-dd") igzi‘;: giizi 1.13 1.34  194(3g) 705(34) 667.317 us‘(4h) > W > n+n0(1h)
KSO>nmn (ds'+sd") 2(uu'-dd’) {08{(2)4;351}22} 0.300 0.207  64(3g) 159(19) 160.647 ds‘(1h) > Z > 210
K+>n+nn us' ds'/2(uu'-dd’) 159.222 us‘(1h) > W > 1+ 210
KLO>n0ntm ds' 3(uu'-dd’) 163.886 ds‘(1h) > Z > 0 210
KLO > 1t (ds'-sd') 2(uu'-dd) 3381.22 ds‘(12h) > Z > 2m0(4h)
K+>70lv us’ (uu'-dd')/W {Oﬁ)tlg%?l} 0.505 0.535 333(3g) 1940(89)  2034.04 us‘(6h) > W > 10 W(6h)
KLO> m+1v ds' ud/W 1716.44 ds‘(6h) > Z > m+ W(2h)
K+>m+n—1v us' 2(uu'-dd")/W 7444.14 us‘(15h) > W > 210 W(6h)
K+>m0m0lv us' 2(uu'-dd)/W 10889, 0.365} 0.449 0.555 2810(8g) 8880(280) 9137.27 us‘(15h) > W > 2m0 W(15h)

{0.267, 0.250}
KLO>m+m01lv us' ud'/(uu'-dd")/W 7693.29 us‘(15h) > W > ni+tOW(6h)
§+ > T e us' ud'/(ud'+u'd) igzig g:zig 0987 159 9322)@’ 3470(170)  3574.06 3?6(;)2 h) > W mmemt
K+ > n0n+y us' (uu'-dd")/ud' 5707.21 us‘(12h) > W > nOn+y(12h)
A>plv uds uud/W {0{10;;2135} 0.245 0.513 328(3g) 1270(53) 1271.1 su‘(6h) > W->W
3->nlv dds udd/W 1713.08 su‘(6h) > W > W(2h)
wt>evev ] ] {0.857,0.122} 0.461 0.374 768(117)  717.06 Iv‘(4h)>W>W
T U VHVR / / 695.878 /v (4h) > W>W
i+ > 70 /v ud' (uu'-dd")/W 468.38 ud‘2h) > W->W
n->peve udd uud/W {0‘2{255%50} 0.341 0.199 87(3g) 197(9.3)  204.69 du‘(lh)>W->W
S+>Alv uus uds/W 721.78 ud‘(4h) > W->W
n > 10 0 0 (uu'+dd'-2ss") 3(uu'-dd’) {0.200, 0.164} 0.270 0.384 (3g) 0.388(0.109) 0.26186 sd‘(3g) > m0 > 310
n->n0mnoy (uu'+dd'-2ss") 2(uu'-dd") 7.4388 sd‘(6g) >m0 > 2m0y
{0, 0}
nom->yy (uu'-dd") {0.153,0.156} 0.284 0.250 (8g)2.9  23.8(7.2)  21.221 uu‘(8g) > 0> 2y
0.065

AZ>ny uds udd {{%‘.2795‘;’}00“568607} 0.680 2.742 64(3g)9.7 181(41)  162.669 sd(lh)>Z->Zy
X0>Ay uss uds 224404 sd‘(h)>Z->Zy
E0O>20y uss uds 131511 sd(1h)>Z->Zy
B-> Xy dss dds 263.089 sd‘(2h) > Z > Z y(2h)
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schematic pure leptonic x/7—>12v, m, ~700GeV

schematic leptonic £ —>A/lv, m, ~700GeV
- high interaction energy kaon 3400 - 9200 GeV

schematic pionic-leptonic K — zlv, m, ~2000 GeV

schematic pionic K} -z 7z, m, ~3400GeV

schematic pionic-leptonic K — zzlv, m, =7600...9200 GeV

schematic pionic-photonic K - 37y, m, ~3600GeV

schematic pionic-photonic K =27y, m, ~5700 GeV

Characterization of radius

The calculated radius r of decaying particle is a parameter of the ingoing La-
grangian, and is measured in am = 10™"* m.

For weak decays we obtain values »=0.25...1.3am and quantum smear-out
Ar~r.

For strong decays we obtain »~0.3am.

The following plot Figure 18 presents the measured and calculated interaction
energy described in the above table [2] [34].

The decays above 80 GeV (=m,,) are weak (hypercolor) decays, those below
25 GeV (=6m,, m, = 4.2 GeV) are strong (color) decays, the observed miy is
dark-blue, the calculated m, is red (with calculation error bar), the color energy
for weak decays, respectively electromagnetic energy for strong decays is cyan.

Another interesting decay parameter is the mean radius <r12> of the incom-

ing system on the left side of the scheme, e.g. for the neutron decay

mX_calc[GeV]

10* 3 Ke->10 70 | v@
: KLO-=7 rrl+—>m+ M+ m-
L B—>ml v
sA\->plv
]000E Kemsmrs g/ T->8 ve v
E Z—sA "i
L n-=p e ve
L NE=> N YfeSlosrr 7
100 ==l vig
: E’!Us‘l‘)—:* 2y
10
1
L f—.»n nrd
L | J J | mX_obs[GeV]
1 10 100 1000 104

Figure 18. Measured and calculated interaction energy.
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radius[am]|
12+
=m0
KLD->m il
1.0t Ke=>m+ 1+ - i
0.8+t
NE->n vl
0.6t
=>AT OK-—>m | v
pit->e ve v Kemrfl 70 | vill
04t
n->p e ve
S0->mr
> @r0in-> 2y
B> e 7 @A->plv
0.2+ ==l vl
‘ ] | | | mX_obs[GeV]
1 10 100 1000 10*
Figure 19. Mean radius in dependence of interaction energy.
ampl(boson)[1/am]
1.0
Kt=>m+ mm+ -y
Ke->rD v g
Ke—>m0 n0 | vl
Dpit->e ve v
0.8+ WKS0->m 1T
BKO->m
0.6 1
04+
Nz->ny OK+=>m+ nl
o @n->pevejz->A
02+ m->nmm BA->plv
@rlin->2y el v
mX_obs[GeV]
| L L M| L ol L L MR | L L L |
1 10 100 1000 10¢

Figure 20. Mean field boson amplitude in dependence of interaction energy.

n->p e ve, the incoming system is #np, in the decay scheme it is represented
by du [2] [34]. The plot of radius is shown in Figure 19.
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It is interesting to see, that the mean radius separates basically into two
groups: high-energy non-leptonic kaon-pion decays with <r12>>0.9 am and the
remaining decays with <r12> <0.5 am, apart from the photonic A4/2 -> n y.

The other important decay parameter is the mean (hypercolor, color, electro-
magnetic) field boson amplitude Ag7 for the weak decays, Aci for the color de-
cays, of the incoming system, expressed in units am™ [2] [34]. The mean field
boson amplitude is shown in Figure 20.

Again, the amplitude separates into two groups, amplitude > 0.6 for the
kaon-pion decays an pure leptonic decays, and the remaining with amplitude <
0.3, with the outlier K+ -> 7+ 70.

8. Conclusions

We introduce a two-step calculation method for calculation of general decay
rates in the Standard Model, and apply it, producing results for a wide variety of
decay processes, which are in good agreement with measurements.

The first step is an extended schematic formula by Chang [1], based on ex-
tended isospin. It supports the generalized model of a decay-mediating virtual

particle with interaction energy m,, in analogy to the weak interaction mediated

G 2
by the W-boson with G=—£= g_z , where m, =M, , gis the dimensionless

V2 8M,,
weak interaction constant, and G, =1.1663787(6)x10°GeV ™ is the Fermi
weak coupling constant.

The second step is a numerical Lagrangian calculation method, which calcu-
lates the interaction energy my of the process numerically by minimization of
action from the Lagrangian.

First we derive in chap.2 formulas in the conventional way for selected exam-
ples: neutron, muon, pions and kaons.

In chap.2.8 and chap.2.9 we present the fundamental Fermi golden rule for

3-body and 2-body decays:

B |M (k,pl,pz,pg)r d’p, d’p, d’p,
3

dr 2m 3 3 3
(2n)' 2E, (2n)' 2E, (2n) 2,

(2TC)4 5 (k_pl - P> _p3)

|M(k,p1,p2 )|2 d’p, d’p,

dr,, =
? 2 (2r) 2E, (2n) 2E,

(2n)4 3 (k=p,—p,)

and derive kinematic factors for these processes:
Iy, (m,my,my,my) and I, (m,m;,m,).
In chap.3.1 we formulate the phenomenological formula:

2
=Gm! |B’” (x)|2 = %m,k |B’” (x)|2 , where P"(x) Legendre polynomial
1

. . m; . = G .
m=1[ or m=[/+1, / = isospin I, x=—- mass ratio, G=—— with G =

m, JG

interaction constant, m; is the initial mass, kis the mass-power-coefficient.
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The constant C, is process-dependent, standard valueis C, =4n.

The phenomenological scheme classifies decays into seven classes, according
to the values of &, / and m.

The interaction constant G is independent of masses m,,m,, and is in the
same range within a class.

The seven classes discussed here are:

Strange hyperon-pion decays,

Two-body non-strange meson decays,

Three-four-body strange meson decays,

Three-body strange hyperon decays,

Non-strange leptonic three-body decays,

Three-body eta-pion decays,

Photon-radiative decays.

Also, we define and derive a formula for interaction energy m, between the
initial and final configuration of the decay process, which is the energy of the
mediating boson in a weak decay.

G, _ g ’
V2 osMy

we make the ansatz for the matrix element A and the interaction energy my of

In analogy to the weak interaction mediated by the W-boson G =

the mediating boson:
m’ 2 m Y
M =—-, so we obtain the decay width formula I'= |M| Irm= [_ZJ Irm
8my 8my
The process can be weak (W-Z-mediated Pauli interaction, G~ G, ), elec-
tromagnetic (interaction constant G ~a =1/137) or strong G~ g,
The rest of chap. 3 deals with different special cases of the formula: muon,
pions, kaon-pions, neutron, eta-pion, meson-2-photon decay, hyperon-photon.
In chap. 5 we show the actual form and results of the phenomenological for-
mula for seven classes of decay processes, classified by the phenomenological
scheme.
In chap. 6 we present the all calculation results from the phenomenological
formula in tabular form and in graphic form of a plot.
In chap. 7.1 we describe the theoretical background of the numerical La-
grangian calculation method.
action S = .[L(u[ (x” ),A,- (x” ))d“x =min , condition £, = E,,,
L=L,+L, +L, Lagrangian
for SU(3)-QCD and hypercolor-SU(4)-weak-QFT(=QHCD)
Dirac part L, =i (ihD,y* —me)u, D,=0,~igd",A,, with hc-field 4°,,

n'ta?
abc

Lie structure constants

a _ a a abe 4b e
field tensor F“, =0,4°, -0,4°, +gf " 4" A,

auv

. | R—
Field part L, =_ZF s

For SU(3)-QCD V¥ =(u,,u,,u,), e.g. proton p =(u,u,d)
For hypercolor-SU(4)-weak-QHCD W =(u,_,u,,,u, ,u,, ) , eg. electron
e = (rLf,O,er,O)
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Generations  f, =14,, f,=44,, f,=154,

ForQED D,=0,-igd,, F, =0,4,-0,4,

Lonep = Ly p (ul.,Ag’j ) + Ly s (Ag,_,-) , A, =15 4 x4 Gell-Mann matrices
Locp =L.p (u,.,AL,,j ) +L., (Aw. ) , A, =8 3x 3 Gell-Mann matrices

LQED = Le,D (ui’ Ae ) + Le,f (Ae’)

(”1+7#u2 )(”;7;,”4 )

2
mX

Ly, (J(dﬁ)’J(W)) =

S= minyields solution u,,A, ., 4. .,A4, . with energy

8,2 e, j2 e
E(u, ),E(Ag’j ),E(Aw. ),E(Aw.) , total energy m, ,=E, =E,,

In chap. 7.2 we give the details of the numerical action minimization proce-
dure.

In chap. 7.3 we present the calculated parameters of the decay process
- the calculated and the experimental values of the interaction energy my in

tabular form and in a graphical plot.

- in the ingoing particle values of color and electromagnetic energy £, , E,,.

- field boson amplitudes weak-hcolor, strong-color. electromagnetic
(4,040 A,,)-

- radius rand its smear-out Ar.

The scheme of the decay process is formulated as follows:

4,9, >b—>p or gqq,>b— p, where g, ¢ are quarks in the incoming
quark-current, b is the mediating boson b=W,Z,z°, p are the outgoing par-
ticles, p=7x°,7,W,y, where p can be represented as one or more quark-
currents except for the photon y, which is itself the electromagnetic current.

The resulting interaction energy my in the table above is not distributed un-
iformly, but accumulates around certain values, the energy classes.

E, =150GeV for 1 hc-boson

E,, =400 GeV for 2 hc-bosons

E,, =700 GeV for 4 hc-bosons

E, ~1500 GeV for 6 hc-bosons

E,, =3500 GeV for non-diagonal 12 hc-bosons outgoing W (1 hcb)

E, 155, #5700 GeV  for non-diagonal 12 he-bosons outgoing W (3 hcb)

E, s = 7500 GeV for all 15 hc-bosons outgoing W (3 hcb)

E,55, #9000 GeV  for all 15 hc-bosons outgoing W (6 hcb)

E,=03GeV for 3 gluons (color interaction, factor 1000 weaker than
hc-interaction)

E ~7GeV for 6 non-diagonal gluons; E_ =20 GeV for all 8 gluons
E,s 9000 GeV _

For weak decays the energy span in m, is roughly: =
y gy sp x ghly E, 150 GeV

>

E
So the energy span scales like —2 =60~ (n, )3/2
hl

The classification according to interaction energy my
For weak decays is as follows.
- Low interaction energy 100 - 400 GeV
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n—pev, m, ~200GeV
Schematic photonic A/2/E—y..., m, =130..260 GeV
Schematic pionic A/X/E — 7..., m, ~400GeV
Schematic one-pion K —» 7, m, ~160 GeV
Schematic leptonic K /7 —1v, m, =130...180 GeV

- Middle interaction energy 700 - 1700 GeV
Schematic nucleonic A/~ —(p/n)v, m, =1300...1700 GeV
Schematic pure leptonic y/7—>12v, m, ~700GeV
Schematic leptonic £ > A/lv, m, ~700GeV
The classification according to interaction energy my
For strong decays is as follows.
There are here 3 strong (color) decays:

Pion and eta decays, with scales m, ~(0.3,7.5,20)GeV , mediated by a pion.
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