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Abstract 
This article gives a state-of-the-art description of the cosmological Lamb-
da-CDM model and in addition, presents extensions of the model with new 
calculations of background and CMB functions. Chapters 1-4 describe the 
background part of the model, i.e. the evolution of scale factor and density 
according to the Friedmann equations, and its extension, which results in a 
correction of the Hubble parameter, in agreement with new measurements 
(Cepheids-SNIa and Red-Giants). Based on this improved background calcu-
lation presented in chapters 5-9 the perturbation part of the model, i.e. the 
evolution of perturbation and structure according to the perturbed Einstein 
equations and continuity-Euler equations, and the power spectrum of the 
cosmic microwave background (CMB) is calculated with a new own code. 
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1. Introduction 

The Lambda-CDM model is widely accepted as the valid description of universe 
on large scales and its evolution history. It is based on General Relativity and 
consists of two parts: 

- Background part with the ansatz Robertson-Walker (RW) metric, based on 
Friedmann equations and equations-of-state for the different component par-
ticles. It describes the evolution of scale factor and density without perturbations, 
i.e. without local structure (like galaxies and galaxy groups); 

- Perturbation part with the ansatz perturbed RW-metric and locally per-
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turbed density, velocity, and pressure of the component particles. It describes the 
time-evolution and (quasi-random perturbed spatial distribution) of density, 
velocity, and pressure, i.e. the actual structure of the universe on inter-galactic 
scale. 

The parameters of the perturbed model are fitted in chap. 10 with the CMB 
spatial spectrum measured by Planck. 

We present here in chap. 2-5 the background part with Friedmann equations 
and equations-of-state for the components with two notable extensions: explicit 
temperature dependence and classical gas as baryon eos. From this follows a new 
solution and own calculation in chap. 5, which offers an explanation for the ap-
parent experimental discrepancy concerning the Hubble parameter. 

Based on the improved background calculation, we present the perturbation 
part in chap. 6-10, with the derivation of the CMB spectrum, and new calcula-
tion of it. 

2. Friedmann Equations 

In this chapter, we present in concise form the basic equations (Friedmann equ-
ations) and equations of state (eos) for density and pressure with their different 
components radiation γ, neutrinos ν , electrons e, protons p, neutrons n (re-
spectively baryons b), cold-dark-matter cdm d. The presentation relies basically 
on the four monographies [1] [2] [3] [4], with two notable extensions. 

-Temperature 
The eos depend explicitly on temperature T, resp. thermal energy th BE k T= , 

and thermal energy is introduced as a function of time ( )thE t , as all other 
variables, and has to be calculated. 

-Baryon eos  
The baryons are modeled as classical gas, and not as dust with zero pressure. 

We shall see in the background calculation in chap. 5, that this model increases 
the value of the Hubble parameter, which basically solves the Hubble-discrepancy 
problem. 

2.1. Friedmann Equations and Metric 

The metric which fulfills the conditions of space homogeneity and isotropy is the 
Robertson-Walker (RW) metric [1] [2] [3] [4]: 

( )
2

2 2 2 2 2 2
2 2

dd d d
1 H

rs c t a t r
kr R

 
= − + + Ω − 

               (1) 

with Hubble radius 26

0

1.37 10 mH
cR

H
= = ×  (Planck value), and scale factor 

( )a t . 
The Einstein equations [1] [5] [6] [7] [8] for this metric are the two original 

Friedmann equations a and b (with d
d
aa
t

= ) and two derived equations c (acce-

leration eq.) and d (density equation): 
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2
2

2 3 3
a k c
ac a

κ ρΛ  + − = 
 



,                    (2a) 

2

2 2
2a a k P

acac a
κ + + − Λ = − 

 

 

,                 (2b) 

2

2
1
3 2 3

a cP
ac

κ ρ 
− Λ = − + 

 



 derived from a, b (2c) 

2 0
3
a Pa

c
ρ ρ + + = 

 



  derived: density equation (2d) 

with dimensionless variables using Planck-values: Hubble constant  
1 1

0 67.74 km s MpcH − −= ⋅ ⋅ , normalized Hubble constant 0.6774h = ,  

Einstein constant 4
8 G
c

κ =
π , 2

,0 2
crH

crit
H

c
R
ρ

κ ρ = , relative pressure  

2
2

,0,0
r H

Ecritcrit

P PP P R
c

κ
ρρ

= = = , relative cosmological constant 2
1 HRΛ = Λ , rela-

tive density 
,0crit

ρ
ρ

Ω =  with critical density today  

2
,0 ,0 2

3
Ecrit crit

H

c
R

ρ ρ
κ

= = , 

( )
2 326 3 260

,0 2 3

7 3

2

8
3

5.033 0.862 10 kg m 1.

nucleon

37 10
8

13.0 5.0 m10

p
crit

H H

p

H

mH
GR c R

m
R

ρ
κ

− −= = = × ⋅ = ×

= × =

π
  

2 2
,0 3crH H critc Rρ κ ρ= =  

,0 3 3
GeV GeV5.0 0.963 4.81
m mEcritρ = × = ,  

Hubble radius 26

0

1.37 10 mH
cR

H
= = ×  

The Friedmann equations can be reformulated dimensionless with 0x tc= , 

0

d'
d

aa
x

= , 3crHρ =  

2
1

2 2 2
' 1 0

33
crH

H H

a k
a a R R

ρΛ  + − − Ω = 
 

, i.e. 
2

1
2 2 2

' 0
3 H H

a k
a a R R

Λ Ω  + − − = 
 

 

2
1

2 2 2
2 '' ' 0r

H H

Pa a k
a a a R R

Λ + + − + = 
 

 

( )' ' 0
3
r

r r
a a Pρ

ρ+ + =  

rescaled with 
H

a a
R

→  

( )2 2 21' 0
3 ra k a aρ
Λ

+ − − =  sF1                (3a) 
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2
2

1
1 3''
3 2 3

r
r

aa a a P ρ − Λ = − + 
 

 sF2             (3b) 

( ) ( )2 2 2
1

3'' 2 ' 2 0
2 r ra a a k a P aρ+ + − Λ + − =  sF3        (3c) 

( )' ' 0
3
r

r r
a a Pρ ρ+ + =  sF4                 (3d) 

density eq 
with  

,0

mat rad
mr

Ecrit

ρ ρ
ρ
+

Ω = , 
2

,0
0

mr mr
H
H

 
Ω = Ω  

 
, 

23
Ecrit

H
cκ

 Ω =  
 

, 

2

3
c
HΛ

Λ  Ω =  
 

, 
2

2
0k

ck R
H

 Ω = −  
 

. 

Conformal Friedmann equations 

In conformal time η, dd t
a

η = , with comoving distance in η:  

( ) ( )
0

1 1

d d
t

t

tc c
a t

η

η

χ η η= =∫ ∫ , or with redshift 1 1z
a

= − : ( ) ( )0

dz zz c
H z

χ = ∫ , follow the 

Friedmann conformal dimensionless equations [2] [3] [4] after rescaling 
H

a a
R

→ , 

c = 1, conformal Friedmann equations: 

( )
2 2 2 4

2 4
2

8'
3 3H

kc a c a Ga a
R

ρΛ π
+ = +  

( )
2 2 3

2 3
2 2

4'' 3
33H

kc a G c aa c P a
R c

ρ Λ
− +

π
+ =  

and rescaled conformal: 

( )
4

2 2 41'
3 3

crHaa ka aρ
ρ

Λ
+ = +  scF1 

( )2 2
21

2

'
3 3

crHa ak a
a

ρ
ρ

Λ
= − + +   (4a) 

( )
3

3 1'' 3
6 3
crH aa ka P aρ

ρ
Λ

+ = − +  scF2             (4b) 

Friedmann radial equation 
It is convenient to reformulate the first Friedmann equation in the form of 

velocity-potential equation, which we call here Friedmann radial equation [1] [2] 
[3] [4] [9]. 

We get the Friedmann radial equation  

( )2 2
2 0

3
s mK Ka a k

aa
Λ

− − − + =                   (5) 

it follows the potential form ( )
2

2
a V a k
c

+ = −
  with c = 1 

( ) 2
2 3
s mK KV a a

aa
Λ

= − − −  
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with Planck data we have  
260.423 10 mmK = × , 48 21.01 10 msK = × , 52 21.1 10 m− −Λ = ×  

dimensionless 

1 ,0 0.309m m H mK K R= = Ω =  

2 4
1 ,0 ,0 ,0 0.54 10 0.0012 0.00125s s H radK K R γ ν

−= = Ω = Ω +Ω = × + =  

2 2
1 1.1 1.37 2.06HRΛ = Λ = × =  

from this we get the dimensionless Friedmann radial equation  

( )2 21 1 1
2 0

3
s mK Ka a k

aa
Λ

− − − + =                  (5a) 

2.2. Relative Density and Pressure (Relative to critc2
,0ρ ) 

In the following, we present the eos for the components radiation γ, neutrinos 
ν , electrons e, protons p, neutrons n, cdm d [2] [3] [4] [10] [11]. 

Relative density & pressure baryons b, CDM c, matter density ρm,r de-
pendent (Eth independent variable) 

With thermal energy th BE k T=  matter density 1
, 3

m
m r

K
a

ρ = , b = baryon, c = 

cdm (cold dark matter) 

( ),m r b caρ ρ ρ= + , ( ) ,0
, ,

,0 ,0

b
b m r m r

b c

ρ ρ ρ
Ω

=
Ω +Ω

, ( ) ,0
, ,

,0 ,0

c
c m r m r

b c

ρ ρ ρ
Ω

=
Ω +Ω

, 

we have for the pressure before (1) and after (2) nucleosynthesis 

( ),2 2, th
b b th b

p

EP E
m c

ρ ρ= , ,th c nsE E>  ideal gas, 2 0.938 GeVmp pE m c= = , 

using today’s He-H-ratio ,
4 0.25He He

H He
H H

nY
n

ρ
ρ

= = = , 4 0.25He He

H H

n
n

ρ
ρ

= =  

,
,1 2 2

,

1 4
0.85

1
H He th th

b b b
H He p p

Y E EP
Y m c m c

ρ ρ
+

= =
+

, ,th c nsE E< , , 100 keVc nsE = , 

with the soft-1-0-step function for state-transition at ns = nucleosynthesis with 
transition energy , 100 keVc nsE =  (see chap. 9) we get the pressure 

( ) ( ) ( ) ( )( ) ( ),2 ,1 ,2 1 0 , 0 ,, , , , , ,b b th b b th b b th b b th th c ns c nsP E P E P E P E E E Eρ ρ ρ ρ δ−= + − Θ , 

0 0.1δ = , 

( ), 0c c thP Eρ = . 

Relative density & pressure neutrinos 
We have for neutrino density and pressure before (1) and after (2) neutrino 

decoupling [12] with threshold energy , 1 MeVcE ν = : 

( )
2

,1 2
,0

,
th

b b
th

b th b b
crit p

En EcE
m c

ν

ν νρ ρ ρ
ρ

Ω
= = Ω , b bn nν ν= Ω  
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( ),2 2, th
b th b b

p

EE
m cν νρ ρ ρ= Ω , ,th cE E ν> , in thermal equilibrium,  

( )
3

. .
,1 2, c v c v

b th b b
thp

E EE
Em cν νρ ρ ρ

−
 

= Ω  
 

, ,th cE E ν<  decrease with 3~ a−
  

( ) 1
3

Pν ν νρ ρ= , parameters today 9
,0 10ν

−Ω ≈ , ,0 1.95 KTν = ,  

4
, 0 ,0

1.95 K 0.026 eV 1.69 10 eV
300 Kth BE k Tν ν

−= = × = × , it follows  

2 9
,0 ,0 5

, 4
,0 ,0 ,0

10 0.938 GeV 1.13 10
0.049 1.69 10 eV

p
b

b b B

m cn
n k T
ν ν

ν
ν

−

−

Ω
Ω = = = = ×

Ω ×
. 

Relative density & pressure photons 
The Stefan-Boltzmann law gives  

( ) 4T aTρ = , 16
3 4 3 4
J MeV7.56 10 4.717

m K m K
a −= × =

⋅ ⋅
, 

4

3 3

451.9 Bka
c h
π

=   (6) 

( ) 4
th SB thE a Eρ =  

( )

( )

16

3 3 4 4 3 323

76
20

3 3 3 3 318

207.6 7.56 10 1
J m1.38 10

2.08 10 1 10.856 10
eV m eV m6.24 10

SB
B

aa
h c k

−

−

×
= = =

⋅×

×
= = ×

⋅ ⋅×

π

 

20 11 11
,03 3 4 3 4

1 1 GeV 10.856 10 0.856 10 0.178 10
eV m eV m eVSB Ecrita ρ= × = × = ×

⋅
 

11
0 4

,0

1 0.178 10
eV

SB
SB

Ecrit

aa
ρ

= = × . 

Before photon decoupling the photon energy density is 

( ) 4
0th SB thE a Eγρ = , ( ) 1

3
Pγ γ γρ ρ=  

after photon decoupling at ,th c dcE E= , , 0.25 eVc dcE = , Planck 1090dcz = , it 
becomes 

( ) ( ) 4

,
,, c dc

th SB c dc

a t
a E a E

aγρ
 
 =
 
 

, ,th c dcE E< , ( ),
1 1

1 1091c dc
dc

a t
z

= =
+

 

at e-pair production and above photons lose energy and keep a mean energy  
2

eE m c≥ , 22th eE m c≈  

at p-pair production and above photons lose energy and keep a mean energy  
2

pE m c≥ , 22th pE m c≈ . 

Temperature jumps at phase transitions 
At recombination ,th c reE E= , , 0.29 eVc reE =  temperature goes up due to free 

electrons forming atoms with baryons, 
before recombination:  
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2b e bn n n n= + = , b en n= , 
( )
( )

,
,

c re
th c re

a t
E E

a t
= , ( ),

1 1
1 1271c re

re

a t
z

= =
+

,  

1270rez = , 13
, 1.16 10c ret = ×  

after recombination: Saha equation:  

( )
( )

( )
1 1 4

2
the e

e th
e H b th

f En nX E
n n n f E

− + +
= = =

+
             (7) 

( )( )1b e b e thn n n n X E= + = + , , 13.6 eVH reE =  

( ) ( ) , ,9
2 2

3 2 3 2
24 3 exp 2.26 10 expH re H reth th

th
th the e

E EE Ef E
E Em c m c

ζ η −      
= = ×      

    π  
. 

The equation for thE  after recombination with ,H H reE E= , 2
m eE m c=  is: 

0
,2

d d dd
d d d d

th th e th
H re

E E X EfE
a f a aa

= − − , 0
, 2

d d d1
d d d

th e th
H re

E X EfE
a f a a
 
+ = − 

 
 

with solution ( ),th aE a  [13] shown in Figure 1. 

( ), ,01 0.000663 eVth a thE E= = , ( )( ), ,1 1 0.2842 eVth a re re c reE a z E= + = ≈ . 

At nucleo-synthesis ,th c nsE E= , , 100 keVc nsE =  temperature goes up due to 
helium synthesis with energy released , 12 MeVHe nsE = , thermal energy beha-
vior is analogously for , ,c re th He nsE E E< < , 84 10rez = ×  

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

, , , ,
, 2

, ,

, , , ,
2

,

4

3 4

, ,

3

1 0.021 exp
2

exp
2

c ns c ns c ns He ns
th c ns

p c ns c ns

c ns c ns He ns He ns

p He ns c ns c ns

a t E a t E a t
E E

a t m c a t E a t

E a t E a t
m c a t E a t

−

−

        ≈ + −        
       − −       

 

where the baryon temperature depends on the photon temperature  

( )' 8' 2
3

b
b b e T b

e b

maT T an T T
a m

γ
γ

ρ
σ

ρ
= − + −  with 

d'
d

aa
η

=  [14].  

 

 

Figure 1. Temperature after recombination ( ),th aE a  in eV.  
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Density electrons 
The density of electrons is described by the Peebles equation with the para-

meters 

( ) 2

2
rC T γ α

γ α αβ
Λ + Λ

≡
Λ + Λ +

, 1
2 8.227 sγ

−Λ = ,  

( )
( )

( )( )( )3
27

128 3 1 e b B I

H T

X n n k T E
α

γ
ζ

Λ =
−

, ( ) 3exp
4

I

B

ET
k Tαβ β

 
=  

 
,  

13.6 eVIE =  = hydrogen ionization energy, 1s ionization rate, ( )1 1s e bn X n≈ − , 

bn nγη= , 8
3 I

c
Eαλ
π

=
  Lyman wavelength,  

( )
2

2 2

3 2

exp
2

e B I

B

m c k T ET v
k Tc

β σ
   

= −   
 π 

 

( )
( )

12 2

22
9.8 logI I

B Be

E ET
k T k Tm c

αα
    

≈          
 

we get the Peebles equation ([4] 3.153) for the hydrogen ionization percentage 

( )
( )( ) ( )

( ) ( ) ( ) 2
2

1

3

22d 1 exp
d 1 2

2 3

e Bre I
e

B

b
B e

m c k TC TX EX
z H z z k T

nT k T X
nγ

ζ
α

   = − − −     +   

−

π

π





        (8) 

where  

( ) ( )0
3 2 11 1

1m
eq

zH z H z
z

 +
= Ω + +  + 

, 33
0 1.5 10 eVH −≈ ×  

( )1 0.235 eVT z= + . 

We get for the electron density before (1) and after (2) recombination 

( ),1 2, th
e b th b

p

EE
m c

ρ ρ ρ= , ,c epE E< , 2
, 511 keVc ep eE m c= =  

2 22 2
3

2 20.17 1.2 10b th b th
e

e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
, ,0

,0
crit

b b
p

n
m
ρ

= Ω  

3 3 3
,0 0 ,0 ,0

3 3 3 3
,0 ,0

0.242 m 590
0.41 10 m

b th bb

th

n a E nn
n n na Eγ γ γ

−

− −= = = =
×

 scale-independent 

follows 
2 2

2 20.17 0.708e b th th

b e e

n n E E
n n m c m cγ

α+    
≈ =   

   
,  

( )
2

,2 2

2, 1 e th e
e b th b

b p

n E m cE
n m c

ρ ρ ρ +  +
= + 

 
, ,c epE E>  

due to Saha equation 
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( ) ( )( )

( )( )

,0 ,1 , , ,
,

, ,
,

1 1, , exp

1 1exp

e b th e b c re c re H re
c re th

e
b c re H re

p c re th

E t E E
E E

ma t E
m E E

ρ ρ ρ ρ

ρ

  
≈ −      

  
= −      

  

alternatively 

( )e b e thn n X E= , ( )
2

2
e

e b e th
p

m c X E
m c

ρ ρ=  

,c reE E< , , 0.29 eVc reE = , ( ), , ,0,b c re c re b ret E zρ = Ω ,  

,0 0.0486bΩ = , 1270rez = , ( ),
1 1

1 1271c re
re

a t
z

= =
+

. 

Fermi pressure electrons 
The pressure of electrons is the Fermi pressure PFe of a (spin_1/2) fermion gas 

( ) ( ), ,e e th Fe e thP E P Eρ ρ=  

with low- and high-density limits 1
1
5 FP np c= , 2

2
5 FP nE= . 

Fermi energy ( ) ( )22 2
F F eE p c m c= + , ( )2 1 3

3Fp c c nπ=   

( ) ( ) ( ) ( )( ) ( )2 2
2 1 2 1 0 0, , ,Fe e eP E P P P E m c m cρ ρ ρ ρ δ−= + − Θ        (9) 

2 10 3 3 3
,0 0.77 10 J m 0.484 10 MeV mcr crit cρ ρ − − −= = × ⋅ = × ⋅  

2 3 3
,0 ,0 3

,0 2
0.484 10 MeV m 0.047 0.0242 m

0.938 GeV
crit b

p
p

c
n

m c
ρ −

−Ω × ⋅ ×
= = =  

16 51.96 10 GeV m 1.96 10 eV mc − −= × ⋅ = × ⋅  
2

,0 3 3
,02

,0

0.0242 m 39.0 10 943.8pcrit e
e p e e e

b ee

mc
n n

mm c
ρ ρ

ρ ρ ρ−= = = × =
Ω

 

,0 ,0

339055.6pe
e e

p b e

mn
n m

ρ ρ= =
Ω

. 

For electrons we get the expressions 

( ),0
1 2

1

0

3

2 2
, ,0

201.781 1 1 1
5 5 5 5

p pe b eF F F
e e

crit p e ep p p

m mnnp c p c p cP
n m mm c m c m c

ρ
ρ ρ

ρ

 Ω    
= = = =           

 

( ) ( )22 2
,0

2 2 2
,0 ,0

2 1 1
5 5 5

F epe bF F
e

crit p ep p

p c m cmnnE EP
n mm c m c

ρ
ρ

+ Ω  
= = =       

 

( ) ( )

( ) ( )

( )

2
,0

5 2

1 3 1 3

1 3 1 3

1

3 3

3

3 33.91

1.96 10 eV m 3 0.947 10 m 33.91

201.78 eV

F e e

e

e

p c c n ρ

ρ

ρ

− −

=

= × ⋅ ×

=

π

π



 

( )1 3201.78 eVF ep c ρ= . 
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State transitions radiation γ, neutrinos ν , electrons e, protons p, neutrons n, 
cdm d.  

Generally, the density state transition from 1ρ  to 2ρ  at transition temper-
ature Tc (transition thermal energy c B cE k T= ) has the form  
( ) ( ) ( )2 1 2 1 0 , ,c cE E E Eρ ρ ρ ρ δ−= + − Θ ,  

with soft-0-1-step function ( )0 1
1, ,

1 exp
c c

c

c

E E E
E E

E

δ

δ

−Θ =
 −

+  
 

,  

with soft-1-0-step function ( )1 0

1 exp
, ,

1 exp

c

c
c c

c

c

E
E

E E E
E E

E

δ
δ

δ

−

 
+ − 

 Θ =
 −

+  
 

,  

where cEδ  is the standard deviation of cE . 

We can set approximately 0

0

c c

c c

E T T
E T T
δ δ δ

= ≈ , where (measured in CMB) 

,0 50

0 ,0

30 K 1.1 10
2.72 K

TT
T T

γ

γ

δ −∆ µ
= ≈ = × . 

2.3. Transition Thermal Energies and Eos 

-neutrino decoupling , 1 MeVcE ν = , , 1sct ν = , ( )1 , 1, ,c ctν ν νρ ρ= ,  

( )1, th thE Eνρ = , ( ) ( )

4

2, 1 ,
,

,th c
c

aE a
a tν ν

ν

ρ ρ
 
 =
 
 

; 

-e-p-annihilation  

, 0.5 MeVc epE = , , 6 sc ept = , 4
SB thn a Eγ =  for all t 16 2 47.56 10 J m Ka −= × ⋅ , 

4

3 3

451.9 Bka
c h
π

=  

( )( )1, ,e b e c ep en n t mρ += + , 2,e b en mρ =  with  
2 22 2

3
2 20.17 1.2 10b th b th

e
e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
; 

-photon recombination  

, 0.29 eVc reE = , , 290 kyc ret = , ( )2 , 1 , , ,c re c re b c re c ren t Eρ ρ= +   

1,e b en mρ = , ,
2, 1,

1 exp
2

th c re
e e

th

E E
E

ρ ρ
− 

=  
 

; 

-photon decoupling  

, 0.25 eVcE γ = , , 370 kyct γ = , ( )1 , 1, ,c ctγ γ γρ ρ= ,  

( )1, th thE Eγρ = , ( ) ( )

4

2, 1 ,
,

,th c
c

aE a
a tγ γ

γ

ρ ρ
 
 =
 
 

; 

-nucleo-synthesis helium 
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, 100 keVc nsE = , , 3 minc nst = , 24p 2e He+ − ++ → , ratio 0.25He

p

ρ
ρ

= , eos 

transition 1 2→  with ideal gas 1
th

b th b
p

EP n E
m

ρ= = , ,c nst t< , with ideal gas 

( )2 ,1 ,10.75 0.25 4 0.81 0.81 th
b th b th b

p

EP n E n E
m

ρ= + = = , ,c nst t< .  

3. Parameters 

The simple ΛCDM model is based on seven parameters: physical baryon density 
parameter Ωbh2; physical matter density parameter Ωmh2; the age of the universe 
t0; scalar spectral index ns; curvature fluctuation amplitude As; and reionization 
optical depth τ, dark energy density ΩΛ. 

The parameters of the ΛCDM are given in the following table (Table 1). 
11 independent parameters: Ωbh2, Ωch2, t0, ns, 

2
R∆ , τ, Ωt, w, ∑mν, Neff(ν), As;  

7 fixed parameters r, dns/d lnk, H0, Ωb, Ωc, Ωm, ΩΛ;  
5 calculated parameters ρcrit, σ8, zdec, tdec, zre;  
13 total parameters Ωb, Ωc, t0, ns, As, τ, ΩΛ, w, ∑mν, Neff(ν), r, dns/dk, H0;  
derived parameters ρcrit, σ8, zdec, tdec, zre, ωb = Ωbh2, ωm = Ωmh2.  

 
Table 1. Planck Collaboration Cosmological parameters [15]. 

 Description Symbol Value 

Independent 
parameters 

11 

Physical baryon density parameter Ωbh2 0.02230 ± 0.00014 
Physical dark matter density parameter Ωch2 0.1188 ± 0.0010 

Age of the universe t0 13.799 ± 0.021 × 109 years 
Scalar spectral index ns 0.9667 ± 0.0040 

Curvature fluctuation amplitude, k0 = 0.002 Mpc−1 2
R∆  2.441 + 0.088 − 0.092 × 10−9 

Reionization optical depth τ 0.066 ± 0.012 

Fixed 
parameters 7 

Total density parameter Ωtot 1 
Equation of state of dark energy w −1 
Sum of three neutrino masses ∑mν 0.06 eV/c2 

Effective number of relativistic degrees of freedom Neff 3.046 
Scalar amplitude As (2.215 ± 0.13) 

Tensor/scalar ratio r 0 
Running of spectral index dns/dlnk 0 

Calculated 
values 5 

Hubble constant H0 67.74 ± 0.46 km·s−1·Mpc−1 
Baryon density parameter Ωb 0.0486 ± 0.0010 

Dark matter density parameter Ωc 0.2589 ± 0.0057 
Matter density parameter Ωm 0.3089 ± 0.0062 

Dark energy density parameter ΩΛ 0.6911 ± 0.0062 
Critical density ρcrit (8.62 ± 0.12) × 10−27 kg/m3 

Fluctuation amplitude at 8 h−1 Mpc σ8 0.8159 ± 0.0086 
Redshift at decoupling z* 1089.90 ± 0.23 

Age at decoupling t* 377,700 ± 3200 y 
Redshift of reionization (with uniform prior) zre 8.5 + 1.0 − 1.1 
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The additional parameters of the extended ΛCDM are given in the second ta-
ble (Table 2). 

Some specifications 
The amplitude As, is determined by the CMB power spectrum 

( )
1

2 2

0

sn

R s
kk A
k

−
 

∆ =  
 

, 1
0 0.05 Mpck −≈ . 

The relative current Hubble parameter is 0

100
Hh = . 

The fluctuation amplitude is defined by ( ) 18 8 Mpc
,mat R h
Rσ σ ρ −=

= , where  
( ) ( )stdev,mat matRσ ρ ρ=  smoothed by distance R ([2]). 
Key cosmological events 
Key cosmological events calculated from the ΛCDM model with temperature, 

energy scale and cosmic time are given below [4] [16] in Table 3. 
 

Table 2. Extended model parameters [15]. 

Description Symbol Value 

Total density parameter Ωtot 1.0023 + 0.0056 − 0.0054 

Equation of state of dark energy w −0.980 ± 0.053 

Tensor-to-scalar ratio r <0.11, k0 = 0.002 Mpc−1 (2σ) 

Running of the spectral index dns/dlnk −0.022 ± 0.020, k0 = 0.002 Mpc−1 

Physical neutrino density parameter Ωνh2 <0.0062 

Sum of three neutrino masses ∑mν <0.58 eV/c2 (2σ) 

 
Table 3. Key cosmological events ([4], chap. 2). 

Event Temperature Energy Time 

Inflation ends 1029 K 1016 GeV 10−35 s 

CDM decouples, GUT scale 1029 K 1015 GeV 10−36 s 

Baryons form 1016 K 1 TeV? 10−12 s 

El-weak force 1015 K 100 GeV 10−11 s 

Hadrons form 1012 K 150 MeV 10−5 s 

Neutrinos decouple 1010 K 1 MeV 1 s 

Nuclei form 109 K 100 keV 200s 

Atoms form 3460 K 0.29 eV 290 ky 

Photons decouple 2970 K 0.25 eV 370 ky 

First stars 50 K 4 meV 100 My 

First galaxies 12 K 1 meV 400 My 

Dark energy domination 3.8 K 0.33 meV 9 Gy 

Now 2.7 K 0.24 meV 13.8 Gy 
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4. Inflation 

The “naive” so called Hot-Big-Bang model has several aspects, which are in dis-
agreement with cosmological observations. 

Hot Big-bang problems  
- the observed homogeneity of the present universe (distances > 200 Mly) 

should arise from arbitrary initial conditions: horizon problem; 
- the observed curvature is small: flatness problem; 
- the observed correlation regions in the CMB have supraluminal distance: 

superhorizon correlations. 
Cosmological inflation  
In the approximation that the expansion is exactly exponential, the horizon is 

static, i.e. aH const
a

= ≈
 , and we have an inflating universe [17]. This inflating 

universe can be described by the de-Sitter metric [1] [2] [3] [5] 

( )2 2 2 2 2 2 2
2

1d 1 d d d
1

s r c t r r
r

= − − Λ + + Ω
−Λ

           (10a) 

For the case of exponential expansion, the equation of state is P ρ= − , with 
world radius  

( ) 0 exp
3

R t R ct
 Λ

=   
 

                   (10b) 

The expansion generates an almost-flat and large-scale-homogeneous un-
iverse, as it is observed today. 

Furthermore, horizon ( ) 11
HR a Ha −−= =  reaches a minimum at the end of 

inflation, and then rises again, this explains superluminal correlations in the 
present universe. 

Inflation in Ashtekar-Kodama quantum gravity [18] 
Inflation takes place between 351.61 10 mi pr l −= = ×  and 5

inf 3.1 10 mgrR r −= = ×  

with expansion factor 30
inf infexp 1.9 10

3
f r

 Λ
= = ×  

 
, 26

inf 2 10 mr −= × ,  

16
10

inf 26
inf

1.96 10 GeV 0.98 10 GeV
2 10 m

cE
r

−

−

×
= = = ×

×


, 34inf
inf 0.66 10 srt

c
−= = × ,  

2
inf 10 mR −= . 

Inflation with standard assumptions ([4], chap. 4) 
283 10 mir
−= × , 36

inf 10 st −= , 30
inf 10f = , 28

inf 10a −= , 2
inf 3 10 mR = × , 

inf infexp
3

f r
 Λ

=   
 

, ( ) 2
inf 60 2

inf

log
3 1.4 10 m

f
r

− 
Λ = = × 

 
,  

( )inf 29 1

inf

log
6.9 10 m

3
f

H
r

−Λ
= = = × . 

Assessment of the inflation factor ([3], chap. 4),  
f = end inflation, i = start inflation, eq = matter-radiation-equality, 0 = today, 

ER = f = expansion rate 

https://doi.org/10.4236/jmp.2024.152011


J. Helm 
 

 

DOI: 10.4236/jmp.2024.152011 206 Journal of Modern Physics 
 

( )
( )

expf

in

a t
N

a t
= , 

0

1log log
2

f eq

eq

T T
N

T T
   

+       
 ,  

1610 GeVfT  , 1eVeqT  , 4
0 10 eVT −
  

60N ≥ , 
( )

2

37060 360 10 s
8 ER ff

Tt
G TH t ρ

−
 

∆ ≥ ≈  
 π


. 

Inflaton model ( ),t xφ  with GR-action  
The action is ([3], chap. 4) 

( )4d EHS x g L Lφ= − +∫  

with the Einstein-Hilbert action of GR 

42 d
2EH

RS g x
κ
− Λ = − 

 ∫  

2
2EH

RL
κ
− Λ

=  

and the inflaton action 

( )4d
2
cS x g g Vµν

φ µ νφ φ φ = − ∂ ∂ − 
 ∫
   

( )
2
cL g Vµν

φ µ νφ φ φ= ∂ ∂ −
  

with energy-momentum ( )
2
cT c g g Vµν

µν µ ν µν µ νφ φ φ φ φ = ∂ ∂ − ∂ ∂ − 
 



   

( )
2

0
0 2

T c Vφ φ= +


 , ( )
2

2
j j

i iT c Vφδ φ
 

= − − 
 



 . 

For RW-metric the action is ( ) ( )
2

24
2

1d
2 2

S x g c V
a

φ φ φ
  

= − − + ∇ −     
∫



   

with eom = Klein-Gordon equation ( )d13 0
d

V
H

c
φ

φ φ
φ

+ + = 



  

which represents an oscillator with Hubble-friction 3Hφ  

and energy density ( )
2

2
c Vφ
φρ φ= +


 ,  

and pressure ( )
2

2
P c Vφ

φ φ= −


  (4.50). 

If ( )21
2kin potE E Vφ φ≡ ≡


, ( )

2

2kin potE c E Vφ φ= =


  , we have Pφ φρ≈ −  

i.e. equation-of-state of dark energy ΛΩ  generating temporary inflation.  

We get the Friedmann equations (radiation-matter density rmρ  added)  

( )
2

2

3 3 2E rmH c Vκ κ φρ φ ρ
 

= = + + 
 



                 (11a) 

( ) 2 4
2 2 3rm rm rmH P P cφ φ
κ κρ ρ φ ρ = − + − − = − − 

 


            (11b) 

https://doi.org/10.4236/jmp.2024.152011


J. Helm 
 

 

DOI: 10.4236/jmp.2024.152011 207 Journal of Modern Physics 
 

and the Klein-Gordon equation 

( )d13 0
d

V
H

c
φ

φ φ
φ

+ + = 



                   (11c) 

We get dimensionless 2 equations in Planck-units 351.62 10 mPll −= × ,  

( )
2

23
8 2rm H Vφρ φ= − −
π



 

Friedmann ( ) ( )
2 2 2

2 24 3 3 44 4
3 8 2 2 2 3

HH H V Vφ φφ φ φ
    

= − − − − = − − +        
π π

π  π

 

 . 

Klein-Gordon ( )d
3 0

d
V

H
φ

φ φ
φ

+ + =  . 

Slow-roll approximation 

If ( )21
2kin potE E Vφ φ≡ ≡


 or 1Hε  , 2H

H
H

ε ≡ −


 (slow-roll parameter 

1), and almost constant velocity, 1H H
φη
φ

= −






 (slow-roll parameter 2), we 

have persisting slow-roll condition 1Hε  , 1Hη   (slow-roll approxima-
tion), which yields approximate fundamental equations with approximations 

3H Vφ ′≈ −  and 23 8H GV≈ π  and 
2

2
1

2 16H
H V V

V H G VH
φε

′ ′ = − = − = 
π 





 and 

2
1

83H
V V

G VH H
φη
φ

′′ ′′ = − = =  
 π





 and for the scale factor  

( ) ( ) ( ) ( )exp d exp 8 d
in in

t t

in in
t t

Va t a t H t t a t G
V

φ
   

= = −      ′  
π


∫ ∫ . 

Square potential 
We use the square potential ( ) ( )2

1 2 0V c cφ φ φ= + − , 124
1 1.16 10c −= × , slow-roll 

condition: 1 2c c  with the minimum value ( ) 124
0 1 1.16 10V cφ

κ
−Λ

= = = ×  and 

26
inf 2 10 mr −= × , we get the following relations: 

( ) ( ) ( ) ( )exp d exp 8 d
in in

t t

in in
t t

Va t a t H t t a t
V

φ
   

= = −      ′  
π


∫ ∫  

( ) ( ) ( ) ( ) ( )
0

2
0 0

0

exp 4 d exp 2in ina t a t a t
φ

φ φ φ φ
 

= − =π 


π


∫  

( )
( ) ( )0 inf

1 1log log 3.31
2 2in

a t
f

a t
φ

 
= = =  π π   

( ) ( ) ( )

2

2

2
1 00

2 0

1 1 2 1 1
16 16 4H

V
cV

c

ε
φ φφ φ

φ φ

 
 ′   = = ≈   π π π  −+ − − 
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( ) ( )
2

2 2
1 2 0 0

21 1 1 1
8 8 4H

cV
V c c

η
φ φ φ φ

 ′′   = = ≈     + π− − π π
 

( )
2

23
8 2rm H Vφρ φ= − −
π



 

for t →∞ , 1 1cφ δ=  , 0H H= , 0φ φ→ , 2
0 1

3 0
8rm H cρ  = − = 

 π
, 

so condition for convergence is: 2
1 0

3
8

c H
π

= . 

The fundamental equations become 

Friedmann ( )
2

2 24 34
3 8 2

H H Vφφ φ
 

= − − − − 
π 


π



 ; 

Klein-Gordon ( )d
3 0

d
V

H
φ

φ φ
φ

+ + =  ;  

slow-roll 26H φ≈ − π  ; 
3 boundary conditions for 1Plt l= = : ( ) 11H H= , ( ) 11φ φ= , ( ) 11 dφ φ= ; 
with 3 potential parameters 1c , 2c , φ .  

Example: 1 0.05cδ = , 0 5H = , 0 2.3φ = , 1 3c = , 2 1c =  [13]. 
Below in Figure 2 and Figure 3 are inflaton amplitude and Hubble parameter. 

5. Background Calculations 

There are basically two possible ways for background calculation:  
-numerical solution of two Friedmann equations in two variables, calculating 

backward from boundary conditions at present time x0; 
-analytical solution, where the second equation is solved analytically, and in-

serted into the first, which gives an integral, which is calculated numerically. 
The numerical solution encounters the problem of limited convergence: it 

stops at some time xc. 
The analytical solution avoids the convergence problem, and this solution 

scheme is used in the calculation of results presented below. 
 

 

Figure 2. Inflaton amplitude ( )tφ . 
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Figure 3. Hubble parameter ( )H t .  

5.1. Numerical Solution 

We solve for dimensionless function variables , ra ρ , in dimensionless relative time 

variable 
H

tcx
R

= , limits 000 0.96x x≤ ≤ = , where the upper limit is the relative 

cosmic time today 0 0
00 0.96

H H

ct Rx
R R

= = = , from Planck data 9
0 13.9 10 yt = × , 

with boundary conditions: ( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , ( )0' 1a x =  (be-

cause ( )0 HH x R= ) from ( )0' 1a x =  follows 0 0.0042k = −  which is compati-
ble with Planck data 

( )2 2 21
0' 0

3 ra k a aρΛ
+ − − =  sF1                 (3a) 

2
2

1
1''
3 2 3

crH r
r

aa a a Pρ ρ − Λ = − + 
 

 sF2              (3b) 

( ) ( )2 2 2
1'' 2 ' 2 0

2
crH

r ra a a k a P aρ
ρ+ + − Λ + − =  sF3         (3c) 

( )' ' 0
3
r

r r
a a Pρ ρ+ + =  sF4                    (3d) 

The two independent (3c and 3d is derived) Equations (3a, 3d) are non-linear 
second-order differential equations quadratic in the variables , ra ρ . 

Alternatively, one can solve for function variables a, th BE k T= , the latter with 

thermal energy th BE k T= , photon density 4
0SB tha Eγρ = , ( ) 1

3
Pγ γ γρ ρ= , matt-

ter density m
mat b c r

s m

K a
K K a

ρ ρ ρ ρ= + =
+

, baryon density ,0

,0 ,0

b
b mat

b c

ρ ρ
Ω

=
Ω +Ω

, 

cold-dark-matter (cdm) density ,0

,0 ,0

c
c mat

b c

ρ ρ
Ω

=
Ω +Ω

 

( ) 2, th
b b th b

p

EP E
m c

ρ ρ= . 
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The additional equation for pressure is the equation-of-state (eos) for the 
pressure rP : ( ),r rP P a ρ= . 

Solution 1 
One solves numerically [9] [13] [19] (3ac) with boundary conditions  
( )0 1a x = , ( )0' 1a x =  as algebraic-differential equations for function variables a, 

th BE k T= . The solution exists until 1 0.14cx = , where numerical integration stops 
converging. 

Solution 2 
One solves numerically [9] [13] [19] (3ad) with boundary conditions  
( )0 1a x = , ( )0' 1a x =  as differential equations for function variables , ra ρ . The 

solution exists until 1 0.0196cx = , where numerical integration stops converg-
ing. 

Plot a(x) is shown below [13] in Figure 4. 
The solution limit 1 0.0196cx =  indicates the transition from matter-domi- 

nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time 370 kyret = , 0.000026rex = . For 1cx x≤  solution is con-
tinued by pure radiation density ([13]). 

Solution 3 
One solves numerically [13] (3a) with boundary conditions ( )0 1a x = ,  

( )0' 1a x =  as differential equation for function variable a, with ansatz for  

4 3
s m

r
K K
a a

ρ = + . This is the usual solution method for background functions, used 

in CAMB [20] and in CMBquick ([21] [22]). 
The solution exists until 1 0.0055cx = , where numerical integration stops con-

verging, and the solution becomes complex (i.e. ( )Im 0a ≠ ). 
Plot a(x) is shown below [13] in Figure 5. 
The solution limit 1 0.0055cx =  indicates the transition from matter-domi- 

nated to the radiation-dominated regime, which happens approximately at pho-
ton decoupling time 370 kyret = , 0.000026rex = . For 1cx x≤  solution is con-
tinued by pure radiation density ([13] [20] [22]). 

 

 
Figure 4. The scale factor a(x) in dependence of relative time 

H

tcx
R

= , numerical solution 2. 
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Figure 5. The scale factor a(x) in dependence of relative time 

H

tcx
R

= , numerical solution 3. 

5.2. Analytic Solution  

The analytic solution scheme transforms the two basic equations into a parame-
terized integral ( )x a , which is the inverted scale factor ( )a x .  

In order to calculate the thermal energy, we apply an iteration, we calculate 

the temperature ( )thE a  from s
rad r

s m

K
K K aγ νρ ρ ρ ρ≡ + =

+
, using the solution 

( )a x  in the next iteration: ( ) ( ) ( ) ( )( )1n n n
th thE E a x+ = , as shown in the schematic in 

chap. 11.  
The zero iteration is the “naive” thermal energy ( )0

,0th thE E a= . 
The variables are scale factor and density , ra ρ .  
The boundary conditions are ( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , ( )0' 1a x = , 

from ( )0' 1a x =  follows 0.0042k = −  which is compatible with Planck data 

( )2 2 21
0' 0

3 ra k a aρΛ
+ − − =  sF1                 (3a) 

( )' ' 0
3
r

r r
a a Pρ ρ+ + =  sF4                   (3d) 

The two Equations (3ad) are non-linear first-order differential equations qua-
dratic in the variables , ra ρ . 

The third equation is the equation-of-state (eos) for the pressure rP : 
( ),r rP P a ρ= . 

The density and pressure have the form: relative energy density  

r b c eγ νρ ρ ρ ρ ρ ρ= + + + +  for baryons, photons, dark matter, free electrons, 

neutrinos, relative pressure r b c eP P P P P Pγ ν= + + + + , where radiation pressure 

3radP P P γ ν
γ ν

ρ ρ+
= + = , and matter pressure (neglecting electrons) is the ba-

ryon ideal gas pressure 2
B

mat b b
b

k TP P
m c

ρ= = , for under-nuclear temperature 

2 0.94 GeVB bk T m c =  the baryon matter is dust-like, i.e. pressure is almost 
zero. 
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The densities have the form  

r mat radρ ρ ρ= +  

m
mat b c r

s m

K a
K K a

ρ ρ ρ ρ= + =
+

, s
rad r

s m

K
K K aγ νρ ρ ρ ρ= + =

+
 

,0

,0 ,0

c
c mat

b c

ρ ρ
Ω

=
Ω +Ω

, ,0

,0 ,0

b
b mat

b c

ρ ρ
Ω

=
Ω +Ω

 

4
0SB tha Eγρ = , ,0

3a
ν

νρ
Ω

=   

We calculate the temperature ( )thE a  from s
rad r

s m

K
K K aγ νρ ρ ρ ρ≡ + =

+
(12a) 

i.e. ( ) ( )
1 4

1 4
,0

3
0

1 s
th r

s mSB

KE a a
K K aa a

νρ
Ω 

= − + 
           (12a1) 

and all the pressure becomes a function of a,  

( ) ( ),0
2

,0 ,0

, b ths m
r r rad mat r

s m s m b c b

E aK K aP a P P
K K a K K a m c

ρ ρ
 Ω

= + = +  + + Ω +Ω 
 (12b) 

i.e. ( ) ( ),0
2

,0 ,0

b ths mr

r s m s m b c b

E aK K aP P a
K K a K K a m cρρ

 Ω
= = +  + + Ω +Ω 

 

then we can integrate (3d) in a :  

( )( ) ( ) ( )
1

0

3'log ' d
3

a
r

r r r

P aaa a P a c
a
ρρ

ρ ρ
+ 

= + + = − +  
 

∫      (12c) 

and then can integrate (3a) in a :  

( ) ( ) 01
22

0

d
3

a

r
kx a a a a c
a

ρ
Λ

= + − +∫ ,             (12d) 

where 1c  and 2c  are set to fulfill the boundary conditions  

( )0 ,0 ,0r m radxρ = Ω +Ω , ( )0 1a x = , 
,0crit

ρ
ρ

Ω =  

5.3. Background Results 

Results for density and relative time in dependence of scale factor ( )r aρ , 
( )x a , are shown below [13]. 
Relative density in ,0critρ  units is shown over scale factor a, in double-loga- 

rithmic plot Figure 6. 
There is a critical point 40.5 10Ta −≈ × , where the density changes its beha-

vior, it coincides roughly with the critical point in temperature. The corres-
ponding time is 810Tx −≈ , thermal energy 1eVthE ≈ . 

The analytic solution yields directly the inverse scale factor function ( )x a , it 
shown in Figure 7. 
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Figure 6. The density ( )r aρ  in dependence of scale factor a, 

analytic solution. 
 

 

Figure 7. Relative time 
H

tcx
R

=  and scale factor a, analytic solu-

tion. 
 

There is a critical point at photon decoupling, 30.9 10deca −= × ,  
40.3 10 370 kydecx −= ×  , redshift 1090decz = , thermal energy 0.25 eVthE = . 

The scale factor changes its power-law dependence on time: 

( ) 1 2

,

,
dec

dec

x x x
a x

x x x

>≅ 
<

 

It is useful to compare the result for ( )x a  from the analytical solution and 
the standard CAMB solution ([13] [20]) Figure 8. The two curves separate 
roughly at 30.9 10deca −= × , the CAMB curve continues approximately linearly, 
whereas in the analytical solution time decreases quadratically, ( ) 2x a a≅ .  

The plots of density ( )r aρ  (blue) and radiation density ( )rad aρ  are shown 
in comparison below ([13]) in Figure 9. As expected, we have radiation domin-
ance roughly for deca a< , and matter dominance for deca a> . 

The Hubble parameter is approximately linear in x, as it should be. However, 
there is a small deviation at critical point 810cHx −≈ , scale factor 40.5 10cHa −≈ × , 
redshift 1 20000cHz a≈ ≈ .  

This is apparently responsible for the small correction of the present Hubble 
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constant H0, compared to CAMB solution. 
The plot of the Hubble parameter is shown in Figure 10. 

 

 

Figure 8. Relative time 
H

tcx
R

=  in dependence of scale factor 

a, analytic solution (blue), CAMB-solution (orange). 
 

 

Figure 9. The density ( )r aρ  (blue) and radiation density 

( )rad aρ  (orange), in dependence of scale factor a, analytic 
solution. 

 

 

Figure 10. The Hubble parameter ( )H x , in dependence of 

relative time 
H

tcx
R

= , analytic solution. 
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The “naive” temperature ( ) ( )0
thE a  from (12a) is compared to the iterated 

temperature ( ) ( )1
thE a  calculated from the first analytic solution in (12a1) is 

shown in Figure 11. The point of deviation is 40.5 10Ta −≈ × , the corresponding 
time is 810Tx −≈ , thermal energy 1eVthE ≈ . This point coincides roughly with 
the critical point in density Figure 6. 

Hubble parameter  
Baryon pressure correction 
Baryon pressure correction yields 0 0 01.043ct t t= , so 0 01.043cH H= , the cor-

rected Planck-value is 0 0 1.043 70.6 0.4Pc PH H= × = ± ; 

0 69.8 1.7RH = ±  Red-Giants Freedmann 09/21; 

0 73.04 1.04SH = ±  Cepheids-SNIa SHOES 12/21; 

0 67.66 0.42PH = ±  Planck 07/18. 
H0R Red-Giants is in agreement with corrected Planck within error margin. 
Assessed correction of the Cepheids-SNIa-measurement 
Cepheids-SNIa-measurement based on time-brightness calibration for small 

redshift z, peak power ( )max ~ ~cr bP T t m , with average nucleus mass bm  per-

centage of higher-mass nuclei at present: ( ) 1.04%r O = , ( ) 0.46%r C = , so 

( )
( ) ( ) ( )( )max

max

1
1 1.015

1
P z

r O r C
P z

≈ + + =




 so z-corrected Cepheids-SNIa becomes 

73.04/1.015 = 72. 0 0 1.015 72. 1.Sc SH H= = ± , which is at error margin. 

6. Relativistic Perturbations and the Perturbed  
Lambda-CDM Model 

The Lambda-CDM model is locally homogeneous, but during inflation the 
quantum fluctuations are “blown-up”, and the universe becomes inhomogene-
ous on small (galactic) scales and remains homogeneous on large scales. These 
local inhomogeneities generate structure, which we observe today. 

In order to reproduce these local inhomogeneities in the perturbed Lamb-
da-CDM model, we introduce small perturbations in the metric and in the den-
sity distribution. These perturbations are functions of conformal time η (defined  

by dd t
a

η = ), and space location vector ix , and are not random variables. 

The randomness is introduced by initial conditions for perturbations (see 
chap. 8). 

We introduce metric perturbations , ,i ijA B E  in the RW-metric [2] [3] [4] 

( ) ( ) ( )( )2 2 2d 1 2 d 2 d d 2 d di i j
i ij ijs a A B x E x xη η η δ= − + + + +        (13) 

and split-up in scalar, vector, tensor parts: 
scalar A 

ˆ
i i iB B B= ∂ + , scalar B, vector ˆ

iB  

( )ˆ ˆ ˆ
ij ij i j i j j i ijE C E E E Eδ= + ∂ ∂ + ∂ − ∂ + , scalar C E, vector ˆ

iE , tensor ˆ
ijE , 

where 3i
i

i
E C=∑  

Furthermore, we form the gauge-invariant Bardeen variables with 8 = 1scalar 
(A) + 3vector (Bi) + 4tensor (Eij) degrees-of-freedom (dof’s)  
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Figure 11. The naive temperature ( ) ( )0
thE a  compared to the iterated 

temperature ( ) ( )1
thE a , in dependence of scale factor a, analytic solution. 

 

( ) ( )A H B E' B E' 'Ψ = + − + − , ( )21
3

C E H B E'Φ = − + ∇ − − ,  

ˆ ˆˆ
i i iB E 'Φ = − , ˆ

ijE   

Since we have 6 Einstein equations, we can remove the 8 − 6 = 2 dof’s by 
gauge-fixing. 

▪ Newtonian gauge 0B E= =  

( ) ( ) ( )( )2 2 2d 1 2 d 1 2 d di j
ijs a x xη η δ= − + Ψ + − Φ  

A = Ψ , C = −Φ                      (6.30) 

▪ Spatially flat gauge C = E = 0  
▪ Synchronous gauge A = B = 0  
From now on, we use the Newtonian gauge. 
We get for the energy-density tensor 

( )0
0T ρ δρ= − +  

( )0
i iT P vρ= − +  

( )i i i
j j jT P Pδ δ= − + +Π , 0i

i iΠ = ∀                (14) 

The relativistic Euler equation is 

( ) ( ) ( ) ( )

2

2 2 2 22 2

1 d 1 d 0
d d1 1 1 1

i
i i

vc pp p v
t tv c c v c v c c v c

ρ   
   + + ∂ + =
   − − − −   

,  

The Euler equation in the RW metric becomes 

( )1 j
i i i i j i

P'v ' H v P
P P

δ
ρ ρ

 
= − + − ∂ + ∂ Π − ∂ Ψ + + 

       (6.76) 

where ijΠ  is the anisotropic stress with the decomposition 

( )ˆ ˆ ˆ
ij i j i j j i ijΠ = ∂ ∂ Π + ∂ Π − ∂ Π +Π              (6.39) 
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Finally, we get 10 fundamental equations: 
6 Einstein equations  
[4] 

( )2 23H H Ga δρ′∇ Φ − Φ + Ψ = π  

2 aH Ga
a H
′′

′Φ + Ψ =
′

π  

( ) 28 ,i j i jGa i j∂ ∂ Φ −Ψ = Π <π  

( ) ( )2 2 212 2
3

H H H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + ∇ Φ = π−Ψ + + Ψ    (15a-d) 

4 conservation equations: continuity +Euler  
[4] 

( )1 3 3i
i

P P Pv H δδ δ
ρ δρ ρ

   ′ ′= − + ∂ − Φ − −   
   

 

( )1 j
i i i i j i

P'v ' H v P
P P

δ
ρ ρ

 
= − + − ∂ + ∂ Π − ∂ Ψ + + 

       (15ef) 

( )i iq Pρ= + v , 
δρδ
ρ

=  decelaration conformal aq
a
′′

= −
′H

, 0
i iT q= ∂ , 

for 10 variables 4 scalar , , , Pδ δΦ Ψ , 3 vector iv , 3 tensor i
jΠ ;  

initial conditions 6 
Φ  2c, Ψ  1c, iv  3c, ( ), Pδ δ  0c; 
background parameters 

a
a
′

=H , aq
a
′′

= −
′H

, a , ρ , P .  

Fundamental equations in k-space ([14] Ma)  
In the following, we transform the fundamental equations via Fourier-transform 

into k-space. 

We use Newtonian gauge, conformal time η , 
d
d

aa
η

′ = , the metric in New-

tonian gauge reduces to 

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ  

We get 4 Einstein equations in k-space 

( )2 23k H H Ga δρπ′Φ − Φ + Ψ =  

( ) ( )2 2k H Ga P ρ θπ′Φ + Ψ = +  

( ) ( )2 212k Ga P ρ σπΦ −Ψ = +  

( ) ( ) ( )2 2 212 2 4
3

H k H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + Φ − πΨ + + Ψ =   (16a-d) 

and 2 continuity-Euler equs in k-space 

( )1 3 3P P PH δδ θ δ
ρ ρδ ρ

  ′ ′= − + − Φ − −  
   

 density equ  
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2 2 2P PH k k k
P P

δθ θ σ
ρ ρ
′ ′ = − + − − + Ψ + + 

 velocity equ     (16ef) 

with the definitions 

δρδ
ρ

= , j jik vθ = , 

ˆ ˆ
3
i j

i j i jk k

P

δ

σ
ρ

 
− Π 

 = −
+

,  

where ˆ kk
k

=


 is the k-unit-vector, i
jΠ  anisotropic stress 

and the relations 

( )0
0T ρ δρ= − + , ( )0

i iT P vρ= + , ( )i i i
j j jT P Pδ δ= + +Π , 

0
0Tδρδ

ρ ρ
= = −  

0, 1,2,3i
i iΠ = = , i i k i

j j k jT T δΠ ≡ −  

j
jik vθ = , ( ) 0j

jP ik Tρ θ δ+ = , ( ) 1ˆ ˆ
3

i j i
ij jP k kρ σ δ + = − − Π 

 
.  

We have here 6 variables , , , , , Pθ σ δ δΦ Ψ , i
iP Tδ δ= , 0

0Tδρ δ= , which are 
functions of ( ),k η . 

7. Evolution of Distribution Momenta 

We introduce here density distribution momenta for density components radia-
tion γ, neutrinos ν , electrons e, baryons b, cold-dark-matter d. The densities 
acquire their random nature from random initial conditions, and have therefore 
a (Gaussian) probability distribution. These distribution momenta are used in 
the calculation of CMB spectrum in chap. 10. 

Evolution of distribution function momenta (Ma [14])  

We have for Newtonian gauge, conformal time η , 
d
d

aa
η

′ =   

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ . 

Phase space distribution 
With phase space element 1 2 3

1 2 3d d d d d dx x x P P P  

( ) 1 2 3
1 2 3d , , d d d d d di

jN f x P x x x P P Pη=  particle number in element (32) 
( )1i iP a p= −Φ  co-moving disturbed momentum  

density distribution for matter fermions (Fermi-Dirac distribution +), density 
distribution for radiation bosons (Bose-Einstein distribution -)  

( )0 3
1,

exp 1

s

B

gf T
h

k T

ε
ε

=
 

± 
 

                 (17) 

energy 2 2 2 2 2a p m P a mε = + = + , temperature T, today temperature T0.  
We change variables: i

jx P  to i
jx q , and get the expressions: 

scaled momentum j j jq ap qn= = , unit momentum vector n̂  with 1i
in n =   

energy 2 2 2q a mε = + ; 
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change distribution ( ), ,i
jf x P η  to ( ), , ,i

jf x q n η .  
Finally we get for the neutrino distribution perturbation function ( ), , ,i

jx q nψ η  
(not equal to the metric perturbation Ψ ) 

( ) ( ) ( )( )0, , , 1 , , ,i i
j jf x P f T x q nη ε ψ η= +  (35) 

for the distribution of energy tensor  

( )( )0 4 2
0 0d d , 1T a q q f Tε ε ψ−= Ω +∫  

( )( )0 4
0d d , 1i iT a q qn f Tε ψ−= Ω +∫  

( )( )
2

4
0d d , 1i ji

j

n n q
T a q f Tε ψ

ε
−= Ω +∫  

Boltzmann equation in ( ), , ,i
jx q n η , with collision term Cf

η
∂
∂

 becomes 

i
i C

i
i

n fDf f x f q f f
d q nxη η η η η η

∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + + =
∂ ∂ ∂ ∂ ∂ ∂ ∂∂

 

GR geodesic equation 0 d 0
d
PP P P

µ
µ α β
αβη

+ Γ =  gives 

( )d ,
d i i

q q q nε η
η
= Φ − ∂ Ψ  (39) 

and Boltzmann equation becomes 

( ) ( )0

0

d ln 1ˆ ˆ
d ln

Cf fqi k n i k n
q q f

ψ εψ
η ε η

  ∂∂
+ ⋅ + Φ − ⋅ Ψ = ∂ ∂ 

 

         (18)  

with fluid equations cdm 

3c c' 'δ θ= − + Φ , 2
c c

a'' k
a

θ θ= − + Ψ         (19a)  

Component evolution equations 
In the following we present the evolution equations for l-momenta in k-space 

for important components. 
Evolution equations massive neutrinos 
We have for (average) background density, pressure 

( )4 2
0d d ,h a q q f Tρ ε ε−= Ω∫ , ( )

2
4 2

0
1 d d ,
3h

qP a q q f Tε
ε

−= Ω∫  

the perturbations 

( )4 2
0d d ,h a q q f Tδρ ε ε ψ−= Ω∫ , ( )

2
4 2

0
1 d d ,
3h

qP a q q f Tδ ε ψ
ε

−= Ω∫  

( )0 4
0d d ,h i iT a q qn f Tδ ε ψ−= Ω∫ ,  

( )
2

0 4 2
0

1 1d d ,
3 3h i i j i j

qa q q n n f Tδ δ ε ψ
ε

−  Π = Ω − 
 ∫  

distribution perturbation function are developed in Legendre polynomials of the 
angle ( )ˆ ˆk n⋅  

( ) ( ) ( ) ( ) ( )
0

ˆˆ ˆ, , , 2 1 , ,l
l l

l
k n q i l k q P k nψ η ψ η

∞

=

= − + ⋅∑
 

 (54) 
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( )4 2
0 04 d ,h a q q f Tδρ ε ε ψ−= π ∫ , ( )

2
4 2

0 0
4 d ,
3h

qP a q q f Tδ ε ψ
ε

−π
= ∫  

( ) ( )4 3
0 14 d ,h h hP ka q q f Tρ θ ε ψ−π+ = ∫ ,  

( ) ( )
2

4 2
0 0

4 d ,
3h h h

qP a q q f Tρ σ ε ψ
ε

−+ =
π

∫ . 

Boltzmann equation yields for evolution of perturbation momenta  

0
0 1

d ln
d ln

fqk' '
q

ψ ψ
ε

= − −Φ , ( ) 0
1 0 2

d ln2
3 3 d ln

fqk k'
q q
εψ ψ ψ

ε
= − − Ψ  

( ) ( )( )1 11
2 1l l l

qk' l l
l

ψ ψ ψ
ε − += − +

+
, 2l ≥             (19b) 

truncating order maxl   

( )
max max max

max
1 1

2 1
l l l

l
qk

ε
ψ ψ ψ

η+ −

+
= − . 

Evolution equations photons 
We assume eγ −  Thomson scattering with the Thomson cross-section 

2d 1 cos3
d 16T
σ θσ +
=

Ω π
, 24 20.665 10 cmTσ

−= ×  

with ( )ˆ, ,F k nγ η  distribution total intensity 
with ( ), ,G k nγ η  distribution difference polarization components 
with collision terms 

( ) ( )( )0 2 0 2 2ˆ4e T e
C

F
an F F n v F G G Pγ

γ γ γ γ γσ
η

∂ 
= − + + ⋅ − + + ∂ 

  

( )( )2 0 2 2
1 1
2e T

C

G
an G F G G Pγ

γ γ γ γσ
η

∂   = − + + + −   ∂   
 

with expansion 

( ) ( ) ( )1 0 2 2
3

4 1 19 2 1
2 2

l
e T b l l

lC

F ian P G G P i l F P
k

γ
γ γ γ γ γσ θ θ σ

η

∞

=

∂    = − + − − − − +    ∂    
∑

 

( )( ) ( ) ( )2 0 2 2
0

1 1 2 1
2

l
e T l l

lC

G
an F G G P i l G Pγ

γ γ γ γσ
η

∞

=

∂   = + + − − − +   ∂   
∑ . 

Resulting fluid equations are then 

4 4
3

' 'γ γδ θ= − + Φ , ( )2 21
4 e T b' k k anγ γ γ γθ δ σ σ θ θ = − + Ψ + − 

 
  (19c1) 

and momenta evolution becomes 

( )

( )( )

2 3

0 2

8 3 92
15 5 5

1
10

e T b

e T b

F ' ' kF an

an G G

γ γ γ γ γ γ

γ γ γ

σ θ σ σ θ θ

σ θ θ

= = − − −

+ − +
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( ) ( ) ( )( )1 11
2 1l e T ll l

kF ' lF l F an F
lγ γγ γ σ− += − + −
+

, 3l ≥         (19c2) 

( ) ( ) ( )( )
( )

1 1

2
2 0 2 0

1
2 1

1
2 5

l l l

l
e T l l

kG ' lG l G
l

an G F G G

γ γ γ

γ γ γ γ
δ

σ δ

− += − +
+

  + − + + + +  
  

       (19c3) 

Evolution equations baryons 
We have the fluid equations 

3b b' 'δ θ= − + Φ , ( )2 2 24
3b b s b e T b

b

a'' c k an k
a

γ
γ

ρ
θ θ δ σ θ θ

ρ
= − + − − + Ψ  (19d1) 

with sound speed 2 d ln11
3 d ln

B b b
s

k T Tc
aµ

 = − 
 

, µ  mean baryon mass. 

The temperature equation becomes  

( )82
3b b e T b

e b

a'T ' T an T T
a m

γ
γ

ρµ σ
ρ

= − + −  

Before recombination tight-coupling bγ − , we have  

2 21
4b c ' k kγ γ γ γθ θ τ θ δ σ  − = − − − Ψ  

  
           (19d2) 

3
8 10 3

9 3
c ' kFγ γ γ γ
τ

σ θ σ = − − 
 

                (19d3) 

2 2 2 23 1 31
4 4 4

b b
b b s b

a'' ' c k k k
aγ γ γ

γ γ

ρ ρ
θ θ θ δ δ σ

ρ ρ
    = − + − + − + + Ψ           

  (19d4) 

8. Initial Conditions  

Initial conditions in k-space for density components (radiation γ, neutrinos ν , 
electrons e, baryons b, cold-dark-matter c) and metric perturbations ,Ψ Φ  gen-
erate the random (Gaussian distributed) inhomogeneities required for structure 
formation.  

Initial conditions k-space 
For Newtonian gauge in conformal time η , initial conditions are chosen in 

such a way, that only the largest order in kη  is present (Ma [14]) 

( )
40 2

3
C

Pγδ ρ
= − = − Ψ

+
 

3 3
4 4c b ν γδ δ δ δ= = =  

( )
2

210
15 4 2b c

C kk
Rγ ν
ν

ηθ θ θ θ η= = = = = Ψ
+

 

( ) ( ) ( )2
24

3 15 4 15
kC k

Rν
ν

η
σ η= = Ψ

+
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20
15 4

C
Rν

Ψ =
+

, 21
5

Rν
 Φ = + Ψ 
 

 

with neutrino density ratio R ν
ν

γ ν

ρ
ρ ρ

=
+

  

9. Structure Formation  

In the following, we present in concise form cross sections, reaction rates and 
densities for important cosmological particle processes [2] [3] [4] [11] [23]. They 
are used in the background eos equations in chap. 2, and in the evolution equa-
tions of density distribution momenta in chap. 7. 

Cosmic neutrino background 
The reaction is e e e eν ν + −+ ↔ + , e ee eν ν− −+ ↔ +  

with reaction rate 2 5
Fn v G TσΓ = ≈ , 5 21.2 10 GeVFG − −≈ ×  (3.58) 

and corresponding Hubbble rate 
2

Pl

TH
M

≈ , 
3

1 MeV
T

H
 Γ

≈  
 

, 

neutrinos decouple at , 1 MeVdTν = , , 1sdtν = , 

the number density 3 3 1d
exp 1

n a q
q

aT

ν

ν

−∝
 

+ 
 

∫ ,  

with 1T aν
−∝  for ,dT Tν ν> . 

Gamma pair production 
The gamma-pair production reaction is A e e Aγ + −+ → + +  [24] [25] 

with the cross-section ( )2 2 ,er Z P E Zσ α= , where Z = atomic number of materi-

al A, 
e

E
k

E
γ= , α  fine-structure-constant, and  

( )
3

22,
3

k
P E Z

k
 −π 

≈  
 

, 2 4k< < , 

( ) ( )28 218, ln 2 3.11ln 2 8.07
9 27 e

E
P E Z k

E
γ 

≈ − = − 
 

, 4k > , 

wih reaction rate n cσΓ = . 
Electron-positron annihilation 
The ep-annihilation reaction is e e γ γ+ −+ → +  shown in Figure 12. 

wih the cross-section  

( ) ( ) ( )
2

0 0 0
0

2 1 11 log 1 log
2 1 2e e

s
v
α α β βσ ω σ β σ β

β β ω+ −

   + + = + − − −       −    π 

π


 [24] 

 

 
Figure 12. e-p annihilation. 

https://doi.org/10.4236/jmp.2024.152011


J. Helm 
 

 

DOI: 10.4236/jmp.2024.152011 223 Journal of Modern Physics 
 

where ( ) ( )
2 4

2
0

3 1log 2 2
1s

α β βσ β β
β β β

  − +
= − − −  −

π

  
 Born cross-section, and 

Mandelstamm variables ( )2
1 2s p p= + , ( )2

1 3t p p= − , ( )2
1 4u p p= − , where  

( )221 4 mc sβ = − , 
1
1

z β
β

+
=

−
 

0ω  soft cut-off, 2
2

1
v β

β
=

+
 relative velocity, dof number  

7 112 4
8 2

2

e
S

e

T m
g

T m

 + × = ≥= 
 <

 with photons decoupling at , 0.5 MeVe dT = ,  

, 6 se dt = , duration 
2

18
, 10 se d

e

t
m
α −∆ = =  

1 34
11

T Tν γ
 =  
 

, ,e dt t>  after ep-annihilation, so ,0 2.73 KTγ = , ,0 1.95 KTν = . 

Planck data yield 0.13 eVi
i

mν <∑ , 0.003νΩ < . 
General photon eos 
For T > Tan in pair-production regime, we have in equilibrium (relativistic) 

( )
2

0
2

s
ασ β
β
π

= , ev
c

β =   

2 2 222 2 1ee e e
cn v n c

sγ
α ασ β
β β+ +

π  
Γ

π
= ≈ + 

 



 

2 22 2 3.1ln 8.1ee e ef
e

E
n c n c r Z

E
γ

γ γ γσ α
  
 Γ = ≈ −     

 with 1 b
ef

nZ
nγ

= , 24 ths E=  

ee eeγ γΓ = Γ  results 

2
2

2

2 2

3.1ln

4 1

e
eb

th
e

e

E
r

Enn E
n cc

v

γ

γ αα+

 
  
 =

 
+ 



π
π




, i.e. 2 4~ b
b th th

e

nn n E E
nγ

+

 , 

with thermal energy th BE k T= . 
In the black-body regime we have the Stefan-Boltzmann relation 4

SB thn a Eγ = . 
The positron density en +  results from equality of both nγ  from pair-pro- 

duction-annihilation and Stefan-Boltzmann 
2 22 2

3
2 20.17 1.2 10b th b th

e
e e

n E n En
n nm c m cγ γ

α −
+

   
≈ = ×   

   
. 

Thomson scattering ([26] Hu) 
We get density of free electrons  

( )32 5 31 1 10 cm
2
p

e e b b

Y
n X n h z − − 
= − ≈ Ω + × 
 

, ionization fraction 1eX ≈ ,  

where 0.24pY ≈  Helium mass fraction.  

The optical depth τ  results from the Thomson equation 
d
d e Tn aτ σ
η
= , 
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where 
2

25 2
2 6.65 108 cm

3T
em
ασ −π

×= =  is the Thomson cross-section in photon- 

electron scattering. 
Photons and neutrinos 
After photon decoupling we have the relation for neutrino and photon tem-

perature 
1 34

11
T Tν γ

 =  
 

                        (3.62) 

Hydrogen recombination ([4], chap. 2) 
For hydrogen recombination we have the reaction e p H γ− ++ → + , 

and number density 
3 2

2
2 exp ionH

ee

En
m T Tn

     =     


π

 
, 

with ionization energy 13.6 eVion p e HE m m m= + − = , , 13.6 eVH reE =  

and free electron fraction e e
e

p H b

n nX
n n n

≡ =
+

.  

The free electron fraction obeys Saha equation  

( ) 3 2

2 2

2 31 2 expe ion

ee

X E
m T TX

ζ
η

 −  =    


π

π 
 (3.78) ( )3 1.202ζ =  

where 
3

,0 9
9 3

,0

0.242 m 0.59 10
0.41 10 m

bb nn
n nγ γ

−
−

−= = = ×
×

, and baryon-photon ratio  

106 10η −≈ × . 

The solution is 
( )

( )
1 1 4

2
th

e
th

f E
X

f E
− + +

= ,  

( ) ( ) , ,9
2 2

3 2 3 2
24 3 exp 2.26 10 expH re H reth th

th
th the e

E EE Ef E
E Em c m c

ζ η −      
= = ×      

    π  
, 

with limits 

1f  , 
( )
1

e
th

X
f E

≈ , e bn n= , 1b

H

n
n
  

1f  , 1eX ≈ , e bn n= , 0Hn = , 

and recombination temperature 0.32 eV 3760 KrecT ≈ = , 290 kyrect ≈ . 
Photon decoupling 
The photon decoupling reaction is e eγ γ− −+ ↔ + , with reaction rate  

e Tnγ σΓ ≈ , 3 22 10 MeVTσ
− −≈ × , and decoupling temperature  

( ) ( )dec decT H TγΓ ≈ , ( ) ( )
2

3
3 2

0

0

2

2 3
m

e dec dec
T

H
X T T

Tζ ησ
π Ω

≈ , 0.25 eV 2970 KdecT ≈ =  

for 370 kydect ≈ .  

The Boltzmann equation is ( )f p ff F C f
t m p

∂ ∂
+ ∇ + ⋅ =

∂ ∂







, for reaction  
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1 2 3 4+ ↔ +  collision term is { } 1 2 3 4i j c c cC n n n n nα α β  = − +  , where c vα σ=  

thermally averaged cross-section, 1 2

3 4
c

eq

n n
n n

β
 

=  
 

 detailed balanced coefficient. 

From this follows cosmic Boltzmann equation with collision term 

( )
( )

3

1 2 3 43

d1
d

i
c

n a
v n n n n

ta
σ β= − −               (3.96) 

where the particle number is 3i
i i

nN n a
s

≡ ∝ , ( )
( )

1 3 41 1 2

3 4 1 2

d log
1

d log eq

N N NN N
a H N N N N

  Γ  = − −     
, 

where 1 2n vσΓ ≡  (1,2) interaction rate.  

Dark matter cdm decoupling 
The reaction for cdm particle X, light particle l: X X l l+ ↔ +  with 

Boltzmann equation 
( )

( )( )
3

22
3

d1
d
X

X X eq

n a
v n n

ta
σ= − − , with 3

X
X

nY
T

≡  particles 

in co-moving volume, and reduced mass XMx
T

≡ , d
d
x Hx
t
= .  

Using ( )
( ) ( )

3
XX

X X

M vM
H M H M

σ
λ

Γ
≡ = , we get the Riccati equation  

( )( )22
2

d
d

X
X X eq

Y Y Y
x x

λ
= − − .  

The asympotic value is ,
f

X

x
Y

λ∞ ≈  with fx  reduced mass at freeze-out. 

The cdm density is 
( )

8 210 GeV~ 0.1 f
X

s X

x
vg M σ

− −

Ω  with reaction rate  

8 2~ 10 GeV ~ 0.1 Fv Gσ − −  (≈weak interaction). 

Baryo-genesis 
In the following we present important cosmological processes of nuclei, with 

density evolution equation, cross-section, and charasteristic (freeze-out) time. 
Neutron-proton decay 
The reaction here is en p eν + −+ ↔ + , en e p ν+ ++ ↔ +  with density ratio 

exp npn

p Beq

En
n k T

   
= −       

, ( ) 2 1.30 MeVnp n pE m m c= − = , and with n
n

n p

nX
n n

≡
+

 

relative n-abundance. 
For nX  we get the equation 

( ) ( )d 1 exp
d

npn
n n n

B

EX x X X
t k T

  
= −Γ − − −     

  

where  

( )
2

5
255 12 6

n
n

x xx
xτ

+ +
Γ = , np

B

E
x

k T
= , 886.7 0.8 snτ = ±  neutron lifetime.  

With freeze-out abundance , 0.15nX ∞ =  it becomes ( ) , expn n
n

tX t X
τ∞

 
= − 

 
.  
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Deuterium 

The density ratio is 
3 2

2 2

, 2
3 4 exp
4

npDD
n eq

p Bp Beq

En cn
n k Tm c k T

    
=            

π



 , with  

( ) 2 2.22 MeVnpD n p DE m m m c= + − =  and temperature 0.06 MeVnucT =  at 

( ) 1D
nuc

p eq

n T T
n

 
= =  

 
, the corresponding time is 

2
0.1 MeV 120 s 330 snuc

nuc

t
T

 
= ≈ 
 

.  

Helium  
The reactions are 

3D p He γ++ ↔ + , 3 3H p He n++ ↔ +  

3D D H p++ ↔ + , 3 4H D He p++ ↔ +  

3D D He n+ ↔ + , 3 4He D He p++ ↔ +  

helium-hydrogen ratio is then  
( )
( )

24 4 ~ 0.25
1

n nucHe He
P

H p n nuc

X tn nY
n n X t

= = ≈
−

, which is observed. 

Lithium beryllium  
The reactions are 

7 7Be n Li p++ ↔ + , 7 4 4Li p He He++ ↔ + , 7 7
eBe e Li ν−+ ↔ +  

3 4 7He He Be γ+ ↔ + , 3 4 7H He Li γ+ ↔ + . 
Hydrogen recombination  
The process of hydrogen recombination is shown in Figure 13. 
We have the Peebles equation for free electron density Xe with an improved 

calculation in redshift z [27] 

( )
( )( ) ( )

( ) ( ) ( ) 2
2

1

3

22d 1 exp
d 1 2

2 3

e Bre I
e

B

b
B e

m c k TC TX EX
z H z z k T

nT k T X
nγ

ζ
α

   = − − −     +   

−

π

π





       (20) 

 

 
Figure 13. Hydrogen recombination state diagram [4]. 
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with  

( ) 2

2
rC T γ α

γ α αβ
Λ + Λ

≡
Λ + Λ +

,  

( )
( )

( )( )( )3
27

128 3 1 e b B I

H T

X n n k T E
α

γ
ζ

Λ =
−

,  

1
2 8.227 sγ

−Λ = ,  

8
3 I

c
Eαλ
π

=
  Lyman wavelength, ( ) 3exp

4
I

B

ET
k Tαβ β

 
=  

 
,  

( )
( )

12

22

2

9.8 logI I

B Be

E ET
k T k Tm c

αα
   

≈    
   

,  

( ) ( )0
3 2 11 1

1m
eq

zH z H z
z

 +
= Ω + +  + 

,  

33
0 1.5 10 eVH −≈ × , ( )1 0.235 eVT z= + . 

10. CMB Spectrum 

In this chapter, we present first in concise way the contributions to the temper-
ature anisotropy of the cosmic microwave background CMB. 

Then we describe the scheme for the calculation of the CMB spectrum coeffi-
cients Cl. 

The schematic of the calculation is shown in chap. 11. 
Finally, we present the self-calculated results and a comparison with data. 

10.1. CMB Spectrum Theory 

CMB spectrum today  
CMB as measured today has the parameters [28]: 

temperature ,0 2.7255 0.0006 KTγ = ± . 
CMB dipole is around 3.3621 ± 0.0010 mK 

relative density 56 10γ
−= ×Ω  

temperature anisotropy ,0 30 KTγ∆ ≈ µ , so ,0 5

,0

30 K 1.1 10
2.72 K

T
T

γ

γ

−∆ µ
≈ = × . 

Temperature anisotropy 
The temperature anisotropy of the CMB has the following contributions: 

( ) ( )( ) ( )( )0

**
*

1ˆ ˆSW Dop ISW d
4 b

T n n v
T

η
γ η

δ δ η
   ′ ′= = + Ψ + = − ⋅ + = Φ +Ψ  

  
∫

  (7.29) 

at conformal time * decη η η= = . 
▪ SW The first term is the so-called Sachs–Wolfe term. It represents the in-

trinsic temperature fluctuations associated to the photon density fluctuations 
4γδ  and the metric perturbation Ψ  at last scattering. 

▪ Doppler The second term is the Doppler term ˆ bn v⋅   caused by local veloc-
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ity, this contribution is small on large scales.  
▪ ISW The last term describes the additional gravitational redshift  

( )0

*
d

η

η
η ′ ′Φ + Ψ∫  due to the evolution of the metric. 

The temperature anisotropy has the form 

( ) ( )
( )

( )( ) ( ) ( ) ( )( )
3

* * *3
dˆ ˆ ˆ ˆexp , ,
2

T kn n ik nct F k i k n G k
T
δ η η ηΘ ≡ = ⋅ + ⋅

π
∫

   

, 

where ( )*
1,
4

F k γη δ = + Ψ 
 



, ( )*, bG k vη =


, ( )
( )

( )
*

*

,

0,

F k
F k

R k

η

η
=

=




,  

( )
( )

( )
*

*

,

0,

G k
G k

R k

η

η
=

=




 and ( )0,R kη =



 are the initial curvature anisotropies. 

We get for the anisotropy the series in Legendre polynomials  

( ) ( )
( )

( ) ( ) ( )
3

3
dˆ ˆ2 1 0,
2

l
l l

l

kn i l k R k P k nΘ = + Θ ⋅
π

∑ ∫
 

 

with the transfer function including ISW  

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )0

*
* * * * dl l j j jk k F k j k G k j ' k j ct k

η

η
χ χ η η′ ′Θ = Θ = − + Φ +Ψ∫ , 

with ( )* *ctχ η= . 
The two-point temperature correlation (scalar TT-correlation) spectrum meas-

ured in CMB is ( ) ( ) ( )ˆ ˆC n nθ ′= Θ Θ , with directions ˆ ˆ,n n′ , angle ˆ ˆcos n nθ ′= ⋅ , 
and the series in Legendre polynomials  

( ) ( )2 1 cos
4 l l

l

lC C Pθ θ
π
+

=∑   

with series coefficients lC   

( ) ( ) ( ) ( ) ( )1 2 2
1

d2 d cos cos 4l l l R
kC C P k k
k

θ θ θ
−

Θπ= = ∆π∫ ∫        (7.6) 

where ( )
1

2

0

sn

R s
kk A
k

−
 

∆ =  
 

 is the power amplitude, and where sound horizon is 

( )( )
d

3 1
sr

R

η

η
=

+
∫ , with curvature ( )R η . 

Weinberg semi-analytic solution [29] 
Weinberg proposed a semi-analytic solution for photon density perturbations 

( ) ( )

( )( )
( )( ) ( )( ) ( )1 4

4 0, cos 1 3 ,
5 1 ,

s
S k

R k kr k R k T k
R k

γδ η θ η
η

 
 = = + − + 
 +
 

 



  

with Weinberg semi-analytic transfer functions for SW and Doppler with  

( ) ( )

( )( )
( )( ) ( ) ( )1

2

* * *2
*

*

4
1 exp cos 3 ,
5 1 ,

s
D

S kkF k kr k R k T k
k R k

θ η
η

 
  = − + −  
  +
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( ) ( )

( )( )
( )( )

2

* *2
*

1

*

4
3 exp sin

5 1 ,
s

D

S kkG k kr k
k R k

θ
η

 
= − − + 

  +


 where 

1
* 8.8 MpcDk − =   

and the resulting CMB power spectrum 
( ) 2

2 2 2
* *22 2

* * *1

1 d 1
2 1

l R
l l l l lC F Gβ β β β β

χ χ χββ β

∞  +      −
= + ∆       −      π 
∫  with 

( )* *ctχ η=   

where  

( ) ( ) ( ) ( )
( ) ( ) ( )

22 4 6

2 4 6

1 1.209 0.5611 5 0.1567

1 0.9459 0.4249 0.167
S

κ κ κ
κ

κ κ κ

 + + +
 =
 + + + 

 

( )
( )( )

( )
( ) ( ) ( )
( ) ( ) ( )

2 2 4 6

2 4

1

6

2

2

log 1 0.124 1 1.257 0.4452 0.2197

0.124 1 1.606 0.8568 0.3927
T

κ κ κ κ
κ

κ κ κ κ

+  + + +
 =
 + + + 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 4 6

2 4 6

1 2

8

1.1547 0.5986 5 0.2578

1 1.723 0.8707 0.4581 0.2204

κ κ κ
θ κ

κ κ κ κ

 + +
 =
 + + + + 

.  

Calculation of CMB spectrum coefficients Cl ([30] Hu) 
The temperature and photon polarization Stokes parameters anisotropy are 

expanded in a series in angular momentum (l, m),  

( )
( )

3 2

3
0 2

dˆ, ,
2

lm lm
l m

kx n Gη
∞

= =−

Θ = Θ
π
∑ ∑∫

                (21a) 

( )( )
( )

( )
3 2

3
0 2

dˆ, ,
2

lm lm lm
l m

kQ iU x n E iB Gη
∞

= =−

± = ±
π
∑ ∑∫

  

with temperature (l, m)-moments 
( ) ( ) ( )*dm
l lmnY n nΘ = Θ∫

                    (21b) 

and with temperature basis functions 

( ) ( ) ( ) ( ) ( ) ( ) ( )0
4 ˆ exp 4 2 1 ,

2 1
l l

lm lm l l
l

G i Y n ik x i l j kr Y
l

θ ϕ= − ⋅ = +π−
+
π ∑





,  

( ) ( ) ( ) ( )' '4 2 1 ,l
l m ll m lm

l
G i l j kr Y θ ϕπ= − +∑ , 

where  

( ) ( ) ( ) ( ) ( )0exp 4 2 1 ,l
l l

l
ik x i l j kr Y θ ϕ⋅ = − +π∑


 . 

In this representation, the spectrum coefficients Cl are  
( ) ( ) ( ) ( ), d *m m m m
l l l l ll mm lC

η
η δ δ′ ′

′ ′ ′ ′Θ Θ ≡ Θ Θ =∫            (21c) 

where the power spectrum on the angular momentum l is 

( ) ( )2 21
2T l

l l
l C T

+
π

∆ =  in μK2                (21d) 
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We use the variables: 

averaged pressure ( ) 4
2

0

8, dGV k a P
ka

η

η η δ
′

= −
π′ ∫ , ( ) 28, GV k a P

k
η δπ′ = −  

optical depth ( )
0

dT en a
η

τ η σ η
′

′ = ∫ , ( ) e Tn aτ η σ′ = . 

The temperature (l, m)-moments are calculated from the evolution equations 

0 0 1
12 1 2 3

m m
l l

lm lm l m lm lm' k ' S
l l
κ κ

τ+
+

 
Θ = Θ − Θ − Θ + − + 

          (21e) 

with sources 

00 00S 'τ ′= Θ −Φ , 10 0bS v kτ ′= + Ψ , 11 1bS v Vτ ′ ′= +  

( )20 20 20
1 6

10
S Eτ ′= Θ − , ( )21 21 21

1 6
10

S Eτ ′= Θ − ,  

( )22 22 22
1 6

10
S Eτ ′ ′= Θ − −Φ  

( )20 20 20
1 6

10
S Eτ ′= Θ − , ( )21 21 21

1 6
10

S Eτ ′= Θ − ,  

( )22 22 22
1 6

10
S Eτ ′ ′= Θ − −Φ  

( ) ( ) ( ) ( )( )
0

0
0

0

,
d exp

2 1
lm

l m ll m
l

k
S j k

l

ηη
η τ η η η′ ′

′

Θ
= − −

+ ∑∫   

and ll mj ′  are spherical Bessel functions 

( ) ( )00l lj x j x= , ( ) ( )10l lj x j ' x= , ( ) ( ) ( )( )20
1 3
2l l lj x j '' x j x= +  

( ) ( ) ( )
11

1
2

l
l

l l j x
j x

x
+

= , ( ) ( ) ( )
21

3 1 d
2 d

l
l

l l j x
j x

x x
+  

=  
 

,  

( ) ( )
( )

( )
22 2

2 !3
8 2 !

l
l

l j x
j x

l x
+

=
−

. 

10.2. CMB Calculation Results 

The metric perturbations ,Ψ Φ  in k-space for k = 5 are shown in Figure 14, as 
a function of relative scale factor eqa a , where 30.9 10eq deca a −= = ×  at photon 
decoupling. Note the transition from high to low amplitude at decoupling. 

Density fluctuations for baryons, radiation, cdm δb, δr, δc, for k = 5 are shown 
in Figure 15, as a function of relative scale factor eqa a . The matter fluctua-
tions decay before or after decoupling, whereas radiation fluctuation stabilizes at 
a higher level. 

The calculated normalized scalar TT-correlation power spectrum of CMB, 

( ) ( )2 21
2T l

l l
l C T

+
π

∆ = , is shown in Figure 16, in μK2 over multipole order l, cal-

culated for the original Planck Hubble value 1
0, 67.74 km s MpcPH −= ⋅ ⋅ . Note 
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the characteristic decrease from the first to the second maximum and from the 
third to the following maxima. 

 

 
Figure 14. Metric perturbations, Ψ, k = 5 [31]. 

 

 
Figure 15. Density fluctuations δb, δr, δc, k = 5 [31], double loga-
rithmic plot. 

 

 
Figure 16. Temperature scalar TT-correlation spectrum  

( )2 1
2 l

l l
y T C

+
=

π
, [ ] 2Ky = µ , x l=  [31]. 
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The background Hubble parameter H0 influences the CMB spectrum, but the 
deviation δ = 1.3% caused by the calculated correction from chap. 5 is within 
measurement error.  

The plot in Figure 17 shows the difference between the power spectrum for 

Planck-Hubble-parameter ( ) ( )2 2
0,

1
,

2T P l
l l

l H C T
π
+

∆ = , and for the background- 

corrected Hubble-parameter ( ) ( )2 2
0,

1
,

2T Pc l
l l

l H C T
+

∆ =
π

, where  

0, 0, 1.043 70.6 0.4Pc PH H= × = ± , with maximum deviation of δ = 1.3%. 

In Figure 18 is shown the scalar TT-correlation power spectrum from Figure 
16, together with measurement data and its error bars. 

 

 
Figure 17. Power TT spectrum Hubble correction, max rel.dev. δ = 1.3% 
[31]. 

 

 
Figure 18. Temperature scalar TT-correlation power spectrum with 
measured data [22] [31], for measurements Planck, WMAP, ACBAR, 
CBI, and BOOMERANG.  

https://doi.org/10.4236/jmp.2024.152011


J. Helm 
 

 

DOI: 10.4236/jmp.2024.152011 233 Journal of Modern Physics 
 

11. Concise Presentation  

In the following, we present the fundamental equations, the solution process and 
results in form of schematic diagrams for the background calculation and for the 
CMB calculation. 

Lambda-CDM background calculation: 
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Lambda-CDM CMB calculation: 
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12. Conclusions 

The results for the background part are presented in schematic form in chap. 11 
Lambda-CDM background calculation. 

We start with the Friedmann equations  

( )2 2 21' 0
3

a k a aρΛ
+ − − =  

( )' ' 0
3

a a Pρ ρ+ + =  

with the variables in dependence of the scale factor a (inverting the scalefactor- 
time relation ( )a a x= ,  

( )x a  time,  
( )i aρ  density of component i,  
( )thE a  temperature,  

for components radiation γ, neutrinos ν , electrons e, protons p, neutrons n, 
cdm d, where the pressure ( )iP a  is eliminated using the component eos 

( ),i i i thP P Eρ= . 
In difference to the conventional ansatz,  
-the temperature resp. thermal energy is introduced as explicit function of 

time ( )thE t ; 
-we use the ideal gas eos for baryons, instead of the usual setting 0bP =  

(dust eos). 
As we show in chap. 5, this leads to a correction of 4.3% for the present value 

of Hubble parameter 0 01.043cH H= , which brings it into agreement with the 
measured Red-Giant-result, and within error margin with the Cepheids-SNIa- 
measurement. 

We carry out an iterated calculation with two steps i = 1 and i = 2, the results 
are shown graphically in chap. 10.2. 

Note the deviation of the temperature from the conventional linear behavior 
(brown) to the calculated first-iteration-value (blue) for later times. This pro-
duces also a slight “bump” for the Hubble parameter ( )H a , and there is a 
slight “kink” in ( )x a . 

The results for the perturbation part are presented in schematic form in chap. 
11 Lambda-CDM CMB calculation. 

We start with the perturbed metric  

( ) ( ) ( )( )2 2d 1 2 d 1 2 d di is a x xη η= − + Ψ + − Φ  

perturbations , , , , , Pθ σ δ δΦ Ψ , where  
Pδ  pressure 

j
jik vθ =  velocity 

δ δρ ρ=  relative density 

( )1ˆ ˆ
3

i j i
ij jk k Pσ δ ρ = − − Π + 

 
 stress 

, , , thP a Eρ  are background functions calculated already in the background 
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part. 
And τ = reionization optical depth is a parameter used for the CMB calcula-

tion. 
The perturbations result from (random) initial conditions and represent the 

random nature of structure formation.  
The resulting fundamental equations are transformed to k-space (i.e. Fourier 

transformed), and consist of two parts. 
The Einstein equations in k-space resulting from the perturbed metric ansatz 

( )2 23k H H Ga δρπ′Φ − Φ + Ψ =  

( ) ( )2 2k H Ga P ρ θπ′Φ + Ψ = +  

( ) ( )2 212k Ga P ρ σπΦ −Ψ = +  

( ) ( ) ( )2 2 212 2 4
3

H k H H Ga Pδ′′ ′ ′ ′Φ + Ψ + Φ + Φ − πΨ + + Ψ =  

and the thermodynamic: density and Euler (relativistic fluid) equation, resulting 
from the relativistic Boltzmann transport equation 

( )1 3 3P P PH δδ θ δ
ρ ρ δ ρ

  ′ ′= − + − Φ − −  
   

 

2 2 2P PH k k k
P P

δθ θ σ
ρ ρ
′ ′ = − + − − + Ψ + + 

 

The CMB power spectrum coefficients Cl depend on the angular moments of 
temperature correlation lmΘ , which obey the iterative differential equation in 
k-space  

0 0 1
12 1 2 3

m m
l l

lm lm l m lm lm' k ' S
l l
κ κ

τ+
+

 
Θ = Θ − Θ − Θ + − + 

 

with parameters, which are calculated from the fundamental equations.  
The actual numerical calculation is performed in program [31], based on a 

function library from [22]. 
Then a fit is carried out between the calculated parameterized coefficients 
( )l iC p  and tthe measured values ,l expC . 

The 13 fitted parameters 

0 0
d, , , , , , , , , , , ,
d

s
i b c s s t

np t H A n w m N r
kν ντΛ

 = Ω Ω Ω Σ 
 

 are calculated by the Plan- 

ck collaboration [32], and are not recalculated here. 
The fitted [32] and measured coefficients Cl are shown in a plot. 
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