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1. Introduction

The geometric structure of quantum gravity has been established to be disconti-

nuous and other theories of quantum gravity like loop quantum gravity consider
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the quantum geometry to be in the form of loops [1] while string theory consid-
ers quantum geometry to be in the form of strings [2]. We shall observe that the
results of the analysis of this paper based on the work of thermodynamic con-
strains of a modified white hole [3] [4] encompass the form of quantum geome-
tries as predicted by these two promising theories fundamental of physics. Pre-
cisely, it is shown that a full picture of complete quantum vacuum geometry is a
combination of the two quantum geometries. A full connection of between the
two quantum geometries is found through a number theoretic properties of the
constraints of the thermodynamics of the modified white hole. The quantum
vacuum geometry picture we found, indicates a clear depiction of the gauge bo-
sons and the scalar bosons supergravity lattice and how they are related and ar-
ranged in relation to the graviton which through the analysis suggests that it
may not be a gauge boson, but an independent quantum geometric force carrier
as discussed by [5]. This then shows that in the final analysis, the quantum va-
cuum geometry that we derived, is fundamentally as it sheds some light of mat-
ter creations facilitated by the Higgs scalar boson from supersymmetric vacuum
quantum geometry, through to symmetric breaking at the moment of big bang,
and into the well know mechanism of matter formation moment after the
big-bang

Our paper is structured as follows: Sections A and B, we analyse and list the
number theoretic properties and the Ramanujan recurring number properties of
the fundamental thermodynamic quantities of the modified white hole in the
presence of a cosmological constant at extremely low entropy. Then in Section C,
we apply these properties to quantum gravity and in the process we get a picture
of the nature of the quantum geometry of the modified white whole in terms of
octahedrons and a sphere, and we show that this quantum geometry has the
properties of quantum strings and brane/Instanton. In Section D, we illustrate
theoretic number connections to Planck multiple spectrum frequency and to the
hypothetical Gluino mass.

SECTION A: Analysis the equations of the modified white hole enthalpy
coupled to quantum Bose-Einstein condensate at extremely low entropy

The equations to be analysed in this section are from paper by [4]

2. Analysis of the Enthalpy of the Modified White Hole

The enthalpy of the modified white hole is given by

H (S)#{Sf{lz;zaln(%)v2 —abﬂ(gjm:l. (1)

T

We analyze the number theoretic properties and the Ramanujan recurring
number properties of the enthalpy Equation (1) as follows;
1) Exact result

The exact results of enthalpy Equation (1) is
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Which has the alternate forms;

27r(7r3/2ab\/g +zalog(S) - ralog () —1J

B Jzbs - S ’ ®
Zﬁ(ﬂa(\/;b\/? log (in —1}
N RN “
27r£7z3/2ab\/g +2ralog (\/\/gj —1}
) NN ' ®

The alternative forms Equations (3), (4), and (5) has the following expanded

1 \/S
Y2, | 4ralog| ——
277*ab s ( (—EJ 5

form

TBEs b s b s “
NEE Vo 7 Nroz
Assuming a, b, and Sare positive, the alternative forms are
_27[(7;3/2ab+7ra\/§log(5)—7ra Slog(7)-s) -
J7bs - 5% ’

2;;(,;3/2 (—a)b+zav/s log [gj + \/gj
Jzbs —s¥* ' ®

from which we obtain the expanded logarithmic form as
sVor 2abz™?  S™?2az’logz  SV?(-2)ax’log(S) ©

N N 3 ES N N

and assuming that S>0, \/g/\/;>0, and S/ﬂ'—(b\/g)/\/;¢0, then we
get the alternate form

27{—ab7r3/2 ++/S —2a7+/S log (ﬁ}]

(b7 —5)s |

(10)

and the its derivative
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da Sy \/§
27 [\/;b\/g +log (ij}

Jrb/s -

2) Indefinite integral
Equation (11) has the following indefinite integral

2[1—ab7z3/2 L oan Iog(\/gn
Aorls meml )

bvS S

NP

27 17r3’/zazb\/T+7za2 log Vs -a
2 s NS

=— + Constant

Jrb/s -S
from which we obtain the alternate forms
ﬂa(ﬁa/z (—a)b\/g + 7[8.(|Og(7l') —log (S)) + 2}
Jrb/s -S ’
za(na(«/;b\/T +log (S)J - 2]
S T

Vs (Vb -3 ’

2 [Laap 2 1
a\/gs a2 _\/;az_ﬂ'a S\/g

b \ 3/2 L1 b2
b (éj (Vab-Vs) b \g
27a’ log (\EJ Z[abzx/g —a%s%%log [\/\ED 9292

T T

b2 + b4(\/;b—\/§) b

27r3/2azlog(ﬁj ”zaz\/T Za(bz—aSIog[ B

+

bv/s Js b’
Zﬁa[bz —aSlog (\/\gD
b°/s
Assuming a, b, and Sare positive, then the alternate forms are
na(—;r”ab — zav/S log(S)+ zav/s log () + 2\/§)
Jrbs - 5% ’

S5

+

(11)

(12)

(14)

(15)

(16)

(17)
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e 2815)_150)

7% B 2 2 . 2na 18)
N NESNCE) Jrb/s —/s Jrbys —/s
7a ﬂa/z(—a)b+7rax/§log LN
| )

J7bs —5¥?
The expanded logarithmic form of the alternate forms Equation (17), (18),
and (19) are then given by

1

2 52 |4
2ar a'br \E . a’r*log(r) N a’r*log(S)
bVZVS -5 bVzVS -5 bVzVS -5 byry/S -S
and assuming that S>0, «/g/\/; >0, and /7by/S —S =0, then we get the

alternate form
ar| -2+ ab7r3/2\/T +2arlog Vs
S N
bVz/S S

(20)

(21)

and then its derivative

S Zﬁ(—a+;azbﬁ3/z\/f+a ﬁlog[\/\/:D

a NN

Zﬁ(ﬂmab\/g +27a Iog[ﬁ} —1]

Jrb/s -S

(22)

3) Indefinite integral
We obtain the indefinite integral of the Equation (22) as

27 —a+1a2b7r3/2\/T+a27rlog Vs
2 S Jr ;
a

J= by/7/S — S

(23)
7a (ﬂwab\fS +27a Iog(\/\gJ —3]
S(J;b«/g - S) + Constant
which has the alternative forms
ra’ [7[3/2 (—a)b\/g +7ra(log(7)-log(S))+ 3}
3Jzb/s -3s ’
za (ﬁa[fb( + Iog(in - 3}

3Vs (Vb -5 ’

(24)

(25)
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ﬂa3\/§\/§

3b’

3 (1o
_a \/;S ~ a3 ~ \/;a
3 32
3b4[;] (Vab-5) 30’ L

S
Js Js
27a°log| Y= 2,3 |1 27%%a%log| Y2 2,3 [1
ol p) ey e R) et

3p? 3 3by/S 3J/s 26)
a2[2as log (\@J—szj \/;aZ(ZaS log \/gJ—Bb3]
3b* 30°S

3a2b%/S - 2a°5¥% log [ﬁj
3* (V7b -3

Equations (24), (25), and (26) has the expanded form

1 2,3 VS
52,3 |+ 2z°a’log| ——
7 ab\/s [\/ﬁ] ra’

+

- - + (27)
3(VrbVs -s)  3(\abys-s) abys s

and assuming a, b, and Sare positive, then we obtain the alternate form

7Z'a2(_7z3/zab—7[a\/§|og(5)+7za S Iog(;r)+3\/§) 08)

28
3Jzbs -35%
which has the expanded logarithmic form
1
3} 5/2
2 a’or \/7 3_2 3_2
3a‘r S a’z’log(z) | a’z°log(S) (29)

+ + + .
3b3/7+/S —3S ~ 30vz/S -3 3byz/S —3S  30y/7+/S -3S
and assuming that S >0, \/§/\/; >0, and x/;b\/g—S #0, then we get the

alternate form
a’r| -3+ ab;ra/z\/T +2arlog Vs
S Jr

3(bvz/s -5
which has the derivative
3
a’r| —3+abr? \/T +2arlog ﬁ
o S N
oa 3(bvz S - 5)
(31)
za 7z3/2ab\/T +2ralog Vs 2
i s+ i
- Jrb/s s
4) Indefinite integral
DOI: 10.4236/jmp.2024.151001 6 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.151001

M. Nardelli et al.

The indefinite integral of the Equation (31) is

27{—3+ ab;rs/z\/7 +2arlog [\/\/:B

I- 3(bv/7 /s - 5)
|

ra [n3/2ab\/7+2ﬁalog[\/\/:]

=— + Constant

4(3JZbJ§ - 25)

da

(32)

.p

5) Volume analysis

Because of supersymmetry of space at extremely low entropy, then it is there-
fore possible to consider the vortices of the quantum vacuum schematized as
cubes or octahedrons loops. We also assume that the quantum Van der Waals
fluid [4] [6] are characterized by smooth spheres. In reality, the quantum va-
cuum will have n-dimensional hyperspheres in which the compactified dimen-
sions “roll up” and octahedrons representing the “fluctuations”, containing vi-

brating quantum Van der Waals fluid particles.
Therefore, for V = %\/Eas (octahedron volume) and V = %ﬂr3 (sphere
volume), where r= % , we get the following;

a) Octahedron volume

From indefinite integral Equation (32) we obtain the following exact result

a [ﬁa3/2ab\/g + ZﬂalogEﬁJ - 4J

(33)
6v2(3J/7b/s -35)
which has the alternative forms
;zaﬁ(ﬁs/z(—a)b\/nga(log(;r)—Iog(S))+4J
, (34)
18(+/27bV/s —ﬁs)
S
ra (m{fb(ﬂog( )]—4}
T
- > (35)
1828 (Vrb-+/S)
7 E 3/2 a7 7 l
_a\/;s_ o _\/;a _ﬂa\/g\/g
4 3/2 2
1820 g e (lj (Vab—5) 18b3\F 18V2b
S S (36)
Js J Js
ralog| X2 | 327 |1 2¥%Q7log| X2 | 2.7 [1
G i A
9y/2b? 18/2b 9W2bJS  18V24/S
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a’ [aS log (ﬁj - 2b2] \/Zaa {as log (\/\éj - ZbZJ
9V/2b* 9b°/S
_a USSE Iog[\/\/:) 2a°h?/s
9V2b* (\zb -5
The expanded form of Equations (34), (35), and (36) is
)
247h, |1 23’ log| Y=
~ 7a b\/; B ra og(\/; N J2ra®
632 (3\/;b\@ —35) N2 (3\/Zb«@ —38) 3(3\/Zb\@ —33)

and assuming a, b, and S are positive, we obtain the alternate forms of Equation
(37) as

(37)

a’ (nS/Zab + 7av/S log(S) - zav/S log(7) - 4\/5)
18V2(/bs - $¥°) ’

32
ra’ (”\/,Sab +rralog(S)-zalog(r)- 4}

18(+/27b/S - /28 ) ’

which has the expanded logarithmic form given by

—4\/—a %(—1) \/§a7b7r5/2
bJ_ 55— blavs-s . (39)
%ﬁabzz og(x) %(—1)J§a7n2 log(S)
byz/S - CNENEES

The alternate form of Equation (39) is

67:[—4 + ab7z3/2\/7 +2arlog (\/\/:D

(38)

40
18V2 (b7 /S - 3) 0
and its derivative is given by
r| -4 b3/2\F 2arl (IJ V2
i_(a;{ +abz S+a7rog\/7 ( a)
oa 3(4(30V7 5 -33))
(41)

[77[3/2ab\/7 +7ra Iog( S ) 24J
S Vs

18(\2rb5 —25)
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The indefinite integral of Equation (41) is then given by

Sz —4+ab7z3/2\/T+2a7zlog Vs
S N ;
a

J- 612 (3077 /S -35)

(77;3/2ab\/7 + 77ralog( S J 32}
S V4

=— + constant

336+/2 (3«/;b\/§ - 33)

(42)

b) Sphere volume

From indefinite integral Equation (32) we obtain the exact result

z’a {ﬁs/zab\g+2ﬂalog[ﬁ]—4J

24(3«/Zb\@ - 33)

(43)

which has the alternate forms

7*a® [7:3/2 (—a)b\/g + a(log(7)—log(S))+ 4j
72(J7bys - ) ’

(ool

72S (\7b - /S

7 i 5/2 7 l 32

- 72p° - 5/2 - 32 72p*
72b2(éj (Vab-+/S) 72b5(;j

2 \/g 1
29237 _7[ ’a \/7\/7 z°a |Og[\/;] ﬂ5/2a7\/g

- 2 2
Top? \E 72b 36b 72b

o () L ) )
/alog(\/;J_ﬂa\/;_aS[aSIog(\/; 2b
36b/S 72s 36b°
x/;aex/g[as Iog(\/\éj—szJ 72'86(&8 log (ﬁJ—szj
360° - 36b*
;z3/2a6 [aS |09(£J _ ZbZJ ) 2aeb253/2 _ a7ss/2 |Og(\/\§]
360°/S 36b° (\/zb -5 )

(44)

(46)

and the expanded forms of Equations (44), (45), and (46) are given by
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1

2,70 [+

) r'*a b\/g ) 7°a log(S) . 7a’logz . 72ab
72J7bJS =728 7247bS — 725 727b/S - 725 18(J;b£ _s)
(47)

1 3,7 \/g

72,7 |+ 'a Iog —=

7a b\/g (x/;J r2a®

_24(3«/;b«/§ -35) _12(3«/;b«/§ -35) " 6(3vzbyS -33)

Now assuming that a, b, and S are positive, then we obtain the alternate

forms
ﬂzas(”a/zabwza\/glog(s)—ﬂa S Iog(ﬁ)—4\/§)
72(/zbs - %)
32
nzae(?+;za|og(S)—7ralog(7r)—4]
72(Jzbys - )

with the expanded logarithmic form

iez 1_17b7/2\/T173 i_73
7248.7[ 72( )a'bz s 7,27 log(7) 72( 1)a'z’log(S)

bVzvS —S  byadS—-S  byrvS—5 | byavs-S

The alternate form of Equation (49) is

alr?| 4+ ab7z3/2\/T +2arlog Vs
s Jr

- > (50)

72(b\/2\@—s)

(48)

. (49)

with the derivative

a Hb(lg[m[m

oa 3(4(3b&«@ —33))

r’a’ [—77[3/2ab\/T —7ralog (SJ + 24]
S T
72(J7bys -3
and the indefinite integral

1 Js
a’z?| -4 +abz¥? |= +2arlog| Y=
( Vs TR,

J= 24(304/7/5 - 35

za’ (7n3/2ab\/g +7ralog (S] - 32]
T
=— +constant

4032(«/;b\/§ —s)

¢) Number theoretic properties of the volume

(51)

a

(52)
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i) DN Constant
Now dividing the two indefinite integral results for the octahedron and the

sphere volumes; Equation (42) and Equation (52) respectively, we get

6 3/2 1 \/g
i n(—4+ abz? \/QJF 2ar log (\/;B .
6v2(30/7 /S -33)

[M ab\/T+77ralog(SJ 32]
T

=— + constant

33642 (3J2b£ - 35)

a’z’ [—4 +abz¥? \/7 +2arlog (\/\C]]

J= 24(3b/7 /S -35)

s S
2a7(77r2ab +7nalog(j—32j
S Vg

=— + constant

4032(/xbvs - )
which simplifies to the exact result

6v2(zby'S - )
7r(3\/;b\/§ —33)

of which the expanded form is

2
6\/;b\/§ ) 625 56
3J7b/S - 35 ﬂ(sﬁbﬁ —33)

with the alternative form

(53)

and

da

(54)

(55)

2\/> =0.9003163161571.- (57)
b4
which is a DN Constant.
ii) The property of the function
The function has an even parity

iii) Indefinite integral

6v2(bVzVS -S) o

db= b + constant (58)

ﬁ(sb\/E\E—ss) ™

iv) Global maximum

max il = at (b,S)=(—% —%j (59)

((336@)(3\/2@\@)—33))”2 7
4032(xbvs - )
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v) Global minimum

. V4 _2«/5 . _ _g _1
m ((336&)(3&@6)—33))”2 = = 09 ( 5° 2) (0

4032(\/Zb£ - s)

vi) Limit

_ 6V2(bVz S -S) o3

“ (s -3s) 7

lim, . ( NS ) 0.900316 (61)

 62(bNEE-S) o5

limg .. H(Sb\/;\/§—38) = ~0.900316 (62)
vii) Series representations

z 4
2 - 1 k (63)
7((336v2) (347 (095 ) - 35 (-1 (_) (2-2,) 2,*
k

4032(\/zbvs S 3 X, ; i

for (not(z, e R and —0<z,<0))

7 ((336\/5)(3«7; (bvS )—33))
4032(/xbv/s -5

4 (64)
- 1
~1)“(2-x) xk(—j
rexp|ir arg(2-x) \/;Zw . ) 2
2z k=0 k!
for(xeR and x<0)
4 1 yalarse-w)fen)] Zf%fl/zLarg(zfzo)/(z;r)J
Z, 0

(65)

7*((336v2) (37 (b5 )—33)): (- (_;) (2-2,) 2,*
4032(xbv/s -8 D i

where n! is the factorial function, (a),, is the Pochhammer symbol (rising fac-
torial), R is the set of real numbers, arg(z) is the complex argument, |_XJ
is the floor function, and 7 is the imaginary unit.

viii) Definite integral over a disk of radius R
NANENEEN

_ 2
J.J-b2+sz<R2 ﬂ(S\/;b\/g—SS) dbdS = 2\/§R (66)

Definite integral over a square of edge length 2L
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62 (b7 /S =S
t \F< Vrds )deb:&/_—ZLZ (67)

LI ﬁ(sbﬁﬁ—ss) i

3. Analysis of the Thermodynamic Volume of the Modified
White Hole

The thermodynamic volume of the modified white hole is given by

—5ab£7srj/2 +2ab’ ( S j+ 2a-— (”;))1/2 + (ab(gjw - ZaJ In (78[) +

V= . (68)
172
b[S) _S
Vs Vs

The analysis gives the following number theoretic properties and the Rama-

RN

nujan recurring number properties of the thermodynamic volume:
1) Alternate forms

The thermodynamic volume Equation (68) has the following alternate forms

2 2_@
a(z’;b —5\/_b\f+2]+a(\/7b\ﬁ— jlog(%}LT\E, (69)
7a 27Z'b2+\/;b(log(s)1 _Iog(”))—ZS(Iog(S)—1—|og(zr)) 8 (Vzb-2V5s)
B

. (70)

7S

Assuming a, b, and S are positive, then the alternative forms Equations (69),
and (70) becomes

(\/;b - 2\/§)(27r3/2ab +7av/S log(S) - zav/s (1+log (7)) —\/§)

pry (71)

and the derivative is

a%[_Sab\/%J‘zazz)”ua—\/Z_s{ab\ﬁ—Za]Iog(ij %J .
Z”b Sfb\f (\/Eb\/%—z]log[;jﬂ

The indefinite integral is then given by

J'[_5ab\/§+(2a22)”+za_\/i_s+[ab\/§—2ajlog(%j+§Jda
_ra bz \/_a b\/7 az[\/;b\/g ZJIog( j (73)

b
: (H@J

+a’+

+ constant
v
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Dividing the alternate form Equation (69) by

b\/g_i (74)
T T

we obtain the exact result

,
(ng SJ—b\f+2J+a[;/_bf 2)Iog(i)+z\/§‘ (75)
b|S_S

2) Volume analysis

From the exact result Equation (75), and with V =%\/§a3 (octahedron

volume) and V =%7rr3 (sphere volume), where r=%, we obtain respec-

tively;
a) Octahedron volume:

The exact result

, b
J2a® a(zﬂb 5\/—b\/7+2J+a(\/—b\/7 Zjlog(i)+7r\/§
bJS S (76)
ER
b) Sphere volume:
The exact result
,_ b
ra’ a(zﬂb 5\/>b\/7+2]+a[\/>b\/7 2]|og[ij+7;/§
bJS S 77)
ER

3) Number theoretic properties of the volume
By dividing the two exact results Equations (76), and (77), and simplifying by

making the input ?2 x % , we get the results

6
22 o8)
/s
With the decimal approximation
0.9003163161571060695551991910067405826645741499552206255714374712.-- = &
7
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which is a DN Constant, and also it has property that it is a transcendental

number. The transcendental numbers have important properties in physics and
in particular in astrophysics, particle physics, cosmology because they allow us
to reformulate and resolve unresolved problems, and in our case, the geometry
of quantum gravity of the very early universe [7].

The series representation of Equation (78) is

e
vz B a

3£= . (79)
6
for (not (z,€eR and —w0<7z,<0))
1
(' (2= x5
.| arg(2-x) w 2
N 26Xp[|7{2”D\/§Zk_O k! k
= (80)
3z r
6
for(xeR and x<0)
1 k
arg(2-z9)/(27 1k(—j 2-12 Z_k
2[1ng<z)/(2>JZ]/Z(lﬂarg(z_%)/(M)J)zw() 25 o) Z
0 k=0 1
\/Ez z, k! (81)

3 z
6

4. Analysis of the Enthalpy Energy Density of the Modified
White Hole

The enthalpy energy density of the modified white hole is given by

_HE)
Pent = v (82)

and dividing the exact result Equation (2) by the alternative form Equation (69),

2[1—27ralog[ /SJ—abﬁ ”J
S /S T S
—— +b.|=

z 2 . (83)

Ly 22
a(2—5b\/;\/§+ stﬂj+7;/§+a(—2+b\/;\/§]log(i)
o

Then the analysis gives the following number theoretic properties and the

we obtain

Ramanujan recurring number properties of the enthalpy energy density. The

exact result is
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2(;;3/2 (—a)b\E - 2na|og(\/€J +1]

,  (84)
Z_Lb
2
a(Zﬂ'b _5\/;b\/T+2J+a[\/;b\/T—2Jlog(s)+ Js
S S S Vs s
and for S =12.566---=4x, we obtain
2(—”2ab—27zalog(2)+1)
, (85)
2 2—9
a(b—%+2j+log(4)a(b—2j+ 2
2 2 2 V4
which has the alternate forms
27z(ra(b+log(16))-2
: 7(a(b+ log(16)) )b 6)
m(z(b_4)(b_1)j+ﬂ|og(1e)a(2_2j_b+4
2z(ra(b+log(16))-2
: 7(7a(b-+log(16)) 2) )
27ra(2(b2_5b+4)j+7rlog(16)a(2—2)—b+4
27r(7ab+4ralog(2)-2) )

h 2
27a L +27rlog(4)a(b—2)—b+4
2 2 2

The alternate forms Equations (86), (87), and (88) have the expanded forms

4rralog(2) zrab
2 2
N LA +2Iog(2)a(b—2)—b+2 a0, +2Iog(2)a(b—2j—b+2
2 2 2 2r w 2 2 2 2r &
2 4ralog(2
e b b 2 (b’ 5b g()b 5 2
al ———+2 +2Iog(2)a[—2j—+ al ———+2 +2Iog(2)a(—2)—+
2 2 2 2r & 2 2 2 2r w
B ab . 2
2 2
a B30, +2Iog(2)a(b—2)—b+2 a0, +2Iog(2)a[b—2)—b 2
2 2 2 2r 7 2 2 2 2r «
with the expanded logarithmic form
4
1 ) 1
4—b+27za(2(4—5b+b )j+4ﬂa(2(—4+b))log(2)
2
2abrz (90)

b 2;;a@(4—5b ¥ bz)}r 47ra($(—4+ b))log(Z)
- 8abr’ log(2)
4-b+ 2ﬂa@(4-5b ¥ bz))+ 4;za@(—4+ b)jlog(Z)
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which has the alternate form

27(2—abz —4arlog(2))

4—b+Zﬂa(;(—4+b)(—1+b)j+ZHa(;(—4+b))Iog(4)

The root for the variable bis
b 2—ralog(16)
a 7a

1) Indefinite integral

The indefinite integral for the alternative form Equation (91) is

2(1—ag”—2a7rlog(2)j

2 b

-~ 2

—24a 2—5—b+b— +a(—2+bjlog(4)
2 2 2

T

da

J

27[(;7[32 (b+1log(16))- 2aj
=-— 1 b + constant
2ﬁa(2(b2 —5b+4))+7rlog(16)a(2— 2)—b+4

from which we obtain the alternate forms
7(-1)a(rab +4zalog(2)-4)
rab® —5zab + 2ablog(2) + 4za—8ralog(2)-b+4’
7a(7a(b+log(16))-4)
(b-4)(za(b-1+log(4))-1)’
2ra(7a(b+log(16))—4)
(b-4)(7a(2b-2+1log(16))-2)

The expanded form of Equations (93), (94) and (95) is
7*a’log(16)

7ra(b2 —5b+ 4) + 7[&(2 - Zjlog (16)-b+4
z°a’b

a(b2 —5b+4)+7ra(g—2]Iog(16)—b+4

dra
+

a(bz—5b+4)+7za(2—2jlog(16)—b+4

Assuming a, b, and Sare positive, then we have the alternative form
dra

7:61([32 —5b+4)+47ra(g—2)Iog(2)—b+4

7*a*(b+4log(2))

7ra(b2 —5b+4)+47za(2—2)Iog(2)—b+4

(91)

(92)

(93)

(94)

(95)

(96)

(97)

(98)
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From which the expanded logarithmic form is

darx
4—b+4ar —5abr + ab’r —8ar log(2)+ 2abrrlog(2)

B a’br? (99)
4—b+4arx —5abr +ab’r —8arxlog(2)+ 2abrrlog(2)

4a’z? loglog(2)
4—b+4ar —5abr + ab’r —8arlog(2)+ 2abrrlog(2)

The alternate form of the Equation (99) is

2ar(-4+abz +arlog(16))

- , (100
8—2b+8ar —10abr + 2ab’z —4arlog(16) + abr log(16) (100)

with the roots are

a=0, b—4=0,

a0 b:4—47zalog(2),
ra

8z°a’ +167°a’ Iog(2)2 +24r7’a’ log(2)—327a—40ralog(2)+24+0

_ 4—ralog(16)
B ra

(101)

2) Series expansion
The Taylor series expansion about a=0 is
4ra 7@’ (3b—4+log(16))
b-4 b-4
a’ (7:2 (6b2 +b(5l0g(16)-14)+8+ log (16)* —6log (16)))
2(b-4)

*(3b- 4+log(16 ))

a4(7z3(2b—2+log(16 ) (102)

(
4b-2)
a*(7°(20~2-+10g(16))’ (30— 4+ log(16))

B 8(b—4) +o(a’)

and the Laurent series expansion about a=0 is
2a(7(b+log(16))) 4(30-4+1log(16))
“(b-4)(20-2+10g(16)) " (b—4)(2b- 2+ log(16))
8(3b—4+1log(16)) 16(3b—4+1log(16))
ra(b—4)(2b-2+log(16)) o (b—4)(2b-2+log(16))’

(&)

The derivative of the alternative form, Equation (100) is

(103)
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5 2;;(—2a+;a27r(b+log(16))j

@l 4 +§ﬂ(a(4—5b +b?))+ n(a(—z +2D|09(16) (104
27;(7z2a2 (20° +b(log(16) - 2)log (16)) - 47a(b+log(16)) —8)
(b—4)(a(2b-2+log(16)) - 2)’

With the indefinite integral given by

27r(—2a + %azzr(b +log (16)))
da

e
" (b-4)(20- 2+Iog(16))( * (b-+1og (16))(2b - 2+ log (16))

4a(3b 4+log(1 )(Zb 2+1log(16))

(105)

8(3p-4+ |og(16))|og(2 —a(2b—2+log(16)))

2
v

] + constant

Taking the limit of alternative form, Equation (100) as b — too, we get

2;;(—2a +%a27r(b +log (16)))

4-b+a(4-5b+b’ )7r+a( 2) log (16)

lim, ., - =0,  (106)

3

and for V =%\/§a3 (octahedron volume) and V =%7zr (sphere volume),

where r= % , we obtain the following respectively;

a) Octahedron volume

For the octahedron volume we have

2\2ra’ (;naz (b+1og(16))- ZaJ
B[ﬂa(bz —5b+4)+7ra(2— 2j|og (16)-b +4j

and plotting this result, we obtain the following 3D and the contour plots that

, (107)

can be related to a D-brane/Instanton.

The key observation from Figure 1 and Figure 2 and as confirmed by [4], is
that at a=1, which is taken as the energy density of the universe at the Big
bang, with b=0 the zero spacetime volume, the vacuum geometry brakes/or
there is symmetry breaking on the vacuum quantum geometry. We see from
the plots as the vacuum spacetime break/tear apart. Continuing further, we
obtained the following properties of the Equation (107), that the alternate

forms are
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-10 05 00 05 10 15 20
a

Figure 2. Contour plot.

V2 (-1 (zab+ 47alog(2)-4)

, (108)
3(zab” ~57ab+27ablog(2) + 4za -8ralog(2) b+ 4)
J2ra*(za(b+log(16)) -4
__2ra'(ra(b+log(16))-4) (109
3(b—4)(ra(b—1+log(4))-1)
227ra* (ra(b+log(16)) -4
- (za(b-log(16))- ) ) (110)
3(b-4)(7a(2b—-2+log(16))-2)
The expanded forms of Equations (108), (109), and (110) are
J27%a® log(16)
3(ﬂa(b2 —5b+4)+7ra(2— 2)Iog(16)—b+4)
B J27%a%h
b
3(ﬂa(b2—5b+4)+72'a(2—2)'09(16)—b+4) (111)
4\/§7za4
" b
3(72’&([‘)2 —5b+4)+;za[2—2jlog (16)—b+4]
. ~2\27%a°b - 2y27%a° log (16) + 82 7a"
67ab’ —307ab +3rablog(16)+ 24ra—127alog(16)—6b + 24
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and assuming a, b, and Sare positive, then we have the alternative form

f27a"
3(7ra(b2 —5b+ 4) + 47za(2 - 2) log(2)-b+ 4)

(112)
J2rz*a® (b+4log(2))
3(7[&([}2 ~5b+4)+ 4ﬁa(g - 2)I09(2) ~b+ 4}
from which the expanded logarithmic form is
a2aln
12-3b+12ar —15abz + 3ab’z — 24ar log(2) + 6abr log(2)
- 2albe’ (113)
12 -3b+12ax —15abr + 3ab’z — 24ar log(2) + 6abr log(2)
. 4/2a°7% loglog(2)
12-3b+12ax —15abr + 3ab’z — 24ar log(2) + 6abz log(2)
with the alternate form
22a* (-4 +abr + arlog (16

3(8-2b +8ar —10abr + 2ab’z — 4ar log (16) + abr log (16))
The roots of the alternate form Equation (114) are
a=0, b—4+0,

4—Aral 2
a0, b Am4malog(2)
wa

87°a’ +167°a” log (2)2 +24r7°a’log(2)—327a—407ralog(2)+24 0,

be 4-ralog(16)

(115)
ra
Furthermore, the Taylor series expansion about a=0 is
4(x/§7r)a4 as(x/EﬂZ(Sb—4+log(16)))
~3(b-4) 3(b-4)
a® (7;3 (6b2 +b(5log(16)—14)+8+log (16)* —6log (16)))
) 3(v2(b-4))
2 (116)
a’ (7 (2b-2+10g(16))* (30~ 4+ log(16))|
B 6(v2(b-4))

a®(7°(20-2-+10g(16))’ (30 -4+ log (16))
- 12(v2(b-4))

+0(a’)

and about a=o is
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2a‘(V2r(b+1og(16)))  4J2a®(3b—4-+log(16))

~3((b-4)(2b-2+log( 6))) 3(b- 4(2b 2+log(16))’
82a’(3-4+log(16))  16v2a(30-4+log(16))
+37r(b 4)(20- 2+Iog(6) 77 (b—4)(2b—2+log(16))’

)
324/2(30—4+log(16) ))) +O[(1j]

37°(b—4)(2b—2+log(16 a

(117)

The derivative of the alternate form Equation (113) is
1, 3
ol [Zﬁ(—2a+2a 7r(b+log(16))jj(«/§a )
ca (4 b+a(4- 5b+b2)7z+a( gjfrlog(m))

:(4J§ﬂa3(2n2a2 (2b* +b(log(4096) - 2) +(log (16) - 2)log (16)) (118)

+7a(-17b+12-11log(16)) +16))/(3(b —4)(7a(2b—2+log(16)) - 2)2)
and the indefinite integral is

) 2\/§a37r(—2a + %azn(b +log (16)))
3(4—b+a(4—5b+b2)7r+a( gjnlog(lﬁ)]

da

15a* (30— 4 +log (16))(2b — 2+ log (16))*

T

:ﬁﬁ[—GaS(b+ log(16))(2b—2+ Iog(lﬁ))5 +

, 402°(30—4+log(16))(20 -2+ log(16))’ , 120a" (30— 4+l0g(16))(20 -2 + log (16))’ 1)
72'2 72'3

480a(3b—4+log(16))(2b—2+log(16)) 960(3b—4+log(16))log(2—7a(2b—2+1log (16)))J

+

+
4 5
T

3

/ (45(b ~4)(2b—-2+1log (16))6 ) + constant

b) Sphere volume

For the octahedron volume we have
1
r’a’ (era2 (b+1og(16))- ZaJ
3(7ra(b2 —5b + 4) + ﬂa(g - 2)Iog(16)— b+ 4)

And similarly plotting this result, we obtain the following 3D and the contour

> (120)

plots that can be related to a D-brane/Instanton.

The observation in Figure 3, and Figure 4, is the same as in Figure 1, and
Figure 2. Continuing further, we obtained the following properties of the Equa-
tion (120), that the alternate forms are
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Figure 4. Contour plot.

r’a*(7ab+4ralog(2)-4)

3x 2(7z'ab2 —Sﬂab+Zﬂablog(2)+47ra—8ﬂa|og(2)_b+4) , (121)

i za4(;za(b+log(16))_4) | .
6(b—4)(za(b—1+log(4))-1)

z2at (ﬂa(b+|og ) 4) -

3(b—4)(ra(20-2+log(16)) - 2)

from which the expanded forms are

7a’° Iog 16

G(na(b ~5b+4) +7za[ 2 |log(1 b+4j

+

6[ a(b* ~5b+4) +7za[—2jlog b+4j
(124)
)

6( a(b*~5b+4) +7ra(— log(16) b+4j

. -r°a’b—r’a’log(16) + 4z%a*
67ab’ —307zab +3rablog(16)+ 247a—127alog(16)— 6b + 24
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Assuming a, b, and Sare positive, the alternative forms are
27%at

3(7za(b2 —5b+ 4) + 47ra(2— 2jlog(2) —b+ 4)

(125)
*a®(b+4log(2))
G(ﬂa(bz ~5b+4)+ 47[3(2— 2j|og(2) ~b+ 4j
and thus the expanded form is
2a'z’
12-3b+12ar —15abz +3ab’z — 24ar log(2) + 6abr log(2)
1 a’br®
+ 2 (126)
12-3b+12ax —15abrx + 3ab®z — 24ar log(2) + 6abz log(2)
) 2a°7° loglog(2)
12-3b+12ar —15abz + 3ab’z — 24ar log(2) + 6abr log(2)
from which the alternate form is
a‘r?(-4+abr +arlog(16)) (127)

 3(8—2b+8ax ~10abx + 2ab’z — 4ar log (16) + abr log (16))

with the roots

a=0, b—4%0,

4—Aral 2
a0, b Am4malog(2)
wa

8z°a’ +167°a’ Iog(2)2 +247a’ log(2)—327a—407log(2)+ 24 =0,

4—ralog(16)
za '

b= (128)

The Taylor series expansion about a=0, is

27t a®(7°(3b—4+1log(16)))
3(b- 4) 6(b—4)
a® (= (60" +b(5log (16)~14) +8-+ log (16)" ~ 6log (16)))
12(b-4)
a’(#° (20-2+l0g(16))’ (30— 4+log (16)))
24(b-4)

(129)

a*(#° (20-2+10g(16)) (3-4+log(16)))
} 18(b—4) +0(@’)

and about a=m,is
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) a'(n*(b+log(16))) . 277a*(3b—4+log(16))
3((b—4)(20—2+log(16))) 3(b—4)(2b—2+1log(16))’
4a*(3b-4+log(16)) . 8a(3b—4+log(16))

. ; (130)
3(b—4)(20-2+1log(16))" 37 (b—4)(2b—2+log(16))
16(30—4+log(16)) +O([1n
372 (b —4)(2b—2+10g(16))" a
The derivative of the alternate form Equation (127)
1 a)’

; (271’(—23.+23.271'(b+ Iog(lG))D(M(Zj ]

ca 3x[4—b+a(4—5b+b2)7z+a(—2+gjizlog(m)j

=—(27r2a3(27rza2 (2b” +b(log (4096) - 2) + (log (16) - 2)log (16)) (131)

+7a(-17b+12-11log (16))+16))/(3(b—4)(7ra(2b— 2+log(16))- 2)2)
and the indefinite integral is
a‘z? (—Za + %azﬂ(b +log (16))]
[- da
3(4—b+a(4—5b+b2)7r+a(—2+gjnlog(lﬁ)]
=7 [—6a5 (b +log(16))(2b -2+ log (16))’ + 164" (304 +10g(16))(20 =2+ g (16))
T
, 402°(30—4+log (16))(20 -2+ log(16))’ , 120a" (30— 4+10g(16)) (20 -2 + log (16))° 132)
72'2 ﬂ3
, 480a(30 -4+ log (16 )(2b—2+log(16)) 960(3b—4+log(16))log(2—ra(2b—2+log (16)))J
+
72'4 72'5

/(90(b~4)(20-2+log(16))’ |

¢) The ratio of the Octahedron volume to the sphere volume and its number
theoretic properties
Taking the limit

1
a’z? (—Za + Eazzr(b +log (16))]

=0, (133)

Ilmb%ioo_

3(4—b+a(4—5b+b2)7z+a(—2+gjnlog(m)J

and thus, dividing Octahedron volume Equation (107) by the Sphere volume
Equation (120), and simplifying by the factor

_2\@” (134)
/2
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we obtained

32
2— (135)
7
with decimal approximation
0.90031631615710606955519919100674058266457414995522206255714374712 = &
T

(which is DN Constant, and it is also a transcendental number as well). It has the

following series representations

1 _
asn ) -
B NI k
2_:/3” - 0 . k! (136)
for (not (z,eR and —w0<7z,<0))
1
(-1 (2=%)" x*| -5
| arg(2- X)D - 2
2exp[l7{ \/;Z k
_ 2 k=0 k!
for(xeR and x<0)
k 1 k __k
12| arg(2-29)/(27 -1 (—) 2-1 V4
2 i Leate=zo)/2m)] 1/2(1+| arg(2-29)/(27) || o ( ) 2 k( 0) 0
—2J2x z % ZK:O k!
— = 0 - (138)

5. Analysis of the Equation of State of the Modified White
Hole

The equation of state of the modified white hole is given by

T(V,P):—(l—ij 12 : V2 (1_alnr_a_bj
Az )27r| 271" —r° +br 2 4r

27Zr2(r r bjP’Li ab

(139)

8zr 1671

The analysis gives the following number theoretic properties and the Rama-
nujan recurring number properties of the equations of state:

The exact result is

v —a—b—ialog(r)+1 PR L
1 r 2 dr 2«
1- = 2 +P|V -
4r br+2zr? —r 1
Az
. S 2y
2xr 16zr 8zr

and considering S =47, we obtain V'to be

DOI: 10.4236/jmp.2024.151001 26 Journal of Modern Physics


https://doi.org/10.4236/jmp.2024.151001

M. Nardelli et al.

—5ab /41 + (2ab2)4i+ 2a—%+ (ab /41 - ZaJlog(‘l_”)JrE, (141)
T T (4 T T T
which then simplifies to
ab®> b5ab 2

ab b
——""+log(4)] —-2a |+2a——+—, 142
ol )(2 j T o7 .

which when we plot it, get the 3D and the contour plots below that can be re-
lated to a D-brane/Instanton,

From Figure 5, and Figure 6, we note that the gravitational potential is al-
most zero as the self vacuum perturbations have not started to take effects re-
sulting in the flat quantum vacuum geometry. The alternate forms of Equation
(142) are

(b—4)(za(b—-1+log(4))-1)

143
Py (143)
(b—4)(7ab—za+zalog(4)-1) (144)

2z

(b-4)(zab-r7a-1) 1

—a(b-4)log(4 145
o +-a(b-4)log(4) (145)

which have the expanded logarithmic form

2

—%+%+2a—%—4alog(2)+ablog(2)+% (146)

A

e

20.05 0.00 0.05

Figure 6. Contour plot.
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1) number theoretic properties of the equation of state
a) Roots

From which the alternate form

4—b+4ar —5abr +ab’r — 4alog(4)+ abr log(4)

147
2z (147)
and the roots are
a—2zalog(2)+1
a=0, b=" 7alog(2) ,
wa
b=4 (148)
a—rnalog(4)+1
p_ Fa=malog(4) (149)
a
The polynomial discriminant is
97%a® + z%a’log(4)’ +67%a* log(4) - 67a - 27alog(4)+1
A, = 5 , (150)
4
and the integer root are
a=0, b=4. (151)

Thus the derivative of the alternative form Equation (147) is

:%(b—4)(b—1+|09(4))

b) Indefinite integral
The indefinite integral is

2
I(Za—%Jrﬂ+E—£+(—2a+a?bjlog(4)jda

2 7 2x
1
b—4) Zza’(b-1+log(4))-a
(b-a) jmat (o-1+log(4))-a |
2
which when we plot it, get the 3D plot that can be related to a D-brane/Instanton,

(153)

+ constant

and we also plot its contour plot

From Figure 7, and Figure 8, we also observe that the vacuum quantum
geometry starts to be uneven, meaning the seeds for the gravitational potential
are starting to take effects due to the self-perturbations starting to take effect.

The alternate forms of indefinite integral Equation (153) is

a(b-4)(rab-za+2ralog(2)-2)

(154)
272
a(b_4)(ﬂ'a<b_1+|09(4))_2) (155)
Ar
L a(o-4)(rab-ra-2)
;& (b=4)log(4)+ 4z e
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Figure 7. 3D plot.

46
44
42
b 4o
3.8
3.6

3.4

-04 -0.2

Figure 8. Contour plot.

and assuming a, b, and Sare positive, then we have the alternative form

ab 2a

1 2 2
72 b(b—-1+2log(2))-a (b—l+2|og(2))—§+7, (157)

from which the expanded logarithmic form is

1
——ab
2a  , 5, 2 2 1 ,, 1,
—+a“+t—a‘bh-2alog(2)+ +=a‘b*+=ablog(2). 158
T 4 g( ) Vs 4 2 g( ) (158)

From the expanded logarithmic form, Equation (158), the alternative form is

a(-4+b)(-2-az +abr +arlog(4))

159
iy4 (159)
With the root
a0, l:):7ra—27ralog(2)+2’
a
a=0, b=4,
a—ralog(4)+2
p_ 73 7alog(4)+ (160)
wa
The polynomial discriminant is
b? -8b+16
A, =——F— 161
2 Ar* (161)
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and the derivative is

5 (-4+ b)(—a + %3.272'(—1+ b+log (4)))

oa 2z
(162)
(—-4+ b)(;ra(b ~1+log(4)) —1)
B 2z
with the indefinite integral
(-4+ b)(—a + %azn(—h b+ log (4)))
[ > da
. i (163)
(b —4)(7ra3 (b-1+ Iog(4))— azj
3
= + Constant.
4

From the above indefinite integral, we have the following 3D and the contour
plots that can be related to a D-brane/Instanton,

From Figure 9, and Figure 10, we also observe that the vacuum quantum
geometry starts to be more uneven that that in Figure 7 and Figure 8. That is,
the gravitational potential of the quantum vacuum geometry is growing, as a re-

sult of the growth of the vacuum self-perturbations.

Figure 10. Contour plot.
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The alternate forms of the indefinite integral Equation (163) are

a’(b—4)(zab—za+2ralog(2)-3)

164
473 (164)
a’(b—-4)(za(b-1+log(4))-3
(b-4)(ra(b-1+10g(4) -3) -
127
1, a’(b-4)(rab—ra-3)
—a’(b—4)log(4)+ 166
2 ( ) g() 127 (166)
and assuming a, b, and Sare positive, then we have the alternative form
1, 1, a’b a?
—a’b(b-1+2log(2))—=a’(b-1+2log(2))——+—. 167
a0 9(2))-52( 9(2)) -+ (167)
The expanded logarithmic form of Equation (167) is
1,
—-=a‘h
a.2 1 3 5 3 2 3 4 1 3RK2 1 3
—+=-a’xt—a’b+t—-a’log(2)+ ——+-—a’b"+=a’blog(2 168
T 3 12 3 g() V4 12 6 g() (168)
and the alternate form is
a’(-4+b)(-3-ar +abr +arlog(4
(4+b)(-3-an+abr +arlog(4)) (169)
127
with the root
a0, b:ﬂa—Znalog(2)+3’
ra
az0, b=4,
a—ralog(4)+3
p_ a-7alog(4)+3 (170)

a

The polynomial discriminant is A=0, and the derivative of the alternate
form Equation (169) is

N )

oa Ar
(171)
a(-4+b)(7a(b-1+log(4))-2)
B Ar
and the indefinite integral is
(-4+ b)[—a2 +%a37z(—1+ b+ Iog(4))}
[ da
4z (172)
(b- 4)[17ra4 (b-1+log(4))- a3j
4
= + Constant.
127

The local minimum is
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. (—4+b)[—a2 +§a37z(—1+b+log(4))j 1
e 4x ~127°(3+log(4))

at

1 7420
(a,b)_[”( (2)),7 21 g(2)] (173)

3+2log

In conclusion, the indefinite integral result Equation (172), and for V = %\/Eag

(octahedron volume) and V = %7”3 (sphere volume), where r= % , we obtain:

1) Octahedron volume

For the octahedron we have

a’(b- 4)(iﬂa4 (b—1+1log(4))- a3j
1827

which when we plot it, get the 3D and the contour plots that can be related to a

(174)

D-brane/Instanton

From Figure 11, and Figure 12, we now observe that the vacuum gravitation-
al potential has grown exponentially and infinitely high as a results of the expo-
nentially grown and infinitely high growth vacuum self-perturbations near a=1,
ie. the energy density of the universe at the big bang.

The alternate forms were found to be

V2a° (b—4)(7ab - ra+27alog(2)-4)
4x1273

. 1 log(4)) 2 alb ¢ _(log(4) 5 1
: (a(@_ 182 j+g}b(ﬁ+a (a( 722 _72\51_18«@:}} (176)

a’(b—4)(7a(b—1+log(4))-4)

(175)

(177)
722z
and the expanded form is
1 ra' 1
a’(b-4)| ~za'b-""+-rza*log(2)-a°
18V27
with the expanded logarithmic form
1 1
= x42a° —(—1)«/§a6b 7 7
36 36 +ﬁa __aby2 +i¢§a7(_1)b
Vs Vs 36 36x2x2 36 (179)
2 a’blog(2)~/2
fAVV2 L G ag(2) 4 22100(DV2
36x2x2 18 36x2
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_5\<

Figure 11. 3D plot.

Figure 12. Contour plot.

The alternate form of Equation (179) is
a®(—4+b)(-4—ar +abr +arlog(4))

(180)
72\2%
With the root
a—2ralog(2)+4
a=0, b=ﬂ z g( )+ ,
a
a=0, b=4,
a—ralog(2)+4
p_ Fa-7alog(2)+4. (181)
a
The polynomial discriminantis A =0, and the derivative is
[(—4+ b)(—a3 +%a4ﬂ'(—1+ b+log (4))))(@&13)
oa (127)x3
(182)
a®(—4+b)(7ra(b—1+log(4))-24)
- 72\/571
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and the indefinite integral

a’(—4+ b)(—a3 + %a47z(—1+ b+ log (4)))

da
J 18V2x (183)
a’(b—4)(7za(b-1+log(4))-32
= ( )( ﬁa( i og( )) )+Constant
403227

The local minimum is

((_4+ b)[—a3 +%a“ﬂ(—1+b+ '09(4)))](@"‘3)

(127)3

min

_3200000v2
74118877 (3+log(4))”

at
(a,b)= 20 § 2log(2) (184)
77(3+2log(2))’ 5" 5
2) sphere volume
For the sphere we have
7—12a3(b—4)&;za4(b—1+ Iog(4))—a3j (185)

Which when we plot it, get the 3D plot that can be related to a D-brane/
Instanton, and we also plot its contour plot

As in Figure 13, and Figure 14 in case of the octahedron, here, we also
observe that the vacuum gravitational potential has grown exponetially and
infinittely high as a results of the exponentially grown and infinitely high growth
vacuum self-perturbations near a = 1, ie. the energy density of the universe at
the big bang.

The alternate forms of Equation (185) are

a®(b—4)(zab—ra+2ralog(2)-4)
2x2x2x4x3x3

6 r 1 1
T rloa(4) |+ =

a [‘{72 757100l ))+18J

+b| L za’b+a® a(i7zlog(4)—5—”j—i
288 288 288) T2

b b7 1 r 1 b 1
ae alb ﬂ——— ——rlog(4 ———rlog(4) | —-—+— 188
(((288 288 288" % )j+72 757100l )j 72+18j (188)

and assuming a, b, and Sare positive, then we have the alternative form

(186)

i7ra7b(b ~1+ 2Iog(2))—i7za7 (b-1+ 2Iog(2))—a—5b+a—6, (189)
288 72 72 18
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Figure 13. 3D plot.

Figure 14. Contour plot.

from which the expanded logarithmic form is

6 7 ? a’brlog(2
a—Jri(—l)a‘sb +ia7 _Sabz abz —ia7 log(2) o) 9(2) .(190)
18 72 72 72x4 T72x4 36 72x2
The alternative form of the expanded logarithmic form E. (193)

%ae (-4+b)(-4—az +abr +arlog(4)) (191)

with the root
ra—2ralog(2)+4
ra

az0, b=

a=0, b=0,

b:ﬂa—zralog(4)+4' (192)

wa

The polynomial discriminant is A =0, and the derivative is
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0

(-4+ b)(—a3 +%a47r(—1+ b+ log (4)))(47[(2]7

oa (127)x3

(193)
1
=58 a’(-4+ b)(?;ra(b —1+ Iog(4))— 24)

From the indefinite integral is

((_4+b)(—a3 +%a4ﬂ(-1+ b+ '09(4)0](4”(;)3}

i (127)3

_ 1600000
74118877° (3+log(4))°

at

20 23 2log(2)

(a’b):{77r(3+2log(2))’ 5

j + constant , (194)

By dividing the integral Equation (183) with the integral Equation (194), we
obtain the result

& (195)
V4
With the decimal approximation
0.9003163161571060695551991910067405826645741499552206255714374712 = &
T

(which is a DN Constant and also a transcendental number). It is also the re-

duced logarithmic form. The alternative representations are
a'(-4+ b)(—32 +7ar(-1+b+log (4)))
(a" (~4+b)(-82+ 7az(-1+b +log(4))))(4032v/27 )

16128
(—4+ b)(—32 +7ar(-1+b+log, (4)))a’

(a" (~4+b)(-82+ 7az(-1+b+log(4))))(4032+/27 )
16128

(196)

a’ (-4+b)(-32+7ar(-1+b+log(4)))
(a7 (~4+b)(-32+ 7az(-1+b +log(4))))(4032v/27 )
16128
(—4+b)(-32+7ar(-1+b+log(a)log, 4))a’
~ (a’(-4+b)(-32+7az(-1+b+ log(4)))) 4032v/27
16128

(197)
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a’ (-4+b)(-32+7ar(~1+b+log(4)))
(a" (~4+b)(-32+ 7az(-1+b+log(4))) ) (4032v27
16128
B (~4+b)(-32+7az (-1+b - Li (-3)))a’ 1o
~ (a"(-4+b)(-32+ Tar(-1+b+ Liy(-3)))) (4032v27 )
16128

where log, x is the base blogarithm, Li (x) is the polylogarithm function

1) Series representations
a’ (~4+b)(-32+7ar(-1+b+log(4)))
(a" (-4-+b)(-32+ 7az(-1+b +log(4)))) (403227
16128 (199)

4
_1) (2 -1, )k ng
K

V(-
Wy, i
for (not(z,€eR and —0<Zz,<0))
a’(-4+b)(-32+7ar(~1+b+log(4)))

(a" (~4+b)(-32+ 7az(-1+b+log(4)))) 403227 )
16128
(200)

4

1} (2—20)k "
k

(-1)°| -
BT, ¥ T
for (not (z, e R and —0<z,<0))
a’(~4+b)(-32+7ar(~1+b+log(4)))
(a" (~4+b)(-32+ 7ax(-1+b+log(4))))(4032v27

16128
4 (201)

el o0 g T

2

for(xeR and x<0)
a’(—4+ b)(—32 +7ar(-1+b+ Iog(4)))

(a" (~4+b)(-82+ 7az(-1+b+log(4)))) 403227 )

16128
A l ~y2| arg(2-2)/(27) | 271/2(1+Larg(2—zo)/(2ﬂ)J) (202)
_ \% ’
B k(1 k__
V() -2z’
® k
EZk:O k|
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SECTION C: On the application of the formulas of the volumes of an oc-
tahedron and a sphere to quantum gravity
In this section we apply the number theoretic properties and the Ramanujan
recurring number properties to the quantum geometry of the white hole. With
regard to a sphere inscribed in an octahedron, we have the following formulas.
V, =1\/§|3 , V, zém’3 where T, -1 (203)
3 3 2
We take the ratio between the two above formulas for the octahedron and

sphere in Equation (203) as shown in Figure 15

1\/’3
=2l
3 22 o 120) (204)
SO
B
3 (2
with the decimal approximation,
0.9003163161571060695551991910067405826645741499552206255714374712. - = & (205)
7T

(which is a DN Constant, and a transcendental number)

The series representations Equation (204)

_y - ~7,) 7,
J2r° =2\/ZZ:’_O( 1)( ZJT((!Z |

3 - (206)
1[47[(IJ ]3
3 2
for (not (z,eR and —w0<7z,<0))
1
(1 (2" x*( -5
. |arg(2-x) w 2
ZeXp("{D‘&Z B k
3 2 =0 k!
V2l = i (207)

gOp ”

Figure 15. Sphere inscribed in an octahedron.
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k 1 kK __k
12| arg(2-29)/(27) -1 (—j 2-1 Z
2 i : JZJ/2(1+Larg(2—zO)/(2;r)J) o ( ) 2 k( 0) 0
NA z 0 Lo k!
~—=— (208)
1 47r(|) 3 d
3 2
from which we obtain
2
2
%1# :%, (209)
=213
3
(2)
P
3 \2

with the decimal approximation
1.6449340668482264364724151666460251892189499012067984377355582293
210
=((2)=72/6=1.644934 (

(which is the trace of the instanton shape and Ramanujan Recurring Number,
and it is also a transcendental number).
The series representations of Equation (209) are

2

1 2 o 1
C IR R a
3
3[47{'} ]
3 2
1 2 . (-2
g \/§|3 = —sz:lk—z (212)
3
3[477('] J
3 2
1 2 4 oo 1
3 _§Zkz°(1+2k)2’ 1)

with the integral representations
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2z =%(j:\/1—7dt)z (214)

W

1 2 2(» 1V
3| =§U° 1+t2dt] e
3
3{47[[')}
3 2
1 2 2(n 1 Y
FENAE K] I01+t2 a (216)
3
3{47[(')}
3 2

We note that, from the sum of the first nine numbers excluding 0, ‘e,
1+2+3+4+5+6+7+8+9=45 (these are the fundamental numbers, from
which, through infinite combinations, all the other numbers are obtained), we

obtain the following interesting formula:

1+ ! (217)

i/(qﬁz+?CMRBJ(2</1+2+3+4+5+6+7+8+9)

where ¢ is the golden ratio, C,; is the MRB constant. The exact result of
Equation (217) is then given by

RN R S SR (218)
3/ 277C g s
3
With the decimal approximation

1.6452973785207760327718962297937282004549534211102915708253939286

~ (¢ (2)=72/6=1.644934 (219)

(which is a trace of the instanton shape and Ramanujan Recurring Number)

The alternate forms for Equation (218) is

Qa-2(3m)  5Y(37) ;2 +1, (220)
27C g + 39
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372/07) 5 () | 5 el +1, (221)
Y It V- N
\j 3 + > (3+ 5 )
9203 o qU3-23%) o 5 Ge) € +1, (222)
87C, s +18+6+/5

From which the expanded forms are

379/67) 537 ’ € +1 (223)
3 27C e 1 2 7

25
37YC7) 5 Y7 ’ € +1, (224)

vwﬂmm+3+dg

3 2 2

and making input

6 1+ 1 , (225)

§/(¢2 +Z;CMRBJG’(/“2+3+4+5+6+7+8+9)

then we get exact results

6| 372G, 5YE) ; (226)

with the decimal approximation

3.141939571526843089243307321961626326775133868116590446825417393 ~ 7 (227)

(which is a Ramanujan Recurring Number)

The alternate form of Equation (226) is

Bl 3ve4m) 5V ;2 +1], (228)
27Cyypg + 3¢

3V2HEr) 5 6n) o] 4 ée +3/C7%f5 | | (229)
47C, e +9+35

from which the expanded forms are

6| 37267 59 | ¢ +1 (230)
3 27Cms 1 2 ’
{2 148)
2% 37267, 5Y637) | € +6. (231)
A 27Cyge , 3 V5
3 2" 2
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13
All 2" roots of 6] 377756 € - | +1] are
(Z”CMRB) 2 3
AN ¥ AN
e 6|37 x5V |___ € 19(~3.1419
3| 27C\4pg N ¢2
3
(real, principal root)
e [6| 3707 x5V |___ € 11]~_31419
3| 27Cyrg N ¢2
3
(real root).
Furthermore, form the input:
1\/5|3
272x3 -8,

20

(232)

(233)

(234)

where value 8 is linked to the “Ramanujan function” (an elliptic modular

function that satisfies the need for “conformal symmetry”) that has 8 “modes”

corresponding to the physical vibrations of a superstring.

The series representations Equation (234) are

1

—jk (2- zo)k 2,

o), o
ko k!

Coi

for (not(z, e R and -w0<z,<0)),

f2ri2)(2r)

COp

2

el Tt

for(xeR and x<0)

272 ) (V21 h
Y = .

jLaVG(Z—Zo )/(Zfr)J

Z,

(235)
2 (236)
k
2
k Z(;k
(237)
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And by the input

1\/§|2

6rV2x—S3—— =24 (238)
4 (1
o7[2)

The value 24 is linked to the “Ramanujan function” (an elliptic modular
function that satisfies the need for “conformal symmetry”) that has 24 “modes”
corresponding to the physical vibrations of a bosonic string representing a
bosons. From the analysis, we observe that there is no number theoretic
connection with physical vibrations of fermionic strings at extremely low
entropy. This fact is confirmed by the fact that the Higgs bosons at the moment
of the big bang and infinitesimally shortly thereafter, facilitated the creation of
fermions (matter and antimatter particles) [8]. Thus we note that the ingredients
for the formation of electromagnetic radiation from photons (a Boson), and the
formation of matter from the Higgs boson after the big bang, are intrinsic
properties of the vacuum energy in pre big bang.

The series representations are

k 1 k __k
(6ﬂ\/§)(\/§|3) 2| . (-1) (_ZJ (2-12,) 7
T | T T (239)
1 47[[) 3 ’
3 2
for (not(z,€eR and -0<Zz,<0)),
(6#\/5)(\/§|3)
3
1(4ﬁ(lj J3
3 2
REENCT
(-0 (2% (3
~ .. |arg(2-x) 2| o 2),
=12exp (Iﬂ\‘T \/; Zk:O Kl
for(xeR and x<0),
(6742)(v2")
3
1[4ﬂ[lj ]3
3 2
1 , (241)
k K __
R C TN ) 1 (S
_ - +larg(2-2p T © k
_12(2()} z, Do "
By the input
4
E\/§|3
272 ><3—|3 = 4096 . (242)
4
372
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The number 4096 = 647, is the Ramanujan Recurring Number, that when
multiplied by 2 give 8192. The total amplitude vanishes for gauge group SO
(8192) for bosonic string SO (8192), while the vacuum energy is negative and
independent of the gauge group. The vacuum energy and dilaton tadpole to
lowest non-trivial order for the open bosonic string. While the vacuum energy is
non-zero and independent of the gauge group, the dilaton tadpole is zero for a
unique choice of gauge group, SO (2*%) ie. SO (8192), [9]. This could be the
implications for a pre-big bang scenario where only self-perturbative bosonic
strings lived when the enthalpy was extremely low as discussed above. This regime
contains all the intrinsic properties of superstrings inherent in the bosonic
strings that as observed by [10], (2006), would at the big bang give effect to the
properties of matter (fermions) as Higgs Boson. This number theoretic connection
to the gauge group SO (8192), gives a much more compelling relevance of the
bosonic string theory SO (8192), to quantum gravity and places this string
theory where it should appropriately be in the evolution of the universe from a
quantum gravity perspective rather than it be neglected because it doesn’t include
fermionic strings to confirm to post big-bang reality. The vanishing of the bosonic
string’s amplitude could be explained by the effect of extreme low entropy on the
quantum vacuum geometry as discussed in [4]. Thus, as the entropy increases
infinitesimally as a result of the vacuum self-perturbation then also is the
amplitude of the vibrating bosonic strings from zero. [9] was right to indicate
that the “vanishing of the amplitude of the bosonic string could be the results of
string theory itself”, but here, we give a much more elaborate explanation of
what could be happening.

We further proceed and make the input

ENCTE
27 || 222 ><3—| +1=1729 (243)
4

3

3 \2

This result is very near to the mass of candidate glueball f,(1710) scalar
meson. Furthermore, 1728 occurs in the algebraic formula for the j-invariant of
an elliptic curve 1728 =87 x3°. The number 1728 is one less than the Hardy-
Ramanujan number 1729 (taxicab number, as it can be expressed as the sum of
two cubes in two different ways 10°+9°=12°+1’=1729 and Ramanujan’s
recurring number). Since bosons are made of gauge bosons and scalar bosons
(meson), then this number theoretic analysis perhaps confirm that the number
1729, confirm the fact that both the gauge and scalar bosons are actually
different states of a single bosonic string, and that these states are isomorphic or
that the states vibrations are synchronised with the state of the bosonic string.
This also implies that each state lives inside a cubic or octahedron as a spherical
cloud, and that the total sum of these two states is the state of the bosonic string.
Taking the cross section of the bosonic string, we realise that it must be a

rectangular, or a two shaped octahedron. As the string vibrates in difference
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frequencies, so is the two spherical cloud states inside the string. That is, the
string vibrations simply excites the gauge bosons ie. Photon, gluon, W and Z
inside one cube/octahedron, and the scalar boson ie Higgs inside the other
cube/octahedron.

Furthermore, if we bring the picture of loop quantum gravity (LQG) with the
property of a discontinuous quantum geometry, we can therefore, think of the
graviton living on the vertices of the rectangles or the octahedrons. This graviton
then acts a glue binding the bosonic strings lattice together forming a complete
cross section of alternating states of between the gauge bosons and scalar bosons.
This arrangement of states then gives a precise supersymmetric quantum picture
of the vacuum geometry at low entropy.

But the geometry further reveal very important fact, that since the vacuum
geometry is discontinues, then we observe that there is no relation whatsoever
between the quantum vibrational frequencies of the strings, and that of the
vertices of the vacuum geometry where the graviton lives. Ashtekar ef al, (2021)
asserted that gravity is simply a manifestation of spacetime geometry. Thus, the
graviton cannot be a string boson, however, there is a duality between gravity
and strings [11]. Also, gauge bosons have spin-1, while the graviton has spin-2.
Then lastly, because of the thermodynamic constraints we were able to arrive at
the results we have, now this bring us to this fundamental question; that string
theory and LQG theory are two intrinsic aspects of a complete quantum gravity
theory we are after? That is, without the other no complete and compelling
quantum geometry can be attained, as it is done here? This needs to be
investigated further.

The series representations of Equation (243) are

4

(2 7))
;(47{'2) Js
(22 @) |,
By  on

k 1 g \—k
:1+27m2f0(_1) (—ij(—u 256+/2 )

(2042)(2r) |
;(47{;) }3
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We input
4 4
l\/’g l 3
=J2 =2l
LA anvzx3 | 4|27 [ 2nv2x3— | +1]|=28 ()
25" 144 4 (Ij 4 (] 144
3712 3712

With a decimal approximation
1.61805555555555555555555555555555555555555555555555555555555555, (248)

Which is the result that is a very good approximation to the value of the gol-
den ratio 1.618033988749... (which is a Ramanujan Recurring Number). The
1.61805 is the repeating decimal.

The series representations

2(\/§|3)zz’«/§ 2(x/§|3)7z'x/§

73 N +| 27 73 N +1

3(47:(2j J 3[47{2) J
144 x 25

1 8 »
=~ [1+256z 249
3600| 0 | 2o k! (249)

IS o (3 (zifﬁg ik

for (not (z, e R and —-0<z,<0)),

2(\/§|3)7Z'\/§ 2(\/§|3)7z\/§
ﬁ +| 27 ﬁ +1
3(47{2) ] 3(47{2) ]
144 25
Ko Kk 1 8
=$ 1+2566Xp8(i;{%ﬂ_x)ﬂﬁs zr_o( 1) (2 Xlz!x ( ij -
+27exp| i arg(_HZSGﬁs) *&Zfo(_l)k X" (—;l(—xu%ﬁs)k

2 k!

for(xeR and x<0)
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2(V21*) 22 4+ ) 2(V21*) 22 |
o)) | Yt
144 % 25

8

(-] @)

4| arg(2-79)/(27) |
_ 1 1+256[ij Zg+4|_arg(2—zo)/(27r)J Zn:zo

(251)
3600 z, k!
2| arg[ 256+/2° 2 (—l)k 1 256\/58 -z )k -~
1 v Larg( 720)/( ”)J J/2+]/2[arg[256«/58—zoJ/(Z;r)J . 2), o) "0
+27| — Z, D
z, B k!
From inputting the transcendental number Equation (233), we obtain:
(252)

with the decimal approximation
3.1415926535897932384626433832795028841971693993751058209749445923---= 7  (253)
(which is a transcendental number).

All 2" roots of 72 are 7e’~3.1416 (real, principal root), 7e'”™ ~-3.1416
(real root). Thus the series representations of Equation (252) are

© _1 “
:4zk:0_( 2)k R (254)

4(—l)k llg5+2k (51+2k _4x 2391+2k )

_ s 255
k=0 1+2k (253)
k
l)( L + 2 + 1 j (256)
4) \1+2k 1+4k 3+4k
=4[ N1-tdt, (257)
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(258)

(259)

It is plausible to hypothesize that m and ¢, in addition to being important ma-
thematical constants, are constants that also have a fundamental relevance in the

various sectors of Theoretical Physics and Cosmology
z’ .
From ? , we obtain:

(260)

With the decimal approximation

0.90031631615710606955519919100674058266457414995522062557714374713 = &

T

(which is the DN Constant, and a transcendental number).

2/2¢°
T

All 2" roots of 8 are ~0.9003 (real, principal root), and

7[2
2:/2¢" . , -
~0.003 (real root). The series representations of Equation (260) are

T

SIE R

4 o0
37 2 X

6
2|34
NN At ) (262)
372 0 &k=0 k!

6

for (not(z, e R and -w0<z,<0)),

k
(2 22
T \/;Zk:o k (263)

7 =exp| iz
T

6

for(xeR and x<0)

Section B: Number connections to the Planck multipole spectrum fre-
quency and to the hypothetical Gluino mass

We note that, from the number 8, we obtain as follows:
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1.6314839

é mean ¢(2) 116427

16 1.618034 1.64493 1.65578 1.675

Figure 16. “Golden” Range number scale.

82 =64, 8°x2x8=1024, 8' =82x2?%, (True)
8 =4096, 8°x2°=4096, 2"*=2x8*, (True)
28 =8192, 2x8"=8192

From Figure 16, we notice how from the numbers 8 and 2 we get 64, 1024,
4096 and 8192, and that 8 is the fundamental number. In fact 8% = 64, 8* =512, 8*
= 4096. We define it “fundamental number”, since 8 is a Fibonacci number,
which by rule, divided by the previous one, which is 5, gives 1.6, a value that
tends to the golden ratio, as for all numbers in the Fibonacci sequence

Finally we note how 8> = 64, multiplied by 27, to which we add 1, is equal to
1729, the so-called “Hardy-Ramanujan number”. Then taking the 15th root of
1729, we obtain a value close to {(2) that 1.6438..., which, in turn, is included in
the range of what we call “golden numbers”

Furthermore for all the results very near to 1728 or 1729, adding 64 = 82, one
obtains values about equal to 1792 or 1793. These are values almost equal to the
Planck multiple spectrum frequency (Black Body Radiation) 1792.35 and to the
hypothetical Gluino mass.
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