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Abstract 
Maxwell’s equations in electromagnetism can be categorized into three dis-
tinct groups based on the electromagnetic source when employing quater-
nions. Each group represents a self-contained system in which Maxwell’s eq-
uations are applied and validated concurrently, in contrast to the previous 
approach that did not account for this. It has been noted that the formulation 
of these Maxwell equations ultimately results in the formulation of Maxwell’s 
equations utilizing the scalar function. 
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1. Introduction 

Maxwell’s equations are fairly well known since they are considered to be the 
foundation of electromagnetic theory. Maxwell’s electromagnetic equations have 
several specific instances.  

Maxwell’s equations describe the behavior of magnetic and electric fields. Since 
the 19th century, when James Clerk Maxwell formulated these equations, their 
application has proven extremely beneficial to several branches of physics, in-
cluding electromagnetic, optics, and quantum mechanics. They provide a ma-
thematical model for electrical, optical, and radio technologies, such as power 
generation, electric motors, wireless communication, lenses, radar, etc. The sources 
of electric and magnetic fields are defined by the equations as charges, currents, 
and changes in the fields [1]-[14]. 

Proca introduced massive photons to Maxwell’s theory [15]. The mass term in 
Maxwell’s Lagrangian would break the gauge invariance. The loss of this inva-
riance would weaken the predictive ability of the theory. However, Proca’s theory 
is Lorentz invariant rather than gauge invariant. It is limited to the magnetic and 
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electric fields. 
The densities of charges and currents are essential to Maxwell’s theory, but 

not to fields. Maxwell’s theory guarantees charge conservation. The continuity 
equation that links the charge and current densities illustrates this. Maxwell’s 
equations are sometimes expressed in terms of vector and scalar potential 
fields instead of electric and magnetic potentials. If these potentials are trans-
formed, Maxwell’s equations keep invariant, or unchanged under transforma-
tion.  

It will be unclear whether these potentials are physical phenomena or just ab-
stract mathematical ideas. 

Bohm and Aharonov have experimentally demonstrated the existence of these 
potentials as tangible physical entities [16]. The Lorenz gauge is commonly em-
ployed to solve Maxwell’s equations using potentials, although various gauges 
are also accepted. Consequently, the Lorenz gauge must possess a physical com-
ponent. Quantum electrodynamics arises from the integration of Maxwell’s equ-
ations and quantum mechanics. 

In this context, the interaction between electrons or other charged particles 
necessitates the involvement of the gauge particle, commonly referred to as the 
photon. The photon, serving as the gauge boson, possesses a spin of one. While 
the photon is electrically charged, the electron remains uncharged (neutral). In 
the standard model of quantum electrodynamics, the photon is considered mass-
less and chargeless. According to the Proca-Maxwell hypothesis, the photon is 
postulated to have a significant size, yet it lacks any associated charge. However, 
the Bardeen-Cooper-Schrieffer theory suggests that the phenomenon of super-
conductivity, which is characterized by the condensation of Cooper pairs, can be 
coupled to a boson-like state [17]. According to this theory, Cooper pairs are 
formed when two electrons interact and their spins cancel out, resulting in a spin 
of zero. 

The photon field was linked to the supercurrent, specifically the vector poten-
tial, through London’s work. This connection resulted in modifications to the 
gauge, which in turn caused changes to the supercurrent. Given this relation-
ship, it is logical to assume that gauge transformations involve both current den-
sity and vector potential. Therefore, it is crucial to approach the analysis of charge- 
current densities and scalar-vector potentials in a similar manner. 

Mathematical structures called quaternions are extensions of complex num-
bers. They were first used in 1843 by Irish Mathematician Sir William Rowan 
Hamilton [18]. They are made up of four parts: one scalar component, three 
vector components, and one matrix component. Quaternions are a mathemati-
cal construct that extends the idea of complex numbers to three dimensions and 
are closed under multiplication. They are especially beneficial for calculations 
involving rotations in three dimensions. 

In mathematics, Quaternions are represented as a four-dimensional vector 
space with a basis consisting of the real number 1 and three imaginary units, i, j, 
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and k. These unique mathematical entities possess distinct multiplication prin-
ciples and are utilized for the rotation of three-dimensional objects. Quaternions 
have found their applications in various fields such as computer graphics, com-
puter vision, robotics, navigation, molecular dynamics, flight dynamics, satellite 
orbital mechanics, and crystallographic texture analysis. They offer a more com-
pact and efficient representation as compared to rotation matrices and Euler an-
gles. However, comprehending quaternions may not be as straightforward as 
Euler angles. Despite this, their intriguing features allow for the concise formu-
lation of physical rules. Although quaternions were initially employed by Max-
well in his theory, vectors have now replaced them in the formulation of Max-
well’s equations [19] [20] [21] [22] [23]. 

2. Quaternion Formulation 
2.1. Quaternion Continuity Equation 

If we have two quaternions 
�

( )0 ,A a= A  and 
�

( )0 ,B b= B , where 0a  and 0b   

are scalar parts of the quaternion set. A  and B  the vector parts of the qua-
ternion. The multiplication rule for two quaternion sets is given by 

��
( )0 0 0 0,AB a b a b= − ⋅ + + ×A B B A A B                 (1) 

The multiplication in (1) consists of scalar part 0 0a b  as a direct product of 
scalar parts. The second scalar part of multiplication is the scalar product of the 
vector parts of the quaternion. The vector part of the quaternion product is 

0 0a b+ + ×B A A B . 

By defining the differential operator 
�

( ),∇ = ∇� ∇ , the ordinary continuity  

equation can be transformed into a quaternion continuity equation and the cur-
rent 

�
( ),J J= J� , 

��
( ),J J J∇ = ∇ − ⋅ ∇ + + ×J J J� � � �∇ ∇ ∇                   (2) 

We can separate Equation (2) into two equations, one is a vector equation and 
the other is a scalar equation as, 

J∇ − ⋅ =℘J� � ∇                            (3) 

J∇ + + × =J J� �∇ ∇ ℘                         (4) 

But 
��

J∇  is Lorentz invariant. That means 
��

0J∇ = . 
From above we write two equations, 

J× = −∇ −J J� �∇ ∇                           (5) 

0J⋅ −∇ =J � �∇                             (6) 

If we define, 
�

,i
c t
∂ ∇ = − ∂ 

∇  and 
�

( ),J i cρ= − J , Equations (5) and (6) give  
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the well-known continuity equations. 

2.2. Maxwell Equations 

After Maxwell formulated the four laws of electromagnetism, it was observed 
that there existed a symmetry between the electric field laws and the magnetic 
field laws. However, this a symmetry was disrupted due to the absence of indi-
vidual magnetic charges or monopoles. To address this issue, the concept of sin-
gle magnetic charges was introduced into the physics community. This was done 
to make Maxwell’s equations more symmetrical than their traditional form. With 
the inclusion of magnetic charges, the magnetic field becomes a non-zero diver-
gence. Furthermore, a current of magnetic charge or monopoles would give rise 
to a circulating electric field along that current. The admission of magnetic mo-
nopoles leads to a particularly symmetric form of Maxwell’s equations [24]. 

Using the definition of quaternions, we can writea set of electric fields with 

( ),E E� , where E  the electric field vector and E�  the field scalar, to write Max-
well equations by defining the following; 

E ic= =E B�α , i
c

= − Vα , cE i ρ
σ

=� , 1
e

σ =               (7) 

where B  the magnetic field, ρ  the electric charge density, σ  the conductivity 
of the medium, and e the resistivity of the medium. 

We find electric field divergence by employing Equation (7),  
E E⋅ = ⋅ + ⋅E � �α α∇ ∇ ∇  

where, ( )E ic e eρ ρ= +�∇ ∇ ∇ , by using Equation (5) we find density gradient. 

( ) 2
1i

c tc
ρ ∂
= − × −

∂
JJ∇ ∇ . Also, we find 

0

i i
c c
ω σ

⋅ = − = −


α∇ . 

where, ω  is known as the relaxation time, and it is a measure of how fast a 
conducting medium reaches electrostatic equilibrium. The permittivity of free 
space 0 . 

The electric field divergence can be expressed using the previous equations as, 

2
0

e ee i
t cc

ρ ρ∂
⋅ = − ⋅ + ⋅ − ⋅ ×

∂
JE V V V J


∇ ∇ ∇               (8) 

In terms of the electric field, using the relationship of the electric field with the 
current density, where e =j E . This is one way to represent the equation: 

2
0

1 ie
t cc

ρ ρ∂
⋅ = − ⋅ + ⋅ − ⋅ ×

∂
EE V V V E


∇ ∇ ∇               (9)  

Equation (9) is generalized Gauss’s law in complex form. In terms of magnetic 
field, it can be expressed as, 

2
0

1e
tc

ρ ρ ∂
⋅ = + ⋅ − ⋅ + ⋅ ×

∂
EE V V V B


∇ ∇ ∇               (10) 

In static cases or perpendicular movements, Equation (10) gives Gauss’s law 
to describe the relationship between a static electric field and the electric charges 
that cause it. 
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In vacuum 0⋅ =E∇  and 0⋅ =B∇ , The Equations (8)-(10) take the follow-
ing form 

0
1 i
c t

'Jµ∂
− − Λ − × =

∂
F F∇ ∇                   (11) 

0 02
1
c

µ=  , 'Jρ− =V , Λeρ = −∇ ∇                 (12) 

Looking at the results reached by Arbab [25], we find a similarity between 
Equations (8)-(10) in vacuum and the equation that describes Maxwell’s equa-
tions with the Scaler field, which describes extended Maxwell’s equations. Λ de-
fines some scalar “magnetic” function representing the fourth component of the 
electromagnetic 4-vector. This scalar satisfies the wave function. The scalar func-
tion is thus a wave moving at the speed of light. Here we find the physical meaning 
of the scalar function, which is related to the properties of the medium in which 
the wave propagates. The force acting on electric and magnetic charges is re-
ferred to as the generalized Lorentz force. Generally speaking, it is connected to 
the symmetrized Maxwell’s equations. 

However, in the current formulation, we did not assume the existence of mag-
netic charges from the outset. It appears that the electric charge and the magnet-
ic charge are inherently linked.  

The bi-quaternion formulation of Maxwell’s equation was adopted by Vlaen-
deren and Waser, who also proposed a scalar function (S) that measures the vi-
olation of the Lorenz gauge. They observed that Maxwell’s displacement current 
is mimicked by this scalar field [26]. 

Also, Proca added a massive photon field to the Maxwell equations to make 
them more generic [27]. 

3. Classification of Maxwell’s Equations 

Three cases representing three different systems will be studied in relation to Eq-
uation (10). Previously, Maxwell’s equations were used without considering the 
charges’ source, which is represented by the divergence of the electric or magnetic 
fields. As a result, depending on the type of source, Maxwell’s equations will take 
different forms. 

First, Equation (10), which can be divided into two equations, is 

{ }0
0

1 eρ
⋅ = + ⋅E V


∇ ∇                       (13) 

Equation (13) looks like the Proca equation, which describes a massive elec-
tromagnetic field. A massive spin-1 field with mass m is described by the Proca 
equation, a relativistic wave equation, in Minkowski space-time. The massive 
electromagnetic field is described by the Proca action, which is the equivalent ac-
tion. The Z and W bosons are two of the three massive vector bosons that are de-
scribed by the Proca equation and are a part of the Standard Model.  

The other is vacuum Ampere’s law 2
1

tc
∂

× =
∂
EB∇ . 
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If we apply the following conditions, 

0

1e⋅ = −V


∇ , 
0

e ρ
⋅ = −J


∇                     (14a) 

We find that, Equation (13) will turn into Maxwell’s equation in a vacuum 
0⋅ =E∇ . 

If electric charges are the source of the electric field, as is the case with  

Maxwell’s ordinary equations, we find the second case. 
0

ρ
⋅ =E


∇ . 

In this case, Equation (10) gives Ampere’s law 02
1

tc
µ∂

× = +
∂
EB J∇ , Where, 

0

eρ
µ

= −J ∇  and 0e µ= − V∇                   (14b) 

The current density in (14b) vanished if 0e =∇ . but the divergence e∇  va-
nished in static case 0=V , or in the medium exhibits homogeneity in all direc-
tions, the gradient of a function is zero at any specific position, indicating that 
the function remains unchanged at that location. These specific positions are re-
ferred to as critical points or stationary points, and they can be classified as 
maxima, minima, or saddle points based on the second-order partial derivatives 
of the function. Therefore, we will refer to these conditions as Maxwell’s limit, 
denoted by (14). In the third case, if 0⋅ =E∇  in Equation (10), we get genera-
lized Ampere’s law or Proca equation as, 

{ }0 02
1 1 e

tc
µ∂

× = − + ⋅
∂
EB J V∇ ∇                  (15) 

The equation of the magnetic field in a vacuum can be obtained by setting the  

condition in Equation (14a) 
0

1e⋅ = −V


∇ . 

After treating the electric field in the previous three cases, we will apply the 
same conduct to deduce the magnetic field states by multiplying Equation (10)  

by i
c

− . We get generalized Gauss’s law for magnetism as, 

{ }0 0 2 2
1 11ic e

tc c
µ ρ ∂

⋅ = − + ⋅ − ⋅ − ⋅ ×
∂
BB V V V E∇ ∇ ∇         (16) 

Using the same treatment as before, we find three cases. 
In the first case, Equation (16) can be separated to give,  

{ }0 01ic eµ ρ⋅ = − + ⋅B V∇ ∇                    (17) 

And Faraday’s law of induction, 
t

∂
× = −

∂
BE∇ . 

Equation (17) mimics the vacuum solution if we apply Condition (14a).  
We obtain the second state, which represents the vacuum state, where  

0⋅ =B∇ , Equation (16) gives generalized Faraday’s law of induction as, 

{ }0 01ic e
t

µ∂
× = − − + ⋅

∂
BE J V∇ ∇                 (18) 
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Equation (18) also transforms to Maxwell’s equation by applying Condition 
(14a). 

The third and final case is obtained by setting 

0icµ ρ⋅ = −B∇                          (19) 

Equation (16) with Condition (14) gives, 

0ic
t

µ∂
× = − −

∂
BE J∇                       (20) 

Case three is a new set of Proca equations to approach Maxwell’s equations. 

In Condition (14a) 
0

e ρ
⋅ = −J


∇  we find that, if the gradient vanished every- 

where, this will lead to vanishing electric charge density, Equation (19) construes  

to vacuum Maxwell equation. Also from Condition (14b) 
0

eρ
µ

= −J ∇ , the  

current density vanished and Equation (20) is also construed to vacuum Max-
well equation. 

From the above, we note that Equations (10) and (16) are generalizations of 
Maxwell’s equations. 

According to the above, we can classify Maxwell’s equations into three groups. 
 

First group: 

Electric Field Magnetic Field 

{ }0
0

1 eρ
⋅ = + ⋅E V


∇ ∇  { }0 01ic eµ ρ⋅ = − + ⋅B V∇ ∇  

t
∂

× = −
∂
BE∇  2

1
c t

∂
× =

∂
EB∇  

 
Second group: 

Electric Field Magnetic Field 

0

ρ
⋅ =E


∇  

0icµ ρ⋅ = −B∇  

{ }0 01ic e
t

µ∂
× = − − + ⋅

∂
BE J V∇ ∇  02

1
c t

µ∂
× = +

∂
EB J∇  

 
Third group: 

Electric Field Magnetic Field 

0⋅ =E∇  0⋅ =B∇  

0ic
t

µ∂
× = − −

∂
BE J∇  { }0 02

1 1 e
c t

µ∂
× = − + ⋅

∂
EB J V∇ ∇  

4. Conclusions 

Finding symmetry in the equations was done by creating a source for the mag-
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netic field in many published researches, where the equations of the electric field 
are converted to the magnetic field using some transformations, but it was not 
considered that the system remains unchanged after using the transformations. 
Here we found that symmetry of the laws of the two fields is achieved in differ-
ent physical systems as explained by three groups. Any group of equations that 
represents a separate physical system in which the complete equations of the set 
are met. When converting equations using any of the physical methods, such as 
gauge transformations, this leads to changing the equations in addition to the 
physical system itself. 

The use of quaternions to deduce Maxwell’s equations led to their classifica-
tion into three groups. Each group describes an integrated system that does not 
intersect with other systems. Therefore, the equations of two different systems 
should not be used at the same time. Case three is a new set of Proca equations 
to approach Maxwell’s equations. The electromagnetic field to massive photon is 
described by the Proca equation as the following equations, 

2

0

mρ
⋅ = − ∅E


∇ , 0⋅ =B∇ , 

t
∂

× = −
∂
BE∇  and 2

02
1 m

tc
µ∂

× = + −
∂
EB J A∇ . 

We can recognize that, the electric field source contains a mass term, which 
contributes to the formation of the magnetic field. This effect disappears in a 
vacuum where there is no source of electric field. In contrast with our third 
group, in a vacuum, there is still an effect of this term appearing in the forma-
tion of the electric field as an imaginary mass including a charge density. This 
imaginary mass can be related to photon mass as proposed by Aquino and 
Arbab [28] [29]. 

It is worth noting that the equations of the first and third groups undergo a 
transformation into Maxwell’s equations in a vacuum 0⋅ =E∇ , 0⋅ =B∇ ,  

t
∂

× = −
∂
BE∇  and 2

1
tc

∂
× =

∂
EB∇  by applying Condition (14a) 

0

1e⋅ = −V


∇ . 

In condition (14a) we notice that the Homogeneity of the medium leads to 
stability of the value of, e, the resistivity of the medium which in turn leads to  

vanishing the divergence term in the equation of Condition (14) 
0

e ρ
⋅ = −J


∇   

we find that, if the gradient vanished everywhere, this will lead to vanishing elec-
tric charge density. The real part of the second group is the ordinary Maxwell 
equations. 

And also from Condition (14b) 
0

eρ
µ

= −J ∇ , the current density vanished.  

Keep in mind that there is a force acting on the charge that is non-zero in the 
absence of electric and magnetic fields and their sources, that what Arbab found 
in his work [29] [30] e= Λf v , when the scalar function Λ is constant, the ge-
neralized Maxwell’s equations are reduced to the ordinary Maxwell’s equations. 
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