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Abstract 
This paper deals with some aspects of two-time physics (i.e., 2T + 3S five- 
dimensional space) for a Minkowski-like space with distinct speeds of causal-
ity for the time dimensions. Detailed calculations are provided to obtain re-
sults of Kaluza-Klein type compactification for free massive scalar fields and 
abelian free gauge fields. As already indicated in the literature, a tower of 
massive fields results from the compactification with mass terms having signs 
opposite to those of the ones appearing in other five-dimensional theories 
with an extra space dimension. We perform elaborate numerical calculations 
to highlight the magnitude of the imaginary masses and ask if we need to ex-
plore alternative compactification techniques. 
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1. Introduction 

Kaluza-Klein’s (KK) theory [1] [2] is about a hundred years old and it consi-
dered an extra space dimension. Its goal was to unify electromagnetism with 
gravity. Recent string theory deals with many more dimensions (see Zwiebach 
[3] and references therein) at the quantum level to unify the standard model 
with gravity, as well. In this paper, we will not consider gravity—just a flat space-
time. In many of these extra-dimensional theories, time remained one-dimen- 
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sional. Some researchers considered a two-time world and developed theories 
for it creating a new type of physics called Two-time Physics (for example see 
Bars [4], Wesson [5], and Rizzo [6] and references therein). However, it is worth 
pointing out that [4] and [5] did not consider a flat space. For example, [4] de-
veloped the representation theory of the O(2, d) theory and [5] developed the 
General Relativity (curved space) in five dimensions (i.e., 2 time and 3 space). 
Both papers are relevant in M-theory and supersymmetry and their objectives 
and interpretations are different. 

Since the world we are familiar with at the current energy levels is four-dimen- 
sional (i.e., a 1T + 3S dimensional Minkowski [7] space), the extra dimensions 
are compactified (i.e., “curled up”) into ultra-small circular topologies. Recently 
Zahir [8] considered a two-time (characterized by distinct speeds c1 and c2 of 
causality) and three space dimensional Minkowski [7] space (i.e., a 2T + 3S di-
mensional space). He derived relativistic coordinate and velocity transformation 
formulas and expressions for a new effective speed limit 2 2 2

1 2ec c c k= +  where 
k is a scale factor connecting the two times t1 and t2. If dimensions of t1, t2, and 
any of the space dimensions are denoted by T, t, and L respectively, then dimen-
sions of c1, c2, and k are LT−1, Lt−1, and Tt−1 respectively.  

Extending the ideas of Einstein’s Theory of Special Relativity (TSR) [9], con-
cepts of five-velocity and five-momenta were introduced leading to an invariant 
five-momenta squared norm expression that conceptually incorporates a five- 
dimensional mass term (see the text [10] and references therein). Based on a non- 
relativistic limit, a two-time dependent Schrödinger-like equation was developed 
[11]. As an example, a two-time dependent infinite square-well potential prob-
lem was considered. After compactifying the extra time dimension on a closed 
loop topology with a period matching the Planck time, the solution generated 
interference of additional quantum states with ultra-small periods of oscillation, 
as well. In this paper, it is shown that by taking the five-dimensional (2T + 3S) 
relativistic momenta into consideration, a Klein-Gordon-type two-time quantum 
field theory for a massive scalar field is readily available. Researchers have con-
sidered similar five-dimensional scalar field theories in 1T + 4S dimensions [12] 
and noted that compactifying the extra space dimension using the KK technique, 
generated a tower of additional massive scalar fields. Such a tower is generated 
in a five-dimensional (2T + 3S) theory as well through KK-type compactifica-
tion. However, the tower mass terms have a different signature, and the results 
are presented in this paper performing an elaborate numerical calculation to high-
light the magnitude of the imaginary mass terms.  

We start with five-dimensional energy-momentum representations as discussed 
by Zahir [8] in deriving a Klein-Gordon type equation [13]. Then, we solve it 
with compactification on a circular topology in Section 2. For the sake of com-
pleteness, the same formulations are extended to a free Abelian gauge field, and 
present the effect of Kaluza-Klein-type compactification in Appendix A. In Sec-
tion 3, we analyze the results of compactification in light of some interesting ob-
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servations (e.g., four-dimensional mass versus five-dimensional mass) made in 
Zahir [8]. To the best of the knowledge of the author, such problems have not 
been discussed by other researchers in the literature using a detailed numerical 
computation. It has been noted in many other works that the mass terms of the 
generated Kaluza-Klein tower of higher modes in the compactification of time-
like extra dimension have negative signs in contrast with those found in the com-
pactification of an extra spacelike dimension. In Section 4, we pointed out in de-
tail how the resulting imaginary masses lead to the necessity for handling the 
case using various methodologies reported in the literature under the topic called 
tachyonic Klein-Gordon (TKG) theory (see [14] and references therein). In this 
paper, we provide detailed calculation procedures for two reasons: 1) to make it 
easier for those who are new in this field to grasp the subject and 2) to promote 
new ideas regarding the compactification technique other than the familiar infi-
nite Fourier series expansion approach originally introduced in Kaluza-Klein theory 
more than a hundred years ago. Conclusions are presented in the final Section 
5. 

2. Revisiting the “Relativistic” Scaler Field Theory with  
Compactification of the Extra Time Dimension 

Zahir [8] used distinct speeds of causality c1 and c2 for time t1 and t2 respectively. 
In the 2T + 3S space-time, the five coordinates are ( 1 1 2 2, , , ,c t c t x y z ) mapped 
with the metric signatures as 

(+, +, −, −, −) such that the invariant norm s of a five-vector is given by,  

( ) ( )2 22 2 2 2 22
1

2 2 2
2 3 4 5 1 1 2 2s x x x x x c t c t x y z= + − − − = + − − −          (1) 

The invariant relativistic energy-momentum relation is given by (see Zahir [8] 
for definition of each term),  

( ) ( )2 2
1 1 2 2 21 2

1 0 1
1 2

E E
p m c

c c
   

+ − =      
   

                    (2) 

m0 is something like a five-dimensional mass. We use quantum operators for 
(E1)1, (E1)2, and 1p  as follows, 

( )

( )

1 1
1

1 2
2

1

E i
t

E i
t

p i

∂
→

∂
∂

→
∂

→ − ∇

�

�

�

                            (3) 

Let both sides of Equation (2) operate on field Φ . In this paper, we only con-
sider real fields representing a zero-charge scalar field [13]. We get the Klein- 
Gordon type equation in 2T + 3S dimension, 

2 22 2
2 0 1

2 2 2 2 2
1 1 2 2

0m c
c t c t
∂ Φ ∂ Φ

+ −∇ Φ + Φ =
∂ ∂ �

                    (4) 
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We use index M with values 1, 2, 3, 4, 5 and index µ having values 1, 3, 4, 5 
corresponding to variables 1 1 1x c t= , 2 2 2x c t= , 3x x= , 4x y= , 5x z=  and  

1 1 1x c t= , 3x x= , 4x y= , 5x z=  respectively. In addition, we use metric ten-
sors ( )1, 1, 1, 1, 1MNg = + + − − −  and ( )1, 1, 1, 1gµν = + − − − . We rewrite Equation 
(4) as, 

2 2
0 1

2 0M
M

m c 
∂ ∂ + Φ = 
 �

                        (5) 

This equation can be derived also from the Hamiltonian principle of statio-
nary action. To do that, we write down the five-dimensional Lagrangian expres-
sion for the 2T + 3S dimensional space-time. We can derive the Klein-Gordon 
type equation (in 2T + 3S dimension) in Equation (4) using the following action 
S. 

5dS x= ∫                              (6) 

  is the Lagrangian density expressed in terms of the scalar field as follows, 
2 2

20 1
2

1
2

M
M

m c 
= ∂ Φ∂ Φ − Φ 

 �
                     (7) 

Therefore, 
2 2

5 20 1
2

1 d
2

M
M

m cS x
 

= ∂ Φ∂ Φ − Φ 
 

∫ �
                  (8) 

The corresponding Euler-Lagrangian equation gives the Klein-Gordon type 
equation (i.e., as the one in Equation (5)) in 2T + 3S dimension as follows, 

5

1
0M

M
M

x
x

=

 
 ∂ ∂ ∂ − =

∂Φ ∂Φ∂  ∂   ∂  

∑                     (9) 

2 22 2
2 0 1

2 2 2 2 2
1 1 2 2

0m c
c t c t
∂ Φ ∂ Φ

+ −∇ Φ + Φ =
∂ ∂ �

;                (10) 

3. Compactifying the Five-Dimensional Klein-Gordon  
Equation: Two Approaches 

We can compactify the five-dimensional equation (see (A) below) or compactify 
the action and derive the compactified equations (see (B) below). We get the 
same results in the end. 

(A) Compactify the Field Equation 
We note that 2

2
M

M
µ

µ∂ ∂ = ∂ + ∂ ∂ . Following the compactification ideas of the 
Kaluza-Klein theory, we explore Equation (5) while assuming that the variable x2 
is compactified on a circle of radius x0 such that 

( ) ( ) ( )2 2 0, 2 ,Mx x x x x xµ µΦ = Φ = Φ π+ . Here, x0 = c2T0, and T0 is related to Planck 
time (see below). We expand ( )MxΦ  in an infinite Fourier series, 
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( ) ( )
2

0
2

0

1, e
2

iqx
x n

q Z
x x x

x
µ µϕ

∈

Φ =
π

∑                 (11) 

Then, the resulting equation becomes, 

( ) ( ) ( )
2

0
2 2 2
0 1

2 2
00

1 e 0
2

iqx
xq q q

q Z

m c qx x x
xx

µ µ µ µ
µ ϕ ϕ ϕ

∈

 
∂ ∂ + − = 
 π

∑ �
     (12) 

We multiply the equation by 
2

0

0

1 e
2

inx
x

x

−

π
 and integrate over dx2 and get, 

( ) 2

0
2

0

1 e d
2

i n q x
x

nqx
x

δ
−

=
π ∫                      (13) 

The term on the right-hand side of Equation (8) is Kronecker Delta. 
1nqδ =  for n q= , 0nqδ =  for n q≠ . 

Summing over q we get, 

( ) ( )
2 2 2
0 1

2 2
0

0;n nm c nx x n Z
x

µ µ µ
µ ϕ ϕ

 
∂ ∂ + − = ∈ 

 �
           (14) 

In the literature, such a tower of massive scalar fields is derived in the case of 
1T + 4S dimensional Kaluza-Klein theory after similarly compactifying the extra 
space dimension. The difference is the sign of the mass terms involving n2.  

(B) Compactify the Action 
As is often done in the literature, we can also directly compactify the action in 

Equation (8) as was done to derive Equation (14) using Equation (11). 
The action S is 

( ) ( ) ( ) ( )

( ) ( )
( ) 2

0

2 2
5 20 1

2

4
2 2

0 0

2 2
0 1

2

1 d
2

1 1 d d
2 2

e

M
M

n m n m

n Z m Z

i n m x
xn m

m cS x

nmx x x x x x
x x

m c x x

µ µ µ µ µ
µ

µ µ

ϕ ϕ ϕ ϕ

ϕ ϕ

∈ ∈

+

 
= ∂ Φ∂ Φ − Φ 

 


= ∂ ∂ −π 


− 



∫

∑ ∑ ∫

�

�

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

4
2
0

2 2
0 1

2

2
4

2
0

2 2
0 1

2

1 d
2

1 d
2

n m n m

n Z m Z

n m

n n n n

n Z

n n

nmx x x x x
x

m c
x x n m

nx x x x x
x

m c
x x

µ µ µ µ µ
µ

µ µ

µ µ µ µ µ
µ

µ µ

ϕ ϕ ϕ ϕ

ϕ ϕ δ

ϕ ϕ ϕ ϕ

ϕ ϕ

∈ ∈

− −

∈

−

= ∂ ∂ −


− +


= ∂ ∂ +


− 


∑ ∑ ∫

∑ ∫

�

�

        (15) 

We can break the summation into three ranges −∞  to 1,0,1−  to ∞  and 
get, 
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 22
4 0 1

2 2
1 0

2 2 24 0 0 00 1
2

4

d

1 d
2

d

n n n n

n

m cnS x x x x x
x

m cx x x x

x

µ µ µ µ µ
µ

µ µ µ µ
µ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

∞
− −

=

  
= ∂ ∂ + −  

   
 

+ ∂ ∂ − 
 

′=

∑∫

∫

∫

�

�



   (16) 

where the four-dimensional action ′  is given by, 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 22
0 1

2 2
1 0

2 2 20 0 00 1
2

1
2

n n n n

n

m cnx x x x
x

m cx x x

µ µ µ µ µ
µ

µ µ µ µ
µ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

∞
− −

=

  
′ = ∂ ∂ + −  

   
 

+ ∂ ∂ − 
 

∑ �

�



     (17) 

The action in Equation (17) is a compactified form obtained by using the 
Fourier transform technique (i.e., the KK approach). It is a four-dimensional ac-
tion (in 1T + 3S space) as it is free of the x2 variable and involves three types of 
independent fields 0 , ,n nϕ ϕ ϕ−  with 1 n≤ ≤ ∞  defined in four-dimensional 1T + 
3S space. We can derive the field equations for each type using the Euler-Lagran- 
gian equation of Equation (9). The Klein-Gordon type Equation (10) for ϕ is de-
fined for five-dimensional 2T + 3S space. The equations for 0 , ,n nϕ ϕ ϕ−  with  
1 n≤ ≤ ∞  are, 

1) 

00
1,3,4,5

0
x

x

µ
µ

µ

ϕϕ=

 
 

∂ ∂ ∂  ′− = ∂ ∂ ∂ ∂   ∂  

∑                 (18) 

Or, 

( ) ( )
2 2

0 00 1
2 0m cx xµ µ µ

µ ϕ ϕ∂ ∂ + =
�

                (19) 

2) 

1,3,4,5
0nnx

x

µ
µ

µ

ϕϕ=

 
 

∂ ∂ ∂  ′− = ∂ ∂ ∂ ∂   ∂  

∑                (20) 

( ) ( )
2 2 2
0 1

2 2
0

0n nm c nx x
x

µ µ µ
µ ϕ ϕ

 
∂ ∂ + − = 

 �
             (21) 

3) 

1,3,4,5
0nnx

x

µ
µ

µ

ϕϕ −−
=

 
 

∂ ∂ ∂  ′− = ∂ ∂ ∂ ∂   ∂  

∑                (22) 
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Or, 

( ) ( )
2 2 2
0 1

2 2
0

0n nm c nx x
x

µ µ µ
µ ϕ ϕ− − 

∂ ∂ + − = 
 �

              (23) 

The Equations (19), (21), and (23) are just the ones in Equation (14). So, we 
get the same tower of equations in both ways. 

4. Analysis of the Compactification Results 

Since the Equation (23) depends on n quadratically, we can take  

( ) ( )n nx xµ µϕ ϕ−= . From Equations (14), (19), (21), and (23) we get two sets of 
equations for the residual fields after the compactifications satisfying the two 
equations, 

1) The zero-mode equation 

( ) ( )
2 2

0 00 1
2 0m cx xµ µ µ

µ ϕ ϕ∂ ∂ + =
�

                 (24) 

2) The 1 n≤ ≤ ∞  mode equation representing a tower of scalar fields, 

( ) ( )
2 2 2
0 1

2 2
0

0n nm c nx x
x

µ µ µ
µ ϕ ϕ

 
∂ ∂ + − = 

 �
             (25) 

Dimension x2 is compactified from a 2T + 3S to a 1T + 3S worldand index µ 
has values 1, 3, 4, and 5 with metric signatures (+, −, −, −). Other than the tower 
of scalar fields implied by the symbol n, what are the residuals from the 
five-dimensional space-time? m0 is the “five-dimensional mass” and real, and 
x0 = c2T0, and T0 is assumed to be related to Planck time. Zahir [8] has derived 
an expression relating “five-dimensional mass” m0 to “four-dimensional mass” 
m as, 

( )

( )

0

2

2

1
21

1

m m s

s

λ

λλ
λ
λ

= ⋅

+
=

+
+

                      (26) 

where ( )2 1c c kλ =  which is a dimensionless quantity. Figure 1 is the plot of s 
against λ [8]. 

Therefore, the zero-mode equation is just like the normal Klein-Gordon equa-
tion with an effective real mass M0 = m.s. The details of the solution of the nor-
mal classical and second-quantized KG equation are discussed in detail in the 
text [13] dealing with associated issues like negative energy and problems with a 
probabilistic interpretation of the wave function being reinterpreted as charge 
conservation equation [13]. In our case, we started with a real field and thus the 
charge is zero for the neutral scalar field. 

Next, we focus on the higher mode Equation (25) whose effective mass term is  
2 2 2
0 1

2 2
0

m c n
x

 
− 

 �
. Let us define, 
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Figure 1. Plot of s vs. λ. 
 

2 2 2 2 22 2
2 0 1 1

2 2 2 2
0 0

T
m c s m cn nM

x x
= − = −
� �

                 (27) 

Before we proceed, we need to recall and settle some of the dimensional mat-
ters. We compactified time t2 which was tied to the speed of causality c2, and we 
are left with t1 which is tied to the speed of causality c1 in the residual 1T + 3S 
dimensional space. So, we can safely assume that c1 is like the speed of light and 
t1 is the present-era time dimension. We mentioned in the beginning that if the 
dimensions of t1, t2, and any of the space dimensions are denoted by T, t, and L 
respectively, then the dimensions of c1, c2, and k are LT−1, Lt−1, and Tt−1 respec-
tively. x0 = c2T0, and T0 has the same dimension as t2 and thus 

( ) ( ) ( )2 2 2
1

1
0 2 0 0

0 1;

p p p

p p p

c c ck c L
k k c k

k

x c T T T T

T T L Tc

λ=

= =

= = = =
          (28) 

where pT  is Planck time and pL  is Planck length. Therefore, 

22 2 2 2 22 2
2 21 1

2 2 2 2 2
0

c
T

p

s m c m cn nM s
x L

λ
λ

 
= − = −  

 � �
             (29) 

1
c mc
λ =

�  = Reduced Compton wavelength of the particle of mass m. 

The US National Institute of Standards and Technology (NIST) website  
(https://www.nist.gov) gives a value for proton Compton wavelength equal to 
1.32 × 10−15 m. This gives the value for the reduced Compton wavelength = 2.1 × 
10−16 m for a proton that has a mass of about 938 MeV. If we assume that the 
particle mass m = 100 MeV then we can easily calculate λc = 1.97 × 10−15 m. The 
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same NIST source gives a value for Planck length Lp = 1.62 × 10−35 m. Therefore, 
we have, 

2

20 401.22 10 and 10c c

p pL L
λ λ 

= × ≈  
 

                  (30) 

If we consider a “reasonable range” for λ and read from Figure 1 a “reasona-
ble” value for s, we see from Equation (29) that 2

TM  is negative (as the second 
term in the parenthesis is much bigger than the first term) with a very large ab-
solute value. For the following estimate, we have taken the approximations λ ≈ 1  

and ( )
22

2 2
c

pL
s n λ

λ
λ � . 

( )
2 2 222 2 2 201 1
2 2 210c

T
p

c cM n m mn
L
λ 

− ≈ −  
 

�
� �

              (31) 

Thus, with m = 100 MeV, the higher modes (n ≥ 1) have imaginary masses 
having their absolute values about (n × 1020) times m. This estimate is the same 
as even when m = 0 since we ignored the first term in the parenthesis in Equa-
tion (29). 

5. Meaning of Imaginary Masses: Tachyonic Klein-Gordon  
(TKG) Equation and Existing Literature 

Klein-Gordon equation with imaginary masses has been discussed in the litera-
ture even until recently (for example see [14] and [15]). Such an equation is some-
times called a tachyonic Klein-Gordon (TKG) equation [14]. In the literature, a 
hypothetical particle moving faster than light is known as a tachyon (which has 
not been found experimentally) whereas a field having an imaginary mass is 
known as a tachyonic field. As we give examples of discussions below, many au-
thors argue that having an imaginary mass does not mean that the related par-
ticle is superluminal. Two-time five-dimensional research in [4] and [5] do not 
postulate tachyon or ghost solutions. In the previous section, we noted that the 
n > 1 modes of the KK tower of fields have imaginary masses in agreement with 
many others. Nanni [15] (see discussions below) recently theoretically investi-
gated subluminal particles with imaginary mass. We do not see any reason to 
find another solution here for imaginary mass; rather we overview some selected 
attempts (often emphasizing the mathematical techniques to solve a second-order 
differential equation touching on the Cauchy initial value problem) reported by 
many researchers over the last seven decades.  

It all started [17] as an intriguing conceptual possibility resulting from the in-
variant energy-momentum relation from the Lorentz transformations formu-
lations [9] as conceptually vindicated by Einstein’s TSR. We try to outline the 
developments chronologically below. 

A long list of articles dealing with imaginary mass and superluminal velocities 
have been reported in the literature since the matter was seriously discussed first 

https://doi.org/10.4236/jmp.2023.1412093


S. Zahir 
 

 

DOI: 10.4236/jmp.2023.1412093 1609 Journal of Modern Physics 
 

in connection with TSR by Bilaniuk, Deshpande, and Sudarshan [17]. They con-
sidered relativistic kinematics of classical physics where we recall that formulas 
for the relativistic momentum (mvϒ) and energy (mϒc2) contain the famous 
Lorentz factor 2 21 1 v cϒ = − . While we understand the problem for a par-
ticle starting with v < c to gain a velocity reaching c and going beyond, the au-
thors in [16] proposed “whether the existence of a class of particles, created with 
a velocity v > c, may be hypothesized” noting that it would imply imaginary “rest 
mass” for this class of particles. But they argued “Only energy and momentum, 
by virtue of their conservation in interactions, are measurable, therefore must be 
real. Thus, the imaginary result for the rest mass of the hypothetical ‘meta’ par-
ticles offends only the traditional way of thinking, and not observable physics.” 
They even suggested experiments for detecting such meta particles in the context 
of the Cerenkov effect. 

If we recall the well-known relativistic energy-momentum relation E2 − p2c2 = 
m2c4, if m is imaginary (i.e., m = iµ, µ real), we have p2c2 − E2 = µ2c4. Therefore, 
p2c2 > E2 making the relativistic four-momenta always spacelike.  

The next important paper in this field in the literature is by Feinberg [17] who 
considered the possibility of describing, within the special theory of relativity, 
particles with spacelike four-momentum. It was Feinberg who first called these 
particles with imaginary masses and moving already faster than light as “ta-
chyons”. Therefore, to conform with TSR, “The limiting velocity is c, but a limit 
has two sides”. He argued “The possibility of particles whose four-momenta are 
always spacelike, and whose velocities are therefore always greater than c is not 
in contradiction with special relativity, and such particles might be created in 
pairs without any necessity of accelerating ordinary particles through the “light 
barrier”. He considered the classical Klein-Gordon field equation for free ta-
chyons. However, he restricted the analysis only to those solutions having real 
energies in the Fourier spectrum. He found that tachyons cannot be localized, 
that the Cauchy data for the tachyon field equation cannot be freely assigned, 
and that the appropriate Green’s function is not Lorentz-invariant. To investi-
gate many-tachyon systems, Feinberg [18] also extended the classical scalar field 
theory to second-quantized quantum field theory. While exploring many particle 
systems, he listed five possible cases with initial/final states of the particle sys-
tems having various combinations of normal particles and tachyons with null, 
timelike, or spacelike total momenta.  

Case A. State contains only normal particles, with timelike total momentum.  
Case B. State contains normal particles and tachyons, with spacelike total 

momentum.  
Case C. State contains normal particles and tachyons, with timelike or null 

total momentum.  
Case D. State contains only tachyons, with spacelike total momentum.  
Case E. State contains only tachyons, with timelike total momentum. 
He concludes, after a thorough analysis, that “A description of such particles, 
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called tachyons, by the formalism of relativistic quantum field theory is possible, 
at least for the case of spinless, noninteracting particles. The field theory con-
structed is explicitly Lorentz invariant. The particles described by this formalism 
have several peculiar properties. Among these are the following:  

1) The spinless particle cannot be quantized by Bose statistics but can be quan-
tized by Fermi statistics.  

2) The vacuum state is not invariant under Lorentz transformations but rather 
changes into a state containing many tachyons.” (see [18] p. 1100). 

There was another specialty of Feinberg’s [17] approach that required the in-
troduction of creation and annihilation operators related to the sign of the ener-
gy leading to a noninvariant commutator function [18]. Arons and Sudarshan 
[19] subsequently criticized Feinberg’s [18] method by proposing to construct 
tachyon fields belonging to m2 < 0 particles using Wigner’s irreducible repre-
sentation in the Fock space as is done in the ordinary m2 > 0 cases. Schroer [20] 
later attempted to construct a causal covariant quantum field theory for the clas-
sical Klein-Gordon equation with imaginary mass. Schrorer [20] comments that 
“the correct quantum theory” corresponding to the Klein-Gordon equation with 
imaginary mass is “quite different and much more complicated than the afore-
mentioned proposals” of Feinberg [18] and Arons-Sudarshan [19]. He con-
cludes, “We have demonstrated that the quantization of an m2 < 0 field equation 
leads to causal fields.” and “The validity of causality means that tachyons cannot 
be used for propagating signals with a speed faster than the speed of light, a fact 
that unfortunately makes the name an abusus linguae.” Robinett [21] investi-
gated the propagation of solutions of the Klein-Gordon equation with an arbi-
trary complex mass following Green’s function analysis of the global Cauchy 
problem. He concluded “that an imaginary-mass particle (complex-mass par-
ticle, in general) may behave in a somewhat bizarre fashion, but it nevertheless 
does not travel faster than light. It is hoped that the venerable tachyon can now 
be gracefully retired.” 

Nanni [15] recently obtained a general solution of the TKG equation as a 
Fourier integral performed on a suitable path in the complex energy plane. In 
this work, it is proved that the solution does not contain any superluminal com-
ponents once appropriate initial conditions have been set and the result is vali-
dated for the Chodos equation [22], as well. It is proved that the wave packet 
propagates in spacetime with subluminal group velocities and that it behaves as 
a localized wave for sufficiently small energies. 

Lopez-Ruiz, Guerrero, and Aldaya [14] investigate mathematically the TKG 
equation and the conventional real-mass KG equation (m2 > 0) in connection 
with the Helmholtz equation providing a unified framework for the scalar prod-
ucts of the three equations. This work further reduces the gap between real ver-
sus imaginary mass of free scalar field equations in the mathematical sense. 

We must emphasize that all previous discussions relating to imaginary mass 
correspond to Minkowski space. Our work in this paper starts with an extra time 
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dimension in a modified Minkowski space as well. Then, compactification of the 
extra time dimension using the KK technique [6] led to the emergence of a tower 
of imaginary mass scalar fields (called TKG fields as per the nomenclature used 
in the literature [14]). It is worth pointing out that extra timelike dimension has 
been considered in curved space involving a complex brane world scenario (see 
[16] and references therein), too. Iglesias and Kakushadze [16] constructed a so-
litonic 3-brane solution in the 5-dimensional Einstein-Hilbert-Gauss-Bonnet 
theory with the space-time signature (−, +, +, +, −). The direction transverse to 
the brane was the second time-like direction. They found no propagating ta-
chyonic or negative norm states even though the extra dimension was time-like. 

The objective of reviewing the selected research from the literature is to prec-
lude the necessity for producing another solution for the TKG equations of the 
KK tower in Equation (29). One can follow some of the methodologies discussed 
above to find a solution. We focused on the absolute magnitude of the imaginary 
masses of the KK tower (i.e., the mass term MT in Equation (31)). To be specific, 
we pointed out that the absolute value of the imaginary masses can be greater 
than the Planck mass. 

6. Conclusions 

Based on Zahir’s [8] framework of a 2T + 3S Minkowski space with distinct 
speeds of causality, we derived classical Klein-Gordon field equations in five di-
mensions. As the extra time dimension is compactified following Kaluza-Klein’s 
Fourier expansion technique, we obtained a tower of higher modes of scalar 
fields in agreement with the findings of other researchers in this field. Because 
the extra dimension is timelike, we also found that the non-zero modes, as ex-
pected, have imaginary masses. We performed a detailed numerical calculation 
and determined how large the magnitudes of the imaginary masses are com-
pared to the zero mode one (see Section 4, Equation (30) and the discussion be-
low). The outcome can be attributed to the concept of compactifying the extra 
time dimension on an ultra-small circular topology matching the size of Plank 
time. We contrasted these results with several research works on TKG that sug-
gested experimental routes for the detection of such particles called tachyons. 
Lacking any experimental success so far, we can question the validity of the Fouri-
er expansion approach as the compactification technique although it has great 
intellectual appeal even in current string theory. We emphasize that the role of 
the extra dimension and its compactification has a different meaning. What we 
need, maybe, is an alternative approach to compactify a dimension. Let’s con-
sider a bold proposition that the extra time dimension was tied to the massless 
weak vector bosons traveling at a velocity c2 (i.e., already partially broken gauge 
symmetry) before the Higgs mechanism fully breaks the standard model gauge 
symmetry. We can pursue the idea that the Higgs field not only gave masses to 
weak bosons (and others except photons) but also played a role in compactifying 
the extra time dimension. Zahir [8] introduced this conceptual approach by not-
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ing that a scalar field called inflaton has been responsible for metric expansion 
during the inflationary phase [23]. Then it is unclear if it is too far-fetched or not 
to consider the Higgs field responsible for compactifying the extra time dimen-
sion [24]. Only further research can tell what the theoretical predictions will be. 

In this paper, we considered a scalar field in a modified Minkowski space-time 
(i.e., a 2T + 3S dimensional space) and obtained a tower of scalers with imagi-
nary masses after compactifying the extra time dimension. However, we have 
not addressed if such a modified theory can impact CPT symmetries. However, 
Salesi [25] investigated free spin-1/2 particles which behave like tachyons in the 
momentum space (p2 = −m2) but behave like subluminal particles (v < c) in the 
ordinary space. He proposed to call them Pseudotachyons (PT’s). He straightfor-
wardly extended the standard Dirac theory and investigated a quantum mechani-
cal wave equation describing free spinning particles. He also showed that his 
proposed theory about PTs to be separately invariant under the C, P, T trans-
formations and the covariance under Lorentz transformations was also proved. 
Further work is needed to extend his work to scalar fields and particles being 
considered in this paper. 

Finally, we would like to suggest future perspectives of this work that can be 
extended to other fields in the context of quantum mechanics, for example, in 
geometric phases [26], scattering [27], non-inertial effects [28], and solutions 
of bound states [29] [30] [31] [32]. 
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Appendix A: Revisiting the Abelian Gauge Field Theory  

Next, we consider the action S of a U(1) gauge field in 2T + 3S dimension and 
explore the effect of compactification of the extra time dimension on a circle of 
radius x0 = c2T0. 
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The coordinate 2 is 2 2 2x c t= . We assume that the fields are compact on a cir-
cle of radius x0 such that, 

( ) ( ) ( )2 2 0, , 2M
M M MA x A x x A x x xµ µ= = + π             (A-2) 

We expand the fields using the Fourier series as, 
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xµ corresponds to 1, 3, 4, 5 components, i.e., x1 = c1t1 and 3, 4, 5 components 
are x, y, z respectively. Similarly, Aµ corresponds to 1, 3, 4, 5 components and  

F A Aµν µ ν ν µ= ∂ − ∂                       (A-4) 

This gives, 
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Then the action of Equation (16) becomes, 
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and 
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And summing over index m, we get 
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Next, we separate the 0th mode and change the summation over n ≥ 1. We get, 
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Now, we make gauge transformations, 
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We finally get,  
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Deriving the field equations and further analysis of the compactification is left 
as a possible further extension of this work. 
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