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Abstract 
This paper investigates the concept of Cross Polarization (CP) experiment in 
addition to revisiting the two potential expansion schemes recently developed 
in the field of solid-state nuclear magnetic resonance (SSNMR): namely, the 
Floquet-Magnus expansion and the Fer expansion. We use the aforemen-
tioned expansion schemes for the calculation of effective Hamiltonians and 
propagators when the spin system undergoes Cross Polarization radiation. 
CP is the gateway experiment into SSNMR. An in-depth comprehension of 
the underlying mechanics of spin dynamics during the cross-polarization ex-
periment is pivotal for further experimental developments and optimization 
of more complex solid-state NMR experiments. The main contribution of this 
work is a prospect related to spin physics; particularly regarding to generali-
zation of the calculation. This work reports original yet interesting novel 
ideas and developments that include calculations performed on the CP expe-
riment. In fact, the approach presented could play a major role in the inter-
pretation of several fine NMR experiments in solids, which would in turn 
provide significant new insights in spin physics. The generality of the work 
points towards potential applications in problems related in solid-state NMR 
and theoretical developments of spectroscopy as well as interdisciplinary re-
search areas as long as they include spin dynamics concepts. 
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1. Introduction 

Solid-state NMR (SSNMR) is an advancement of NMR spectroscopy often cha-
racterized by the presence of anisotropic interactions. There have been tre-
mendous advancements, particularly with regard to spin dynamics. To be spe-
cific, the introduction of the Floquet-Magnus expansion (FME) [1] [2] [3] and 
Fer expansion (FE) [4] [5] [6] approaches as alternative schemes to the main 
approaches; i.e., the average Hamiltonian theory (AHT) [7]-[28] and the Floquet 
theory (FLT) [29] [30] [31] [32], has greatly revolutionized this field. Basically, 
these recently introduced approaches aim at solving a time-dependent linear 
differential equation that is inclined towards obtaining propagators. 

For a long time, theoretical investigations have been pivotal in solid-state 
NMR assessment since the early days of the field and have retained their relev-
ance even when investigating multi-pulse NMR, magic-angle spinning NMR 
[33] [34], multiple quantum NMR as well as to the general field of spin dynam-
ics. Although FME and FE are different approximations of the same equation, 
the results of the formal expression of the effective Hamiltonian they provide 
differ in higher orders of expansion. In recent years, there has been a surge in 
interest in these two approaches, particularly when investigating various physics 
systems such as topological materials [35]. Detailed applications of these ap-
proaches to many different SSNMR problems are important and useful in SSNMR 
as well as in the general field of spectroscopy. Comprehension of spin dynamics is 
fundamental to the development of pulse techniques for the transfer of spin pola-
rization [14]. In this article, we applied the FME and FE approaches to a specific 
well-known SSNMR experiment called Cross Polarization (CP) [33], which gener-
ally involve transfer of spin polarization from one spin species to another, leading 
to the common observation of NMR signals. The results reported for each ap-
proach will facilitate discovery of the most efficient scheme that possesses bet-
ter performance, regarding creation of expressions that are easier to imple-
ment when calculating spin evolution. The presence of the commutators in the 
calculation of the propagator ( )C Fer

U τ ; for instance, when using the Bak-
er-Campbell-Hausdorff (BCH) [36], dictates that the rate of convergence of the 
FE is slower than that of the FME from the computation effectiveness point of 
view. The Baker-Campbell-Hausdorff formula [36] about the exponential func-
tion of two operators, X and Y, and their commutator [X, Y] is written as, 

[ ] [ ] [ ]1 1 1, , , , ,
2 12 12e e e

X Y X Y X X Y Y X YX Y    + + + − +   =


.              (1) 

By applying the above formula (Equation (1)) to the FE, we can write the first 
two expansion terms of FE as [36] 

( )
( ) ( )

( ) ( ) ( ) ( ) ( )0 1,0 0 1,02
0 1,0

1 ,
2e e e

C C CFer Fer Fer FerC CFer Fer
i H i H i H Hi H i H

C Fer
U

τ τ τ
τ ττ

 
− − + − + − −  = =



     (2) 

where ( )C Fer
U τ  is the expression of the Fer propagator for a time period Cτ . 

( )0
FerH  and ( )1,0

FerH  are the first and second order of the Fer expansion, respec-
tively. One appealing feature of the FME is to give a formal expression of the  
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Floquet Hamiltonian [35]. Arguably, the starting point of the FME is to expand 
the propagator in the form of the time evolution operator [2] 

( ) ( ) ( )e 0itFU t P t P− += .                     (3) 

The operator P(t) introduces the frame of the density operator varying under 
the time-independent Hamiltonian F. F is expanded in powers of the Fourier 
transform of the Hamiltonian and can also be transformed in powers of the per-
turbation. On the other hand, the Fer expansion remarkable point may be that it 
expands a propagator in the form of a product of propagators with nth-order 
Hamiltonians as 

( ) ( ){ }
0
exp n

n
U t iF t

∞

=

= −∏ .                    (4) 

This form of propagator allows evaluation of the time-evolution governed by 
the 1st-order Hamiltonian separately from those by higher order Hamiltonians. 
This paper examines the average Hamiltonians and propagators of the two ex-
pansion schemes (FME and FE) for Cross Polarization experiment [33]. In these 
investigations, we found some subtle differences between the FME and FE 
schemes that could definitely lead to a close relationship between the FE and the 
FME. The FME is obtained by representing the solution of the time dependent 
Schrödinger equation 

( ) ( )
d

d
U t

iHU t
t

= −                        (5) 

in the form of Equation (3) and using the following exponential ansatz 

( ) ( ){ }expP t i t= − Λ ,                      (6) 

where the function ( )tΛ  ( ( ) ( )n
n

t tΛ = Λ∑ ) is the argument of the operator 
( )P t . These lead to the modified form of the Magnus expansion [1] [2]. In its 

form, the FME starts as the FE by introducing a first exponential factor. This 
raises the question if 

( ) ( )1t F tΛ = .                         (7) 

When solving problems of spin dynamics in solids, the FME appears to be 
more suitable than the FE. The FE’s apparent complexity (lengthy calculation of 
the commutators borne from the BCH formula) necessitates more input com-
putationally when compared to the FME. From the computational effectiveness, 
this tells us that the rate of convergence of the FME is faster than that of the FE, 
for a prescribed precision; therefore, one needs more ns′Λ  (FE) than kF s′  
(FME). Regardless, they are some cases such as spin system in the three-level 
system [21] where this result is reverse. As such, one can conclude that the cha-
racteristics of the problem at hand tend to dictate the method to be used. This 
kind of performance influences numerical simulations of new pulse-technique 
development. The best approach could be considered as a theory of choice not 
only to describe and explain SSNMR results, but also to design, develop, and im-
prove several pulse sequences involving the CP sequence. The best approach (FME 
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or FE) found could also be subject to a potential candidate of developing advanced 
spin evolution software to simulate SSNMR experiments. Driven by demands of 
the experimental NMR, numerous computer programs, including SPINACH 
(based on Matlab) [37], SIMPSON (based on scripting interface, Tcl) [38], and 
SPINEVOLUTION (based on Chebyshev polynomial expansion) [39], have been 
developed over the past few decades for the simulation of NMR experiments. 
Against this backdrop, the avenue of new computer programs is still a welcome 
idea for simulations in SSNMR. Even so, the development of advanced spin evolu-
tion software using either the FME or the FE approach is not the goal of this paper. 

In essence, the Fer expansion was developed as an alternative to the Magnus 
expansion and is still in its early stage in applications in both classical and mod-
ern physics [40]. On the other hand, hitherto, the FME has been employed fre-
quently for the treatment of quantum Floquet systems which open new possibil-
ities to control quantum systems [1] [36] [41] [42] [43]. This approach is practi-
cally useful for the high-frequency driving, in which the higher-order contribu-
tion is not relevant to dynamics at short time scale. However, in the case of finite 
frequencies, the problem is more intricate since, in general; the FME is not a 
convergent series expansion in the thermodynamic limit. More discussions on 
the physical meaning of the FME and FE including an interesting recent work by 
Takegoshi and co-workers can be found in the literature [44]-[52]. Due to the suc-
cesses of AHT and FLT in designing a plethora of experiments in solid-state NMR, 
the investigation of new or alternative approaches such as FME and FE is important 
as it might improve or lead to new methodological progress in spin dynamics. 

This paper is organized as follows. In section II, we applied the FME and FE to 
the CP experiment. In section III, we put the work in a prospect of spin physics to 
make the calculation more general. Finally, section IV presents our conclusions. 

2. Application of FME and FE to Cross Polarization 

The key point may be realized if we compare the propagators with the 0th and 
1st-order average Hamiltonians, 

( ) ( ) ( )( ){ }0 1expC C FME FMEU i H Hτ τ≈ − +                 (8) 

and 

( ) ( ){ } ( ){ }0 1exp expC C FE C FEU i H i Hτ τ τ≈ − − .              (9) 

In general, the above two exponentials are not equivalent unless the experi-
ments present certain physical particularities, such as the CW decoupling and 
the rotary resonance recoupling, which are of particular interest in NMR. The 
general formula for the FME are given by 

( ) ( ) ( )
0

0 d
t

n n n nt G tFτ τΛ = Λ + −∫ ,                (10) 

with 

( )
0

1 dn n
T

F G
T

τ τ= ∫ .                     (11) 
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where the first three orders are given by 

( ) ( )1G Hτ τ=  ,                       (12) 

( ) ( ) ( )2 1 1,
2

HiG Fτ τ τ = − + Λ 
 ,                (13) 

( ) ( ) ( ) ( )

( ) ( ) ( )

3 1 2 2 1

1 1 1

, ,
2 2
1 , , .

12

i iG F F

F

H

H

τ τ τ τ

τ τ τ

 = − + Λ − Λ   

  − Λ Λ −  





          (14) 

2.1. Application of FME to Cross Polarization 

Let us consider the truncated Hamiltonian for the heteronuclear dipolar coupled 
two spins under double RF irradiation on both the I and S spin at “on reson-
ance” is given by [50] 

1 1Z Z X XH dI S I Sω ω= + +                    (15) 

where d is the heteronuclear dipolar interaction and 1ω  is the intensity of RF 
irradiation along the X axis. The frequencies of the two spins I and S are the 
same because when both spins are on resonance, and when the spin-lock fields are 
chosen appropriately, the Hartman-condition described on appendix 2 is fulfilled 
(Equation (90)). The relevant Hamiltonian in the interaction frame defined by 

( ) ( ){ }1exprf X XU t i I S tω= − +                  (16) 

becomes 

( ) ( ) ( ){ }1 1sin 2 cos 2
2 Z Z Y Y Y Z Z Y Z Z Y Y
dH t I S I S I S I S t I S I S tω ω= + + + + − .  (17) 

Note that the effect of MAS on the spin-lattice relaxation is negligeable [53]. 
The first order contribution to the FME gives 1F  and ( )1 tΛ  obtained below, 

( )1 2 Z Z Y Y
dF I S I S= + ,                     (18) 

and 

( ) ( )( )( ) ( )( )1 1 1
1 1

cos 2 1 sin 2
4 4Y Z Z Y Z Z Y Y
d dt t I S I S t I S I Sω ω
ω ω

Λ = − − + + − . (19) 

The second order contribution to the FME, 2F , can be calculate by the 
integral 

( )2 20

1 d
T

F G
T

τ τ= ∫ ,                     (20) 

which gives the result, 

[ ]
2

2
1

,
8 Z Z Y Y Y Z Z Y
idF I S I S I S I S
ω

= − + + .              (21) 

After rearrangement, we have 

( ) ( )
2

2 2 2 2
2

18 X Y Z Y Z X
dF I S S I I S
ω

= − + − 
  ,              (22) 
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where the function, ( )2G τ , is calculated in the appendix. The ( )2 tΛ  contri-
bution can also be heavily calculated with the following formula obtained from 
the above general Equation (10). 

( ) ( ) ( ) ( )2 2 1 2
0

0 , d
2

tit H tFτ τ τΛ = Λ − Λ −  ∫ .            (23) 

A tedious calculation presented in the appendix gives 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2 1 1 2 2 3 3
1 1

4 4 5 5 6 6
1 1

1
16 8

1 12 2
8 2

,

idt C t C t C t

C t C t C t

α α α
ω ω

α α α
ω ω

 
Λ = + − +        

 

   
−





+ − + +       



   

    (24) 

where the commutators 1 2 3, , ,C C C   and 6C , and the functions 1 2 3, , ,α α α   
and 6α  are given in the appendix. 

The calculation of 3F  is performed with 

( )3 30

1 d
T

F G
T

τ τ= ∫ ,                      (25) 

where 

( ) ( ) ( ) ( ) ( ) ( ) ( )3 1 2 2 1 1 1 1
1, , , ,

2 2 12
i iG t H t F t F t t t H t F = − + Λ − Λ − Λ Λ −            .(26) 

The function ( )3G t  is calculated in the appendix and we found 

( ) ( )

[ ] ( ) ( )

3
1 4

3 5 32
1
3

6 1 22
1

, 2
4 4 264

1, ,
2 1264

Z Z Y Y

Y Z Z Y

C Cd iG t I S I S C f t

d iI S I S C f t f t

ω

ω

 = + − − −  

+ + − −
        (27) 

where the functions ( )1f t , ( )2f t , and ( )3f t  are given in the appendix. The 
integration of the function ( )3G t  yield 

[ ]
3

1 4
3 5 62

1

, 2 ,
4 464 Z Z Y Y Y Z Z Y

C CdF I S I S C I S I S C
ω

  = + − − + +    
.    (28) 

It can, obviously, be seen that the magnitude of 3F  is of the order of 
3

2
164

d
ω

≈ . Higher-order contributions to the FME can also be obtained after 

lengthy calculations, but results are not presented here. 

2.2. Application of FE to Cross Polarization 

We verified the results calculated in reference [50] for the first three orders av-
erage Hamiltonians in the Fer expansion for the heteronuclear dipolar coupled 
two spins under double RF irradiation on both I and S spin at “on resonance”. 
The results obtained are given here, 

( ) ( )0

2Fer Z Z Y Y
dH I S I S= +                     (29) 
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( ) ( )
2

1,0

116Fer X X
dH I S
ω

= +                     (30) 

( ) ( )
3

1,1
2
164Fer Z Z Y Y

dH I S I S
ω

= −                   (31) 

For the CP experiment, the first order contribution to the FME (F1) and to the 
FE ( ( )0

FerH ) are identical. The second order of both expansions (FME and FE) is 
different and the dissimilarity due to spins contributions is present in the results 
of the second-order contribution of the two expansions. The spin contribution 
in the 2nd-order FME is given by the Equation (21), while the spin contribution 
for the 2nd-order FE is given by the Equation (30). The bilinear terms in the 
second-order contribution of the FME (Equation (21)) due to the spin’s contri-
bution can be understood as a polarization transfer mechanism from spin I to 
spin S. In this respect, the FME can be considered to be the right expansion 
scheme to utilize for CP experiment because it displays bilinear term contribu-
tions of spin systems that are not obtained in the second-order contribution of 
the Fer expansion ( )1,0

FerH . The bilinear terms appear, instead, in the third-order 
contribution of the Fer expansion (Equation (31)). 

Let us recall that the cross-polarization methodology was introduced to the 
NMR community in 1973 by Pines, Gibby, and Waugh [33] for the detection of 
rare spins in high-resolution solid-state NMR. Following the indirect detection 
schemes of Hartmann and Hahn [54], and of Lurie and Slichter [55], Pines and 
co-worker [33] integrated these CP methods with high-power spin decoupling 
and inaugurated one of the most important techniques that advocate and ad-
vance solid-state NMR spectroscopy on low-abundance spins. The combination 
of cross polarization, magic angle spinning, and heteronuclear decoupling is 
now the routine experimental method for recording high-resolution NMR spec-
tra of spin-1/2 nuclei. The results for CP using the Fer expansion were obtained 
by simple inspection of the evolution propagator. The heavy calculations to ob-
tain the FME terms compared to the obtention of the Fer expansion terms make 
the FE more favorable to be used for the CP experiment. Thus, the Fer expan-
sion is more appropriated to appreciate effects of time-evolution under Hamil-
tonians with different orders separately, compared to the FME approach because 
of the easier way of Fer expansion calculation of the average Hamiltonians. 
Again, as mentioned above for the heteronuclear dipolar decoupling, the cha-
racteristics of the problem at hand might ultimately dictate the approach to be 
utilized for the CP experiments as well. 

3. Spin Physics 

In order to make the calculation more general, we can write the Hamiltonian in 
the following form, 

( ) S X I X Z ZH t S I dI Sω ω= + +                   (32) 
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In the RF interaction frame, the Hamiltonian becomes 

( ) ( ) ( ){ } ( ) ( ){ }cos sin cos sinY
X I Y I X S Y SH t d I t I t S t S tω ω ω ω= + +    (33) 

The Hartmann-Hahn condition [54], allows to write 

( ) ( ) ( ){ } ( ) ( ){ }1 1 1 1cos sin cos sinY
X Y X YH t d I t I t S t S tω ω ω ω= + +     (34) 

( ) ( ) ( ) ( )

( ) ( )

1

1

cos 2
2 2

sin 2
2

Y
X X Y Y X X Y Y

X Y Y X

d dH t I S I S I S I S t

d I S I S t

ω

ω

= + + −

+ +



        (35) 

( )0 2
Y

X X Y Y
dH I S I S= +                     (36) 

( ) ( )2 2 2
Y

X X Y Y X Y Y X
d dH I S I S i I S I S+ = − − +             (37) 

( ) ( )2 2 2
Y

X X Y Y X Y Y X
d dH I S I S i I S I S− = − + +             (38) 

Let us introduce the fictitious spin spaces as follows, 

( ),
1
2Z DQ Z ZI S I= +                       (39) 

( ),
1
2X DQ X X Y YI S I S I S I S I+ + − −= + = −               (40) 

( ), 2Y DQ X Y Y X
iI S I S I S I S I+ + − −= − − = +               (41) 

( ),
1
2Z ZQ Z ZI S I= −                       (42) 

( ),
1
2X ZQ X X Y YI S I S I S I S I+ − − += + = +               (43) 

( ), 2Y ZQ X Y Y X
iI S I S I S I S I+ − − += − − = −               (44) 

with 

, ,, 0a ZQ b DQI I  =                         (45) 

( ) ( ) ( ), , 1 , 1cos 2 sin 2
2 2 2

Y
X ZQ X DQ Y DQ

d d dH t I I t I tω ω= + +        (46) 

One of the most intriguing NMR experiments is the excitation of transitions 
which contravenes the selection rule 1m∆ = ± , that is to say, for 1 2I =  nuc-
lei, where more than one spin participates in the transition. New detection me-
thods make it possible to observe Double Quantum (DQ) or multiple-quantum 
transitions in a convenient way. Zero-quantum (ZQ) transitions are particularly 
interesting, since they were not detected by early continuous-wave techniques 
due to their insensitivity to magnet in homogeneity broadening [56]. A single 
quantum transition is the most common transition that creates magnetization in 
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the transverse plane with a single spin change state. With a simultaneous shift of 
both spins, it is possible to obtain either zero quantum (the spins flip to opposite 
states) or double quantum (spins flip the same way) transitions. Figure 1 shows 
the typical spin transitions for a spin system, IS. Double-quantum coherence 
connects the states |αα> and |ββ> and zero-quantum coherence connects states 
|αβ> and |βα>. This principle can be rationalized using the energy level diagram 
[57]. 

In the vector model, double quantum transitions have no magnetization in the 
transverse plane and only transverse magnetization can be observed. But, DQ 
transition can be transferred to single quantum transition through the process of 
generation of first pulse, evolution and generation of multiple quantum cohe-
rence (second pulse) in a multi quantum experiment. 

0 ,2
Y

X ZQ
dH I=                         (47) 

2 ,4
Y

ZQ
dH I+ −=                         (48) 

2 ,4
Y

ZQ
dH I− +=                         (49) 

( ) ( )1 12 2
1 , ,

1

e e
4

i t i t
DQ DQ

dt I Iω ω

ω
+ −

− +Λ = +               (50) 

( )1 , ,
1

0
4 X DQ X DQ
d I Iθ
ω

Λ = =                   (51) 

1 ,2 X ZQ
dF I=                          (52) 

2

2 1 ,
14 Z DQ

dF Iω
ω

 
=  

 
                     (53) 

 

 
Figure 1. Typical spin transitions for a spin system, I and S. 
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To second order, the propagator can thus be written as, 

( ) , ,

2

, 1 ,
1

,0 e exp e e
2 4

X DQ X DQ Ci I i I i H
C X ZQ Z DQ C

d dU i I Iθ θ ττ ω τ
ω

− −
     = − + =       

 (54) 

with 
2

, 1 , ,
1

cos sin
2 4X ZQ Z DQ X DQ
d dH I I Iω θ θ

ω
 

= − − 
 

          (55) 

Thus, the FULL propagator (i.e., in the rotating frame) is 

( ) 1 , , ,

2
2

, 1 ,
1

,0 e e exp e
2 4

Z DQ C X DQ X DQi I i I i I
C X ZQ Z DQ C

d dU i I Iω τ θ θτ ω τ
ω

− −
     = − −       

 

(56) 

Interestingly, with the FE, we can describe separately, by subsequent evolu-
tion, the effect of the RF field (locking field) and dipolar interaction, which is, to 
some extent, one of the aims of the Fer expansion. In addition, at the Hart-
mann-Hahn condition, all the evolution takes place in the DQ space (up to 
second order), which characterizes the conservation of the total magnetization 
during the CP process. Indeed, the CP experiment between a low-abundance (S) 
spin system and a high-abundance spin system (I) can be most conveniently de-
scribed by ignoring the dipolar interaction between the S spins. Vega and 
co-worker [58] presented an illuminating theory for CP NMR of non-spinning 
and spinning samples. 

Indeed, this section is a presentation of the two-spin CP spin dynamics, 
commonly used to explain CP-NMR. The above Equation (32) should be written 
on the form: 

( )t
S z I z x xH t S I dI Sω ω= + + .                  (57) 

When the spin-lock fields are chosen appropriately, the Hartman-condition 
described on appendix 2 is fulfilled (Equation (90)) and both frequencies of I 
and S become the same. In the interaction frame at the Hartmann-Hahn [54] 
condition, we thus get: 

( ) ( ) ( ) ( ){ }1 1cos 2 sin 2
2 2

t
i x x y y x x y y x y y x

d dH t I S I S I S I S t I S I S tω ω= + + − + +  (58) 

and with the transformation: 

( ) ( ) ( ) ( )1 , 1 ,exp 2 exp 2t t
i z DQ z DQH t i I t H t i I tω ω= − ,          (59) 

this becomes indeed Equation (46) 

( ) { }, , 1 , 1cos 2 sin 2
2 2

t
i x ZQ x DQ y DQ

d dH t I I t I tω ω= + + .         (60) 

The discussion about the ZQ and DQ transitions makes sense only when the 
two-spin system itself is discussed. It would be helpful to mention that the sys-
tem at the start after the first 90˚ pulse is in a state 
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( ) ( ) ( ){ } { }, ,0
2 2

t
i z z z z z z DQ z ZQ

A AAS S I S I I Iσ = = + + − = + .      (61) 

and that according to the commutation relation in Equation (45) and the form 
of Equation (46): 

( ) ( ) ( ), ,
t t t
i c i ZQ c i DQ cU t U t U t= ,                  (62) 

where ( )t
i ZQU t  is straightforward equal to ( ){ },exp 2c x ZQit d I− . The  

( )t
i DQU t , using the derivation around the Equations (47)-(55), has a form of the 

DQ operators in Equation (54). In general, we assume during CP that 1d ω  
and therefore 

1t
i DQU ≈ .                          (63) 

Thus, 

( ) ,exp
2

t
i c c x ZQ

dU t it I ≈ − 
 

,                  (64) 

and with the above approximation 

( ) ( ) ( ){ }, , ,cos 2 sin 2
2 2

t
i z DQ z ZQ y ZQ

A At I I d t I d tσ ≈ + −         (65) 

and 

( ) ( )t t
c i ct tσ σ=                        (66) 

Thus, back to the rotating frame, using 

( ),
1
2z DQ z zI S I= +                       (67) 

and 

( ),
1
2z ZQ z zI S I= − ,                      (68) 

( ) 1 cos 1 cos
2 2 2c x c x c
A d dt S t I tσ     = + + − +    

    
          (69) 

showing what CP in fact is doing. 

4. Conclusion 

This study successfully applies FME and FE during Cross Polarization radiation 
experiment in SSNMR and subsequently probes the spin dynamics using both 
approaches. The CP was characterized by the mechanism of polarization trans-
fers from 1H to low-gamma nuclei, X (13C). The characterization shows the 
matching condition called Hartmann-Hahn [54], a popular concept within the 
scientific community. Additionally, the study proposed a model of spin physics to 
interpret the spin dynamics based on a more general calculation. At the Hart-
mann-Hahn condition, all the evolution takes place in the DQ space, which cha-
racterizes the conservation of the total magnetization during the CP process. It is 
worth stressing that, this is the first attempt to use the FME and FE approaches 
to investigate the spin dynamics in CP experiment. Therefore, in order to im-
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prove the current study and confirm our results, an in-depth comprehension of 
the CP experiment is necessary. One possible approach would be to add a fur-
ther theoretical step, such as the fusion of the Floquet-Magnus and Fer expan-
sion approaches. As long as many of these steps can be further improved, future 
CP experiments are certainly feasible; which will largely benefit from this cur-
rent development of spin dynamics. This contribution is not impossible, al-
though it is difficult to quantify at this moment. The comparison between FME 
and FE results gave us an indication of the approach to be utilized for the CP 
experiment, in particular for the computational point of view. This pilot study 
shows that the FME is a promising approach to the study of CP experiment and 
other major SSNMR experiments such as the phase-modulated Lee-Goldburg 
[59] decoupling where the analysis of spin-systems is currently under investiga-
tion. The understanding of spin dynamics during the CP experiment is very 
useful for further experimental developments and optimization for more com-
plex solid-state NMR experiments. Therefore, this work potentially represents an 
interesting contribution to the field of NMR spectroscopy. 
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Appendix 
A1. Floquet-Magnus Expansion Calculation 
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( ) ( ) ( ) ( ){ }{
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( ) ( )( ) ( ) ( ) }
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1 1
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1 1
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where the respective commutators are: 

[ ]1 , ,Y Z Z Y Y Z Z YC I S I S I S I S= + +                (73-a) 

[ ]2 , ,Y Z Z Y Z Z Y YC I S I S I S I S= + −                (73-b) 

[ ]3 , ,Z Z Y Y Y Z Z YC I S I S I S I S= − +                (73-c) 

[ ]4 , ,Z Z Y Y Z Z Y YC I S I S I S I S= − −                (73-d) 

[ ]5 , ,Z Z Y Y Z Z Y YC I S I S I S I S= + −                (73-e) 

[ ]6 , .Z Z Y Y Y Z Z YC I S I S I S I S= + +                (73-f) 

After integration of the above Equation (72), we obtain 

( ) ( ) ( )
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where 

( ) ( )1 1
1

1 cos 4 ,
8

t t tα ω
ω
−

= −                   (75-a) 

( ) ( )2 1
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1 1 sin 4 ,
2 4
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= − 

 
                (75-b) 
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( ) ( ) ( )3 1 1
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After rearrangement, we obtain 
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The integration of the function ( )3G t  
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yield 
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A2. Cross-Polarization Description 

In CP experiment, there is a strong coupling between a bath of 1H and low-gamma 
nuclei, as shown in Figure 2. The mechanism of polarization transfers from 1H to 
low-gamma nuclei, X, is presented in Figure 3. 

The following Figure 3 is a basic succinct description of the Cross-Polarization 
experiment in solid-state NMR shown in Figure 2. 

Let us consider two heteronuclear spins, I and S, that resonate at frequencies 

Iω  and Sω  such as, 

0I I Bω γ=                          (83) 

and 

0S S Bω γ= .                         (84) 

The coefficients Iγ  and Sγ  are the gyromagnetic ratios of spins I and S, re-
spectively. 0B  is the external field, and 1iB  (with i = I, S) is the respective  

 

 
Figure 2. Polarization transfer from 1H to low gamma nuclei (X). 
 

 
Figure 3. Basic description of CP experiment. 
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resonant field. The pulse sequences applied to I or S affect both heteronuclear 
spins. If the resonant fields are applied to I and S, each spin precesses with a 
frequency 

1I I IBγΩ =                          (85) 

and 

1S S SBγΩ =                          (86) 

The precession frequencies match by adjusting the resonant fields 1iB  of in-
dividual nuclei. When these conditions match, we obtain the so-called Hart-
mann-Hahn condition [54] [57]: 

1 1I I S SB Bγ γ=  
As described in Figure 4, the classical description of CP uses the concept of 

spin temperature, which is valid as long as the system contains a large number of 
spins with strong 1H-1H dipolar couplings present [24] [33] [60]-[71]. 

During the cross polarization experiment shown in Figure 5, the abundant 
nucleus (typically, 1H) and the observed nucleus (typically, 13C) are spin-locked 
as shown in Figure 6 and Figure 7. 

The spin-lock effect is similar to the Zeeman interaction in the sense that the 
effect gives rise to a splitting as shown in the Figure 8. 

 

 
Figure 4. Precession of Resonant fields. 

 

 
Figure 5. Classical description of CP. 
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Figure 6. Pulse rotates spins. 

 

 

Figure 7. Spin-lock pulse trapping spins. 
 

 
Figure 8. Similarity between the spin-lock effect and the Zeeman interaction. 

 
When 0 , HB γ  and Cγ  are all fixed, the Zeeman splitting is different for 1H 

and 13C as illustrated in the Figure 9(a) and Figure 9(b), i.e. 

0 0
H Cω ω≠                           (87) 

where 

0 0
H

H Bω γ=                          (88) 

and 

0 0
C

C Bω γ= .                         (89) 

However, when the spin-lock fields are chosen appropriately, the splitting for 
1H and 13C becomes identical, as illustrated in the Figure 10(a) and Figure 
10(b) i.e. 
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Figure 9. Zeeman splitting is different for 1H and 13C. 

 

 
Figure 10. The spin-lock fields are chosen suitably. 

 

1 1
H Cω ω= ,                          (90) 

where 

0 0
H

H Bω γ=                          (91) 

and 

0 0
C

C Bω γ= .                         (92) 
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