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Abstract 
The main goal of this article is to present a new result of a possible approach 
to the geometrical description of the birth and evolution of the universe. The 
novelty of the article is that it is possible to explain the nature of supersym-
metry in terms of the geometric representation of the wave function and to 
propose a mechanism of spontaneous symmetry breaking of the excitation of 
the universe with different degrees of freedom. It is under such conditions 
that the well-known spontaneous symmetry breaking occurs and individual 
excitation acquires mass. At the same time, a phase transition of the first kind 
occurs with the formation of a new phase. 
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1. Introduction 

The problem of the geometric representation of the universe and of how to in-
corporate it in the scheme of the general relativity theory is far from being 
solved. Modern ideas (rather hypotheses) about the cause of the formation of the 
state of the universe suggest the instability of some scalar field associated with 
the quantum nature of the matter [1]. The causes and physical mechanism of the 
appearance of this field, and hence the origin of the universe, have remained 
open for discussion for many years. Earlier, an approach was proposed [2] to 
describe the origin and evolution of the universe in terms of the first principles 
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of statistical mechanics and quantum field theory. In this approach, we can an-
swer the question of the probable emergence of such a field, but nothing can be 
said about its physical and geometric nature. The purpose of this paper is to de-
scribe the early universe in terms of some physical entity that has simple geome-
tric interpretation and to use a known mathematical apparatus that may describe 
its appearance and probable changes. 

We have to define a mathematical representation of the physical entity with 
which we could describe the initial state of the universe. The spinor representa-
tion of the wave function is rather unsuitable for the description of the origin of 
the universe as a quantum object [3]. It was shown [4] that there is no fi-
nite-dimensional representation of the complete linear coordinate group of 
transformations for spinors. Furthermore, Dirac spinors preserve the structure 
of a linear vector space rather than the structure of a ring. It was also shown [5] 
that there can exist only some associative algebras with a partition on the field of 
real numbers: the real number, the complex number, and the Clifford number 
algebras. Just these algebras possess the ring structure [6]. Arbitrary operations 
with them yield similar geometric objects. 

The most suitable geometric structure is the Clifford number. The Clifford 
algebra is a vector space over the field of real numbers and is presented as an ad-
ditive group where the multiplication of elements is distributive rather than 
commutative with respect to addition. This ring has ideals that may be obtained 
by multiplying an isolated element on the right or left by elements of the ring 
[6]. The ideals after this procedure are simple Dirac spinors in the standard ap-
proach. Thus, the Clifford algebra representation contains more information 
about the physical properties than the spinor representation. Clifford algebra 
may be extended [7] [8] to include a description of the origin and evolution of 
the universe. 

As it was shown earlier [9]-[13], the application of the Clifford algebra covers 
all standard functions of quantum mechanics and provides [3] a unifying basis 
for the physical knowledge including the general relativity and electromagnet-
ism. When we introduce the Clifford algebra in the scheme of quantum me-
chanics [11], we should not ignore the specifics of this formulation. Actually, in 
this case we obtain a quantum-mechanical theory that provides only an algebraic 
structure and does not contain any further specific requirements. It is possible to 
show [9]-[13] that Clifford’s algebraic formalism is completely equivalent to the 
traditional approach to quantum mechanics. 

First of all in cosmology, the question arises about the geometric nature of the 
fundamental field. It may be scalar as well as may have other geometric images. 
It is natural that its geometric characteristics should follow from the space that 
would be created due to the distribution of matter. In terms of relevant physical 
characteristics, the Clifford number is the most suitable at the moment [2] [3]. 
We do not detail focus on the basic properties of the Clifford algebra which are 
described in our previous articles [2] [14] [15] but stop on special aspects such 
geometrical presentation. 
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The main goal of this article is to present novel result a probable approach to 
the geometric description of the birth and evolution of the Universe which re-
cent was published [14]. In this article the wave function as a fundamental field 
is represented by a Clifford number with the transfer rules that possess the 
structure of the Dirac equation for any manifold. The novelty of this article is as 
in terms of this geometric representation of the wave function, the nature of su-
persymmetry may be explained and probable mechanism of spontaneous sym-
metry breaking of the excitation of the universe with different degrees of free-
dom is proposed. Just under such conditions the well-known spontaneous sym-
metry breaking occurs and individual excitation gain mass. 

In this paper we show that the Hamiltonian of the universe in terms of the 
geometric interpretation of the wave function fully corresponds to the theory of 
supersymmetry. Thus it is possible to explain the asymmetry between the Bose 
and Fermi degrees of freedom of the universe and to obtain non-standard condi-
tions of spontaneous symmetry breaking with the condensation of fields of dif-
ferent tensor dimensions. This opens up the possibility of another interpretation 
of the quantum phenomena in the early universe with the emergence of a new 
phase resulting from the first-order phase transition. The significance of this re-
search lies in the application of an adequate mathematical apparatus for de-
scribing the possible properties of the universe formed at the quantum level. 

2. Wave Function of the Universe 

It may be assumed that each elementary formation at an arbitrary point of the 
manifold may be described in terms of a Clifford number. Then the wave func-
tion of an arbitrary excitation may be represented by a complete geometric ob-
ject the sum of probable direct forms of the induced space of the Clifford algebra 
[2] [14]. In this case the full geometric entity may be written in terms of the di-
rect sum of a scalar, a vector, a bi-vector, a three-vector, and a pseudo-scalar, i.e., 

S V B T PΨ = ⊕ ⊕ ⊕ ⊕ , that is given by  

0 µ µ µν µ ν µνλ µ ν λ µνλρ µ ν λ ργ γ γ γ γ γ γ γ γ γΨ = Ψ ⊕Ψ ⊕Ψ ⊕Ψ ⊕Ψ         (1) 

With the reverse order of composition we may change the direction of each 
basis vector, and thus obtain S V B T PΨ = ⊕ ⊕  . Another element of sym-
metry is the change of multiplication of the basis vectors to the inverse in the 
representation of the Clifford numbers that turns its into S V B T PΨ = ⊕ ⊕   . 
As long as the symmetry element is introduced, there should be present a ma-
thematical operation on the field of Clifford numbers. The direct sum of the 
tensor subspace may be attributed with a ring structure with the use of a direct 
tensor product in the symbolic notation given by  

,ΨΦ = Ψ ⋅Φ +Ψ ∧Φ                         (2) 

where Ψ ⋅Φ  is an inner product or convolution that decreases the number of 
basis vectors and Ψ ∧Φ  is an external product that increases the number of 
basis vectors. If each Clifford number is multiplied by a spatial fixed matrix that 
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has one column with elements and other zeros, then we obtain the Dirac spinor 
with four elements. Making use of this we column can reproduce the spinor re-
presentation of each Clifford number. There occurs full correspondence between 
the spinor column and the elements of the exterior algebra. 

Now let us determine the rule of comparing two Clifford numbers in different 
points of the manifold. For this purpose we have to consider the deformation of 
the coordinate system and the rule of translations on different manifolds. An ar-
bitrary deformation of the coordinate system may be set in terms of the basis 
deformations e Xµ µγ= , where X is the Clifford number that describes arbitrary 
changes of the basis (including arbitrary displacements and rotations), that do 
not violate its normalization, i.e., provided 1XX = . It is not difficult to verify 
that 2 2 2e X X XXµ µ µ µ µγ γ γ γ= = =  , and this relation does not violate the normali-
zation condition [6]. Now, for an arbitrary basis, we may set, at each point of the 
space, a unique complete linearly independent form as a geometric entity that 
characterizes this point of the manifold. For a four-dimensional space, such 
geometric entity may be given by  

0 e e e e e e e e e eµ µ µν µ ν µνλ µ ν λ µνλρ µ ν λ ρΨ = Ψ ⊕Ψ ⊕Ψ ⊕Ψ ⊕Ψ         (3) 

If this point of the manifold is occupied by matter, then its geometric charac-
teristics may be described by the coefficients of this representation. A product of 
arbitrary forms of this type is given by a similar form with new coefficients, thus 
providing the ring structure. This approach makes it possible to consider the 
mutual relationship of fields of different physical nature [3] [16]. If this point of 
the manifold is occupied by matter, then its geometric characteristics may be 
described by the coefficients of this representation. A product of arbitrary forms 
of this type is given by a similar form with new coefficients, thus providing the 
ring structure. This approach makes it possible to consider the mutual relation-
ship of fields of different physical nature [3] [16]. To determine the characteris-
tics of the manifold as a point function implies to associate each point of the set 
with a Clifford number and to find its value. If this function is differentiable with 
respect to its argument, we may introduce the differentiation operation. To de-
fine a transfer operation on an arbitrary manifold, we have to define a derivative  

operator, e.g., as given by D
xµ
µ

γ ∂
=

∂
 where 

xµ

∂
∂

 represents the change along  

the curves passing through a given point in the space. The action of this the op-
erator for any Clifford number may be presented as  

D D DΨ = ⋅Ψ + ∧Ψ                        (4) 

where D ⋅Ψ  and D ∧Ψ  may be referred to as the “divergence” and the “ro-
tor” of the relevant Clifford number Within the context of the definition of a 
differentiated variety, it is not enough to have one non-special coordinate system 
covering a variety whose topology differs from the topology of an open set in the 
Euclidean space. 

Furthermore, by ascribing a given geometric interpretation to the wave func-
tion, we may obtain correct transfer rules for an arbitrary variety [3] and obtain 
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new results concerning the geometric nature of the wave function. For the wave 
function as a geometric entity, we may write the first structure equation in the 
standard form  

d mωΨ − Ψ = Ψ                          (5) 

The latter equation reproduces the form of the Dirac equation but with fuller 
meaning than in the spinor representation. Such Dirac equation for the wave 
function may be obtained by minimizing the action constructed from the geo-
metric invariant  

{ }dS mτ= ΩΩ + ΨΨ∫                          (6) 

The Lagrange multiplier m provides the normalization condition for the wave 
function { }d 1τ ΨΨ =∫  . The above action is non-degenerate on the solution of 
the Dirac equation in contrast to the standard approach. In our approach the 
dynamic equation for the wave function is presented as a rule for the parallel 
translation for characteristics on an arbitrary manifold. 

Let us return to the general expression for the action in the geometric repre-
sentation and also to the definition of the general form of the wave function. It 
may be shown, within the context of the definition [6], that the wave function in 
the general case may be written as Q VΨ = +  where Q q iq′= +  is a biqua-
ternion, (here q and q′  are quaternions), and the sum v tV = Ψ ⊕Ψ  contains 
a vector and a trivector or a pseudovector, V A iB= + , where A and B are four 
dimensional vectors. 

It was proved in [6] that each even number QΨ = Ψ =  for 0QQΨΨ = ≠ ,  
and the Clifford number in the Euclidean space may be reduced to the canon-

ical form, i.e., ( ) ( ){ }
1
2expQ x i Xµ βΨ = =  where 1XX =  describes all the  

coordinate transformations associated with the translation and rotation of coor-
dinates and with the Lorentz transformation in the Euclidean space. It is not dif-
ficult to show that dτΨΨ∫   is scalar and in the physical interpretation may be 
associated with the probability density of finding a particle in an arbitrary spatial 
point. The form of the wave function of an arbitrary ensemble of particles is 
analogous [8]. According to the proof in the book [6], the odd part of the general 
Clifford number may be presented as the even part multiplied by an individual 
element of this algebra and thus there is no problem with the manipulation of 
the full Clifford number. For an arbitrary wave function we take into account 
only the scalar part of this product that may be explicitly written as  

QQ VVρ = ΨΨ = +                            (7) 

Thus it becomes possible to describe the intermediate states of the particle in-
asmuch as the form of the wave function of an arbitrary particle ensemble is 
analogous [8] [17] [18] [19] [20]. The structure equation thus obtained is written 
in terms of the introduced variable, is completely equivalent to the Dirac equa-
tion, and has well known solutions both for the calculation of the hydrogen atom 
spectrum and for the interpretation of the states [6]. 
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To apply this equation to the description of the birth of the universe, we have 
to make another assumption. The new vacuum contains only the born forma-
tion. For this reason, all changes associated with the wave function are due only 
to its changes in vacuum. Therefore, its behavior may be influenced only by one 
characteristic of the new vacuum, namely, this wave function. In this case, the 
wave function itself acts as a field that changes its characteristics, or as a connec-
tivity of the space with the new vacuum. The equation for the wave function 
looks natural as given by  

d FλΨ − ΨΨ =                           (8) 

when the first structure equation is at the same time the second structure equa-
tion with the equation for the “curvature” given by  

dF F F Jλ λ− Ψ + Ψ =                       (9) 

It is assumed that ~ω λΨ . Among the new results, we indicate that the Di-
rac equation in the geometric representation in the general theory of relativity is 
just the equation of transfer on an arbitrary variety; therefore, its solution may 
be interpreted purely geometrically. Moreover, the geometric representation of 
the wave function yields other results that may simply reveal the geometric na-
ture of the wave function [21] [22]. Later, these equations will be derived from 
the least action principle in the geometric interpretation. As follows from the 
previous analysis, a complete coordinate transformation group associated with 
the structure equation exists only in the Clifford-number representation of the 
wave function. The first structure equation for the wave function reproduces the 
form of the Dirac equation and, as it was shown in [6], its solutions are similar 
to those for the spinor representation. The latter observation solves the problem 
of the finite-dimensional representation of the wave function under the com-
plete linear group of coordinate transformations. 

3. Modernization of the Standard Cosmological Model 

In the case of spontaneous generation of an additional field in vacuum, the 
ground state energy of the “new” vacuum for fields of different nature should be 
lower than the ground state energy of the “initial” vacuum [2]. Moreover, the 
interaction of this field with the fluctuations of any other field provides energy 
conservation for the new state of the system. We assume that occurrence in va-
cuum of the fundamental field that is generated spontaneously and interacts 
with the fluctuations of all other fields may be described in terms of the Clifford 
number [3]. The probable stationary states of the fundamental field are generat-
ed by the multiplicative noise produced by the nonlinear self interaction with 
fluctuations of this field. The generator of these fluctuations is the vacuum itself 
for each point of the Planck size on the manifold. 

The present model differs from the widely studied scenario of the stochastic 
inflation of the Universe [1] that takes into account fluctuations of the funda-
mental field, but disregards the fluctuations of the unstable vacuum. The inter-
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nal fluctuations generate the stochastic behavior of the system that may cause 
changes of its stationary state. The most significant point is that now the funda-
mental field is not a Clifford number rather than scalar and contains all the 
geometric characteristics of the space that may be born as a result of the emer-
gence of the matter. Only the distribution of the matter can describe the space 
that arises. 

We start with the assumption that the phase transition from the “initial” va-
cuum to the new state of vacuum generates a new non-zero field. This means 
that the new field generates the “new” vacuum different from the “primary” va-
cuum for any field of an arbitrary geometric characteristic that may exist. The 
resulting field must reduce the energy of the “new” vacuum with respect to the 
energy of the “primary” vacuum. Therefore, the energy density of the ground  

state of the “new” vacuum may be supplied through 
2
0

2v
µ

ε ε= − ΨΨ  where the  

second part is the field energy in terms of the wave function with the geometric 
representation as the Clifford number; the coefficient 2

0µ  describes the coupl-
ing of the new field and the “primary” vacuum, i.e., the self-consistent interac-
tion of the new field with the probable fluctuations that may exist in the “prima-
ry” vacuum. Here we have to make two remarks. The first one concerns the de-
crease in the initial energy of the ground state with the appearance of a new field, 
and the second one is related to the coupling coefficient that is now positive, so 
that explanations of the appearance of such a sign used in the standard approach 
are not needed. The energy of the new system may be presented in the form  

2
0 d ,

2vE E µ
τ= − ΨΨ∫                       (10) 

If we want to describe the evolution of the system | exp |out iHt in〈 〉 , we still 
need to average all probable fluctuations with which the new field can interact. 
For this purpose it is sufficient to present the nonlinear coupling in the form 

2 2
0µ µ ξ= + , where ( ) ( ) 20tξ ξ σ=  and 2σ  is the dispersion of the coupling 

coefficient fluctuations, and to carry out averaging  

| exp | ~out iHt in〈 〉 〈                       (11) 

2
2

2
1 1exp |
2 2vD D i E inξξ µ ξ

σ
 

Ψ − ΨΨ + ΨΨ + 〉 
 

∫ ∫            (12) 

( )
2 221| 4 exp |

2 4vout D i E inσσ µ
 

Ψ − ΨΨ + ΨΨ 〉 
 

π ∫    

after integration over fluctuation fields yields. 
This implies that we have a new system with the effective energy (averaged 

over the fluctuations of other fields) given by  

( )
2 221 d

2 4vE E σµ τ
 

= − ΨΨ − ΨΨ 
 
∫                   (13) 

where we may introduce the effective potential of the fundamental field in the 
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geometric interpretation  

( ) ( )
2 221

2 4
V σµΨ = − ΨΨ + ΨΨ                     (14) 

that reproduces the well-known expression for the energy of the fundamental 
scalar field but with the nonlinear coefficient determined by the dispersion of  

fluctuations. This implies that with no field 0ϕ = , vE E=  while for 
2

2
µ
σ

ΨΨ =   

the expression for the effective ground state energy of the “new” vacuum reduces  

to 
4

24vE E µ τ
σ

= − . As follows from the latter relation, the energy of the “new”  

vacuum is lower than the energy of the primary vacuum, i.e. the phase transition 
results in the formation of a new vacuum ground state. If 2σ  tends to infinity, 
then the energy of the new state tends to the initial energy of the ground state.  

The energy of the new state may vanish for 
4

24vE µ
σ

= . This relation may be  

applied to estimate the maximum dispersion of the field fluctuations if provided  

the vacuum temperature is given by 
4

22v
µ
σ

Θ = . 

The effective potential may now be rewritten in terms of the probability den-
sity ρΨΨ =  of the material field  

( )
2

2 21
2 4

V σρ µ ρ ρ= − +                      (15) 

that may be useful for interpreting different compositions of the energy and 
matter produced by the spontaneous symmetry breaking. It should be noted that 
it is the full probability density of the material field, and whether it is “dark”, 
depends on the tensor characteristics of the field in which we experience it. It 
may be invisible in the vector electromagnetic field, but it should definitely be 
felt in the gravitational field and, possibly, in the fields of other tensor represen-
tations. This expression corresponds to the free energy of the system in the mean 
field approximation. In such a system, the first-order phase transition can occur 
due to the spontaneous symmetry breaking. The value of the density of the new  

phase [23] after the phase transition 
2

2c
µρ
σ

=  as well as the probability of  

creating a new phase. As it is not difficult to notice, the entropy = d lnS τρ ρ−∫  
of the initial state 0ρ =  is equal to zero, and with a spontaneous symmetry 
breaking due to the phase transition, it is different from zero and increases with 
the decrease in the noise dispersion of the initial vacuum state. It will be shown 
below that this fact corresponds to the physical picture when the amount of 
overturning between different degrees of freedom is fixed in the system and the 
symmetry between the bosonic and fermionic subsystems is broken. This is the 
probable reason for the baryon asymmetry of the universe. At the same time, 
this leads to the usual spontaneous violation of symmetry that is necessary in the 
standard model. This can be seen in the consideration below. 
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4. Supersymmetry in the Geometric Representation and  
Probable Predictions 

Now we propose a slightly different scenario for the birth of the Universe based 
on the representation of its wave function as a geometric entity. What appears as 
the result of the birth of matter should contain a geometric image. Only the birth 
of the matter and its distribution may be interpreted in terms of geometry. Such 
an entity might be a Clifford number with an appropriate physical interpreta-
tion. An additional field is required for the emergence of the matter, whose 
spontaneous excitation leads to the emergence of elementary particles. Solving 
the question of the impact of the early supersymmetric quantum cosmological 
era on current cosmological observations was the purpose of the paper [24] [25]. 
The prospects of quantum cosmology are given in the comprehensive review 
[26]. In our case, such a field is the wave function Ψ  in terms of different ten-
sor representations, i.e., it has all probable tensor representations with the di-
mensions of the space to be created. That is, the geometry is laid down from the 
very beginning in the characteristics of the point of the manifold on which we 
describe it. 

Minimizing the expression for the energy of the system 10 by independent 
functions Ψ  and Ψ , yields for the wave function in the homogeneous case the 
Gross-Pitaevskii equation with the physical consequences on its solution, i.e.,  

( )2 2 0Eδ µ σ
δ

 = − + ΨΨ Ψ = Ψ




                   (16) 

Similar in content, but richer in nature equations may be obtained for the dy-
namics of changes in the wave function in the geometric interpretation. To do 
this, we consider the action written for the wave function of the universe in the 
presence of the matter. As it was mentioned earlier, the action in terms of the 
geometric invariant may be given by  

( )1d
2

S FF FF mτ  = + + ΨΨ 
 ∫                      (17) 

The Lagrange multiplier m provides the normalization condition for the wave 
function { }d 1τ ΨΨ =∫   and the “general” curvature in the representation of 
Clifford numbers takes the form F d= Ψ −ΨΨ . Minimization of this function-
al yields an equation that at the same time is the second structural equation, i.e.,  

dF F F Jλ λ− Ψ + Ψ =                       (18) 

for the change of the “curvature” under the parallel transfer under the influence 
of the complete group of transformations of the coordinate system. In the ho-
mogeneous case 0dΨ =  and inasmuch as 0dF =  this equation is trans-
formed to the previous Gross-Pitaevskii equation, i.e.,  

( )2 2 0µ σ − + ΨΨ Ψ = 
                       (19) 

with 2 mµ− =  and 2σ λ λ= −  
It was previously proved that in the presence of a spontaneously generated 
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fundamental field, the energy of the vacuum state for any other field is lower 
than the energy of the ground state of the primary vacuum, and that the energy 
of the fundamental field is affected by its nonlinear interactions with fluctuations 
of physical fields of different nature. To avoid the problem of the influence of the 
gravitational field on the evolution of the universe at the stage of spontaneous 
nucleation of the fundamental field, we note that the energy of the primary va-
cuum is not contained in the Einstein equation, and the dynamics of the un-
iverse is determined only by the potential energy of the fundamental field that 
produces the matter. The distribution of the matter, in turn, determines the 
geometry. 

According to Dirac’s theory, we may move from the classical Poisson brackets 
to the quantum ones and rewrite the Hamiltonian in terms of the secondary 
quantization, where instead of classical geometric representations of the wave 
function we introduce the operators of birth and annihilation of quanta of this 
field. In the operator form the Hamiltonian of the Universe may be written as:  

2
21 ˆ ˆ ˆ ˆ ˆ ˆ

2 4vH E σµ + + += − Ψ Ψ + Ψ ΨΨ Ψ                  (20) 

For the field operators of the general form thus introduced, the commutation 
relations may be unusual. We note that this field has by definition representation 
of both boson and fermion fields that should include probable transformations 
of bosons into fermions and vice versa. For this reason, we may assume that the 
product of the birth and annihilation operators of the field in the general repre-
sentation may be written in the form  

ˆ ˆ ˆ ˆ ˆ ˆS B F F B+ + +Ψ Ψ = = +                       (21) 

where B̂+  and B̂  denote Bose birth and annihilation operators and let F̂ +  
and F̂  denote Fermi birth and annihilation operators with the (anti) commu-
tation relation ˆ ˆ ˆ ˆ, , 1B B F F+ +  = =  , ( )22ˆ ˆ ˆ ˆ ˆ ˆ, , 0B F F B F F+ + +   = = = =    . As it 
was shown earlier, the value of the density ρ  plays the role of the supersym-
metric charge Q that describes the intensity of the transfer between different de-
grees of freedom in the general representation of the wave function. Now it is 
not difficult to verify that the Hamiltonian may be written in the supersymmetry 
form as given by  

2 2 21 1
2 4vH E S Sµ σ= − +                       (22) 

where the square of the supercharge is 2 ˆ ˆ ˆ ˆ
B FS B B F F n n+ + += + = +  and presents 

the total number of bosons and fermions. It is obvious that all the elements of the 
supersymmetry with the commutation relations 2ˆ ˆ ˆ ˆ, 0,S S S S +  = =   are contained 
in the presented form, where the individual parts of the Hamiltonian are asso-
ciated with the integrals of motion and are preserved both separately and to-
gether. The interpretation of the supercharge in our case is that the geometric 
representation of the wave function provides a possibility to consider a physical 
mixture of bosons and fermions, and the charge itself describes the probable 
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transformation of particles into each other. That is, the initial wave function de-
scribes a mixed state of bosons and fermions with probable mutual transforma-
tions of individual components. If we calculate the partition function [27]  

2 2 21 1exp
2 4

Z Tr S Sβ µ σ = −  
                (23) 

then we obtain the thermodynamic quantities of interest as given by  

2 2
2

2 1,Z ZS S S
Z Z

µ
β βµ

∂ ∂
= = +

∂∂
             (24) 

with the average value of the number of fermions and for bosons in the Universe 
being given by  

( )
2

11 1 ,
2F B F

Q
n Z n n

E
−= − = −              (25) 

As it was shown in the paper [27] for small 2µ  the relation between bosons  

and fermions in the universe may be presented as: 
2

coth
2

B

F

n
n

βσ
=  and may  

take arbitrary predetermined values of this relation, depending on when the 
phase transition of the condensation of the bosonic part of the general represen-
tation of the wave function occurs. This observation indicates the reason for the 
bosonic asymmetry of the universe that is closely related to the baryonic asym-
metry. This corresponds to the physical picture when the amount of overturning 
between different degrees of freedom is fixed in the system and the symmetry 
between the bosonic and fermionic subsystems is broken. This is the probable 
reason for the baryon asymmetry of the universe. At the same time, this leads to 
the usual spontaneous violation of symmetry that is necessary in the standard 
model. Now, if we remember that the supercharge by definition corresponds to 
the density S ρ= , it becomes obvious that the violation of the supersymmetry 
and the fixation of its relevant value leads to the birth of the matter. 

If we represent the explicit form of the wave function in terms of quaternions 
and vectors, then we obtain the Lagrangian in the form  

( ) ( )( )( )
( ) ( )( )( )

1
2

L d Q A iB Q A iB Q A iB

d Q A iB Q A iB Q A iB

= + + + + − + +

+ − + + + + −



 

          (26) 

If we recall the full definition of the biquaternion Q i bφ φ= + +  in terms of 
the scalar φ , the pseudo scalar Q iφ=  , and the bi-vector b, then this Lagran-
gian contains all the requires information about the standard approach of spon-
taneous symmetry breaking and obtaining the masses of the relevant particles. In 
order to avoid cumbersomeness we do not give it in the explicit form, but it 
should be emphasized that to separate the characteristics of particles and the 
manifold is not necessary since in this case the non-linearity in the scalar and 
pseudo-scalar fields may disappear. Moreover, it is possible to spontaneously 
break the symmetry separately by different tensor representations of the com-
plete sum of the wave functions, say a scalar field or a pseudo scalar field. In this 
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case, it is possible to independently break the symmetry for different scalar and 
vector fields and obtain the relevant parameter values, all of these being deter-
mined through one unknown parameter that is obtained in the previous section  

through the relation 
4

2
µ
σ

. That is, due to the value of the coupling of the relevant  

field with initial vacuum 2µ  and the noise dispersion 2σ  of such vacuum 
state determined all necessary parameter. 

5. Conclusion 

We consider the Clifford algebraic formalism as a suitable method for describing 
the initial state of a vacuum with probable birth of a fundamental field. This field 
should contain probable geometric characteristics and be completely equivalent 
to the traditional approach to the quantum field theory. The approach makes it 
possible to explain the existence of supersymmetric properties of the initial fun-
damental field, as well as the spontaneous violation of symmetry between bosons 
and fermions in the universe. Moreover, it provides a possibility to explain the 
appearance of the “dark matter” due to the influence of fields of tensor dimen-
sions different from the electromagnetic field. Unfortunately, a rigorous mathe-
matical proof of such an approach does not exist at the moment, but for purely 
physical reasons, such representations may favor better understanding of the 
scenario of the birth and evolution of the universe. After everything said above, 
it can be assumed that the energy of the initial vacuum state can be taken as zero. 
That is, due to the value of the coupling of the relevant field with unstable initial 
vacuum and the noise dispersion of such vacuum state determined all necessary 
parameter. 
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