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Abstract 
This paper attempts to propose a grand unified guiding principle of gauge 
fields from the mathematical and physical picture of fiber bundles: it is be-
lieved that our universe may have more fundamental interactions than the 
four fundamental interactions, and the gauge fields of these fundamental in-
teractions are just a unified gauge potential on the fiber bundle manifold or 
the components connected to the bottom manifold, that is, our universe; these 
components can meet the transformation of gauge potential, and even can be 
transformed from a fundamental interaction gauge potential to another fun-
damental interaction gauge potential, and can be summarized into a unified 
equation, namely the expression of the generalized gauge equation, corres-
ponding to the gauge transformation invariance; so gauge transformation in-
variance is a necessary condition to unify field theory, but quantization of 
field is not a necessary condition; the four (or more) fundamental interaction 
fields of the universe are unified into a universal gauge field defined by the 
connection of the principal fiber bundle on the cosmic base manifold. 
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1. Introduction 

In 1954, Yang Zhenning and Mills extended the ( )1U  group local gauge sym-
metry to the ( )2SU  group, which represents the local gauge symmetry of iso-
tope spin in the non-Abelian group, and established the Yang-Mills gauge field 
theory [1]. Following the idea of gauge field theory, there is a gauge symmetry 
group ( ) ( )1 2U SU× , which has achieved great success in unifying electromag-
netic interaction and weak interaction. Such a theory has been proved to be con-

How to cite this paper: Qiao, B. (2023) An 
Outline of the Grand Unified Theory of 
Gauge Fields. Journal of Modern Physics, 
14, 212-236. 
https://doi.org/10.4236/jmp.2023.143016 
 
Received: December 20, 2022 
Accepted: February 10, 2023 
Published: February 13, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2023.143016
https://www.scirp.org/
https://doi.org/10.4236/jmp.2023.143016
http://creativecommons.org/licenses/by/4.0/


B. Qiao 
 

 

DOI: 10.4236/jmp.2023.143016 213 Journal of Modern Physics 
 

sistent with renormalization in the sense of spontaneous symmetry breaking 
Higgs mechanism [2] [3] [4] [5]. Moreover, the idea of gauge field theory pro-
vides a successful unified description of the dynamics (QCD) of gauge symmetry 
group ( )3SU  [6] [7] of electric weak interaction and strong interaction cha-
racterized by quantum color, so as to construct a quantum gauge field theory 
dominated by symmetry, that is, gauge group ( ) ( ) ( )1 2 3U SU SU× ×  with spon-
taneous symmetry breaking, the standard model. This is a milestone achieve-
ment of gauge field theory in unifying electromagnetic, weak and strong funda-
mental interactions. 

This led many scholars after Einstein to try to expand the gauge “quantum” 
field theory to the category of gravity, hoping to establish a grand unified theory 
of four fundamental interactions, including gravity and electromagnetic forces 
[8] [9] [10]. But until now, we may believe that the gravitational field is a gauge 
field, but the quantization theory of the gravitational field has always been in-
consistent with the microscopic quantum field theory [11] [12] [13], this has also 
become an exciting point for the creation of the famous superstring theory [14] 
[15], which still inspires us to think about a question today: can we say for sure 
that gravity can be quantized? 

The second question is whether there are more than four fundamental inte-
ractions in nature? It seems that no principle can limit the fundamental interac-
tions in nature to four kinds, namely, gravitational, electromagnetic, and weak 
and strong interactions. Dark matter and dark energy put forward interpreta-
tions of this question from the perspective of astrophysics or cosmic scale [16] 
[17]. Are dark matter and dark energy the real existence or the representation of 
some unknown fundamental interactions? In fact, so far, many normative uni-
fied field theories have attempted to construct some direct product forms of very 
specific structural groups [18] [19] [20] [21]. These direct product forms often 
correspond to some specific basic particle fields, thus explaining the existing ba-
sic particles and astrophysical theories and experimental phenomena, which is 
like establishing the world’s unity on some specific basic particles. If they also 
can be decomposed, or can it decay? Or are there not only four fundamental in-
teractions in the world (for example, dark energy does not exist, but a cosmic 
expansion caused by fundamental interactions on a cosmic scale)? 

And what is the “over-distance” effect of quantum entanglement? The so-called 
force field interaction between two objects that we know is just the exchange of 
virtual particles between two objects, which seems to be invalid here, and the in-
teraction seems to be a whole that occurs on two entangled objects at the same 
time [22] [23]. 

On the other hand, as the mathematical basis of the gauge field theory, the 
theory of principal fiber bundles has been greatly developed [24]. In a sense, the 
gauge theory of physics is just the principal fiber bundle (principal bundle) 
theory in mathematics [25]. The question is how to deeply understand or devel-
op the relevant concepts or meanings of physics implied by the principal bundle 
theory? Thanks Professor Liang Canbin for teaching and building bridges in this 
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area over the years [26]. It is based on these “plays” and “bridges” that the au-
thor can consider the above-mentioned issues about the grand unification of 
physics in this paper, and try to propose an outline program for the grand unifi-
cation of gauge fields from the mathematical physics picture of principal fiber 
bundles. 

2. Basic Points of the Outline 

Why is it so difficult to unify gravity and electromagnetic force among the four 
fundamental interactions? Why must the gauge transformation remain un-
changed? Is there a unified outline program of cosmic gauge field? How to un-
derstand the “teleportation” between quantum entangled states? What is the in-
teraction between entanglements? After a long time of meditation, the author of 
this paper proposes a “unified outline program for the gauge field of space and 
time in the universe”, the main points of which are as follows: 

1) The whole universe structure can be simply described as the structure of a 
region ordinary principal bundle and associated bundle, which can be called “the 
principal associated bundles picture of the universe”: the universe is the bottom 
manifold M; the structure group of the principal bundle is defined as a Lie group 
G (also a manifold), which reflects the laws or rules of the universe; then the fi-
ber bundle of principal bundle, bottom manifold and group G form a direct 
product of manifold, which can be expressed as P G M= × . It is recorded as 
( ),P M G . The fiber bundle associated to principal bundle (Associated bundle) 

is composed of manifold ( ),Q M F  and fiber bundles determined by the coor-
dination of P, M, G, F and related maps. The structure of the principal bundle 
and associated bundle can be shown by the following “principal associated bun-
dles picture of the universe” (Figure 1). 

Here, the precise definitions and mathematical and physical expressions of the 
mappings τ , τ̂ , UT , ÛT , π , π̂ , etc., will be given one after another in the 
following sections. 

2) The cross section of principal bundle : M Pσ →  represents a choice of 
gauge (embodied as an internal frame of gauge field); the transformation between 
two different cross sections of the principal bundle gives a gauge transformation, 
and vice versa. The cross section of associated bundle ˆ : M Qσ →  represents a 
physical gauge field (or elementary particle field) on the base manifold. 

 

 
Figure 1. The picture of the principal associated bundles of the universe. M represents 
our universe, and above M stands the high-dimensional space-time (heaven) of the laws 
or rules governing the universe. 
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3) The gauge potential corresponds to the connection of the principal bundle, 
and the gauge field strength corresponds to the curvature on the principal bun-
dle. So it can be said that the connection is the gauge potential and the curvature 
is the gauge field strength. 

4) The gauge potential on the bottom manifold M is a 1-form field function of 
the Lie algebra taking G in a space-time region. Different gauge potentials satisfy 
the formula of gauge potential transformation, but from P, these different gauge 
potentials are just the gauge potentials of the principal bundle (connection field 
ω ) projection component on the base manifold under the cross section trans-

formation, total gauge potential ω  is invariant, and the transformation be-
tween cross sections is the gauge transformation; this general gauge potential ω  
corresponds to a cosmic space-time gauge field, and the four fundamental inte-
ractions in reality only correspond to the projection components of this cosmic 
space-time gauge field under different gauge choices (internal frame choices); 
this is the meaning of gauge transformation invariance of gauge field. 

5) There may be many components of connection ω , so there are not only 
four fundamental interactions in the universe, but also five, six, and so on. These 
corresponding fundamental interactions are spatio-temporal regional field func-
tions of different gauge choices (internal frame choices), and may also be the 
superposition or combination of four (or other fundamental) interactions. 

6) The so-called gauge transformation may be a transformation from one 
fundamental interaction (such as electromagnetic force) to another fundamental 
interaction (such as gravity) in the picture of the principal associated bundles of 
the universe; the so-called gauge invariance means that the gauge field of space 
and time in the universe is invariant under the gauge transformation, and gravi-
ty, electromagnetic force, or strong or weak force are all the expressions of its 
components. The gauge transformation is only the transformation between these 
components, and the gauge invariance is that the total space-time gauge field 
does not change with the gauge transformation (showing the Lagrangian inva-
riance of the physical field). 

7) Quantization is not necessarily a necessary condition for the unification of 
the gauge field, but the invariance of gauge transformation is the necessary con-
dition for the unification of the gauge field! 

8) The four fundamental fields of the universe (gravity, electromagnetic force, 
weak force, and strong force) are unified in one cosmic space-time gauge poten-
tial ω , which corresponds to a cosmic space-time gauge field, and the mutual 
transformation between the four fundamental gauge fields can be described by a 
generalized gauge potential Equation (referred to as GG equation): 

( ) ( ) ( ) ( ) ( )1
* * 1

** , ,
UVUV

V U UV xg xg x
Y d Y L g Y x U V Y T Mσ σ−

−= + ∀ ∈ ∈


 ω ω  (GGE) 

here, *
Vσ  and *

Uσ  is the pull back mapping of the principal bundle cross sec-
tion to the bottom manifold region V or U respectively, showing that all the dif-
ferent gauge potentials are just the components of the cosmic space-time unified 
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potential in different regions of the bottom manifold; the physical and mathe-
matical meanings of other symbols will be introduced later. 

Let’s use mathematical physics to construct a strict framework for the above 
arguments; the main references are [25] (Chapter 6, Appendix 3), [26] (Appen-
dix G and I in Volume II and III) however, the author of this paper has made 
some generalization in the process of derivation and proof. 

3. Relevant Mathematical Physics Framework 
3.1. Concepts of Principal Fiber Bundle 

The principal fiber bundle ( ),P M G  consists of the bundle manifold P, the 
base manifold M, and the Lie group G of the structure group, and satisfies the 
following three conditions: 

1) G has a free right action R on P, :R P G P× → ; here free means: if g e≠ , 
then there is , ,pg p g G p P≠ ∀ ∈ ∈ . Since the dimension of P is greater than G, 
so this is an embedding map. It makes fibers also Lie groups (both manifolds 
and groups), and is isomorphic to G. 

2) There is a C∞  projection on to mapping : P Mπ → , and satisfies:  
( ) { }1 p pg g Gπ π− = ∈   , p P∀ ∈ . In order to ensure the existence of 1π − , 

[ ]  represents a singleton subset. 
3) For each x M∈ , the existence of open neighborhood U M⊂  and diffe-

rential homeomorphism (local trivialization mapping) [ ]1:UT U U Gπ − → ×  can 
be expressed as: ( ) ( ) ( )( ),U UT p p S pπ= , [ ]1p Uπ −∀ = , where mapping US  is 
defined as [ ]1 U Gπ − → , and meets (i.e., the “core” requirement of local trivializa-
tion UT : corresponding to p pg→  on fiber or orbit): ( ) ( )U US pg S p g= , 

g G∀ ∈ . Here [ ]1:US U Gπ − →  is not a differential homeomorphism, because 
[ ]1 Uπ −  manifold is larger than G, but [ ]1:US x Gπ − →  is a differential ho-

meomorphism. If p is a special point, it is marked as ( )Up x∨ , ( )U US p e∨ = , and  
[ ]1:

Up
R G xπ∨

−→  is also a differential homeomorphism, so 1
UpR S −= . 

Here [ ]1 ,x x U Mπ − ∈ ⊂  can be called the fiber above the point x M∈ ;  
( ) { }1 p pg g Gπ π− = ∈    is equal to the group G right acting R to the orbit 

passing through point p, that is, the fiber is equal to the orbit, { }pg g G P∈ ⊂ , 
where the fiber bundle forms a bundle manifold; the principal fiber bundle 
( ),P M G  can be abbreviated as P. 

3.2. Concept of Associated Bundle 

Let ( ),P M G  be the principal bundle. If manifold F is selected, make G have a 
left action χ on F (no free requirement), : G F Fχ × → , i.e.  

( ) , ,g f gf g G f Fχ = ∀ ∈ ∈ . Then the free right action R of group G on P and 
the left action χ of group G on F jointly induce the free right action ξ of G on 
P F× , ( ): P F G P Fξ × × → × , which is defined as  
( ) ( )1, : ,g p f pg g f P Fξ −= ∈ × , here , ,g G p P f F∀ ∈ ∈ ∈ . If : P F Pτ × →  

represents the natural projection mapping, that is, ( ), : , ,p f p p P f Fτ = ∀ ∈ ∈ , 
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each track of ξ  on P F×  is regarded as an element, the set of all elements is 
defined as Q, any element q Q∈  represents a orbit on P F× , and Q is a ma-
nifold, which we call the associated bundle. Here q can be defined as  

{ }1,q pg g f g G p f−≡ ∈ ≡ ⋅ , which is called the orbit passing ( ),p f  point 
and is formed by ( ),g p fξ . Note that 1 1p f pg g f p gg f p f− − ′ ′⋅ = ⋅ = ⋅ = ⋅ . 

3.3. Relations of Natural Projection Mapping of Principal  
Associated Bundles 

1) ˆ : P F Qτ × → , is defined as ( )ˆ , :p f p f Qτ = ⋅ ∈ , i.e. p P∀ ∈ , ˆ :p F Qτ → ; 
from this, we can define a topology for Q, let Qφ ⊂  is open if and only if 

[ ]1ˆ P Fτ φ− ⊂ ×  is open, so Q is topological space, τ̂  is a continuous mapping. 
Not only that, but also Q can be proved to be a manifold. 

2) ˆ : Q Mπ → , defined as ( ) ( )ˆ :q p Mπ π= ∈ , q p f Q∀ = ⋅ ∈ . Hence more 
precisely, [ ]1ˆ ˆ:p F xτ π −→ , ( )x pπ≡  while [ ]1:pR G xπ −→ , ( )x pπ≡ , and 
ˆ ,p pRτ  is a differential homeomorphic mapping. In other words, ˆpτ  or pR  

brings the manifold structure of F or G respectively to the fiber [ ]1ˆ xπ −  of the 
companion bundle Q or the fiber [ ]1 xπ −  of the principal bundle P. 

3) ( ), , :: , ,P F P p f p p P f Fτ τ× → = ∀ ∈ ∈ . 
4) : P Mπ → , and meet: ( ) { }1 p pg g Gπ π− = ∈   , p P∀ ∈ . 
Here, the relevant definitions in (3), (4) have been given by 3.1 and 3.2. 
If for every x M∈  there exists an open neighborhood U M⊂ , its inverse 

image [ ]1 Uπ −  is diffeomorphic to the product manifold U G× , i.e.  
[ ]1 U U Gπ − = × , then the corresponding UT  is said to be locally trivial, and the 

corresponding principal bundle is locally trivial; if U M= , that is,  
[ ]1 U P M Gπ − = = × , is said to be integrally trivial. It can be said that any prin-

cipal bundle is locally trivial. Therefore, the local trivialization can be extended 
to the principal associated bundles picture of the universe (see Figure 2). 

Where, note that [ ]1:UT U U Gπ − → × , ( ) ( ) ( )( ): ,U UT p p S pπ= , therefore, 
local trivial [ ]1ˆ :UT U U Fπ − → × , ( ) ( )( )ˆ ˆ: ,U UT p q fπ=



; here, ( )U US p e= ,  

U U Uq p f p f= ⋅ = ⋅


  . So Q is an associated bundle of the principal bundle P, and 
F is called the typical fiber of Q. If there is U V ≠ ∅ , then one has  

( ) ( )V U UV UV U Vp p g x g x f f= ⇒ =
 

  . In addition, the local cross section of the as-
sociated bundle can be defined as ˆ :U Qσ → , namely satisfying ( )( )ˆ x xπ σ = . 

 

 
Figure 2. The more specific structure of the principal associated bundles of the universe, 

[ ]1 Uπ −  represents the principal fiber bundle on U; U refers to the overall trivial or lo-

cally trivial region of M. 
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3.4. Frame Bundle 

M is a set as n-dimensional manifold, { }{ },P x e x Mµ≡ ∈ , { }eµ  is a xT M  
base, abbreviated as xe Tµ  stands the tangent space for x M∈ . Then P can be 
proved to be a 2n n+  dimensional manifold. Now select ( )GL n  as the struc-
ture group G, then a frame bundle can be constructed by the following three 
steps: 

1) Define the right action R of matrix group ( )GL n  on P, ( ):R P GL n P× →  
is: ( ),gR x e gν

ν µ , here gν
µ  represents a matrix element of g. 

2) Define projection mapping : P Mπ → , namely ( ) ( ), : , ,x e x x e Pµ µπ = ∀ ∈ . 
3) Define local trivial [ ]1:UT U U Gπ − → × , namely ( ) ( ), : ,UT x e x hµ = , here 

( ),Uh S x e Gµ≡ ∈ , 
x

h e
x

ν
µ µν

∂
=

∂
, and ( ) ( ) ,U US pg S p g g G= ∀ ∈ . So UT  is 

differential homeomorphic. 
The principal bundle ( )( ),P M GL n  constructed by the above three steps is 

called the frame bundle, which is recorded as FM. 

3.5. Tangent Bundle 

On the basis of FM, take the manifold nF =  , then F is a vector space, and 
f F∈  can be expressed as a column matrix composed of n real numbers, that is, 

( )1, , nf f ; so we can define the left action : G F Fχ × →  as  
( )( ) ( ): , ,g f g f g GL n f F

µ µ ν
νχ = ∀ ∈ ∈ ; then a ξ is determined by the right and 

left actions, ( ): P F G P Fξ × × → × , :g P F P Fξ × → × , specifically  
( ) ( )1, ,g p f pg g fξ −=  ⇒ ( ) ( )( )1, ; , ;g x e f x e g g f

ρρ ν σ
µ ν µ σ

ξ −= . Here  

( ), ;x e f P Fρ
µ ∈ ×  can produce xv e f T Mµ

µ≡ ∈ , and on the same orbit  
v e f v e fµ µ

µ µ′ ′ ′= = = ; that is to say, each [ ]1ˆq xπ −∈  point (represents an orbit) 
1-1 corresponds to a vector v in xT M , and all different v in xT M  correspond to 
different q above it to form a tangent bundle [ ]1ˆ xπ − , that is, [ ] 1-11ˆ xx T Mπ − ←→ ; 
so the tangent bundle Q P F= ×  is the associated bundle of FM. Furthermore, Q 
can be regarded as the tangent bundle TM of M, so any cross section ˆ :U Qσ →  
(because 1-1 corresponds to the vector of the tangent space on U) is a vector 
field on U M⊂ . Since it is a vector field, at least it is preliminarily explained 
that the section ˆ :U Qσ →  is related to coordinates, different section corres-
ponds to different coordinate, and there is a relationship of coordinate trans-
formation between sections. 

On the basis of FM if the manifold ( ) ( )
*

0,1n
nF = =


  , ( )1, , nf f f F= ∈ , 

( )( ) ( )1:g f g f
ν

νµ µ
χ −= , then given any point ( ), ;x e f P Fµ ρ ∈ × , one can produce:  

*
xe f T Mµ

µβ ≡ ∈  (the dual space of xT M ), and there is β β ′=  on the same 
orbital; all the different β in *

xT M  correspond to the different q above it to 
form a cotangent bundle [ ]1ˆ xπ − , that is, [ ] 1-11 *ˆ xx T Mπ − ←→ ; so the cotangent 
bundle Q P F= ×  is also an associated bundle of FM. Any of its cross sections 
ˆ :U Qσ →  is a covector field on U M⊂ . Note that in general, : G F Fχ × →  

is a Lie transformation group: { }ˆ :gG F F g Gχ≡ → ∈ . 
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In addition, one of the simplest structures of the principal associated bundle 
of the universe constructed by us may be the frame bundle plus the associated 
tangent bundle. However, in order to make this structure of the principal asso-
ciated bundles of the universe able to accommodate the most universal gauge 
field of the universe and the corresponding unknown fundamental interactions, 
we still use the general abstract structure of the principal associated bundles to 
replace the concrete model. 

4. Principal Bundle and Gauge Field 
4.1. Gauge Selection and Cross Section 

Definition: Let ( ),P M G  be the principal bundle, U be the open subset of M, C∞  
mapping :U Pσ →  is called a local cross section, if ( )( ) ,x x x Uπ σ = ∀ ∈ . Here 
if U M= , then : M Pσ → , which is called the overall section. Next, in the 
case of local cross section, we further explore the physical meaning of the local 
cross section: let 4  be an open subset of the bottom manifold M, and G is the 
structural group to construct a non-trivial principal bundle 4 G× , where the 
free right-hand action of G on P is ( )4 4:R G G G× × → ×  , namely 1g G∀ ∈ , 
define 

1

4 4:gR G G× → ×   as: ( ) ( )
1 2 2 1, : ,gR x g x g g= , ( ) 4

1,x g G∀ ∈ × . 
Let 4: Pσ →  and 4: Pσ ′ →  be the local sections of P respectively, then 

4x∀ ∈  has a unique group element field 4:g G→  such that:  
( ) ( ) ( ) ( ) 14, ,g x G x x x g xσ σ −′∀ ∈ ∈ = . Therefore, there exists a representation 

group element such that ( ) ( )( ) ˆU x g Gxρ≡ ∈ , ˆ: G Gρ → , thus creating a local 
gauge transformation: ( ) ( ) ( ) ( )( ) ( ) ( ),x U x x g x x x Vφ φ ρ φ φ′ = ≡ ∀ ∈ , where V 
is the representation space of Ĝ , and Ĝ  is a representation of G. At this time, 
( )xφ  is actually a column matrix, and ( )( )g xρ  is a square matrix. Then de-

fine the associated bundle: choose F V= , define the left action : G F Fχ × →  
as: 1g G∀ ∈ , 

1
:g F Fχ → , ( ) ( )( )

1 1 1 1:g f g fχ ρ= , 1f F∀ ∈ , then there is an 
associated bundle ( ) ( ) ( ) [ ]1ˆx q p f x f x x Qφ σ π −≡ = ⋅ = ⋅ ∈ ⊂ , where  

:f M F V→ = , ( )f x F V∀ ∈ = . So ( )xφ  is determined by the cross sections 
σ and f. In addition, ( )g x  can generate: 1) ( ) ( ) ( ) 1x x g xσ σ −′ = , 2)  

( ) ( ) ( ) ( )( ) ( ) ( ) ( )g xf x f x g x f x g x f xχ ρ′ = = =  (i.e. gauge transformation),  

which is equivalent to 
( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]

1

1 1ˆ

x x f x x g x g x f x

x g x g x f x x f x x x

σ σ

σ σ π

−

− −

′ ′ ′Φ = ⋅ = ⋅

= ⋅ = ⋅ = Φ ∈
. 

Furthermore, we can generally say that the so-called local (global) gauge 
transformation for the principal bundle is actually the transformation cross sec-
tion ( ) ( )x xσ σ ′→ . This is equivalent to the transformation of the frame and 
the transformation of the components (of a physical field) under the internal 
frame field: ( ) ( ) ( ) ( )f x x f x xφ φ′ ′= → = , but the overall physical field (inter-
nal vector ( )xΦ ) is unchanged, i.e. ( ) ( )x x′Φ = Φ . The so-called gauge selec-
tion is to select different cross sections, while a cross section on the associated 
bundle σ̂  is just a physical field ( )xΦ ! In a word, the change of the cross sec-
tion on the principal bundle is the change of the internal frame. If the internal 
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frame is changed, it is equivalent to the transformation of a gauge. Therefore, 
to select a cross section of the principal bundle is to select a gauge. Note that 
the construction and related proofs here are relatively general. Even if 4  is 
changed to a submanifold of general M, the conclusion is still correct, and there 
is no restriction on the type of gauge potential or the type of fundamental inte-
raction. 

4.2. Invariance of Global Gauge Transformation of Physical Field 

Assume that the physical fields 1φ  and 2φ  are two independent particle fields 
in Minkowski space-time ( )4 , abη , have the same mass m, and spin 0, then 
according to the spirit of quantum field theory, they must respectively obey 
Klein-Gordon equation: 

2 0, 1, 2a
a j jm jφ φ∂ ∂ − = =                      (1) 

The total Lagrangian density of both is: 

  ( ) ( )2 2 2 2
1 2 1 1 1 2 2 2

1
2

a a
a am mφ φ φ φ φ φ = + = − ∂ ∂ + + ∂ ∂ +         (2) 

Introducing a complex scalar field 

   
( )

( )

1 2

1 2

1
2
1
2

i

i

φ φ φ

φ φ φ

 = +

 = −


                         (3) 

Then the Klein-Gordon Equation (1) becomes: 

   
2

2

0

0

a
a

a
a

m

m

φ φ

φ φ

∂ ∂ − =

∂ ∂ − =

                         (4) 

Then the total Lagrangian density becomes: 

   ( ) 2a
a mφ φ φφ = − ∂ ∂ +                        (5) 

Then an overall gauge transformation can be introduced as follows: 

   
e

e

iq

iq

θ

θ

φ φ

φ φ

− ′ =

′ =

                           (6) 

where θ is a real number, q is an integer, it is actually a group ( ) { }1 e iqU θ

θ

−

∈
=


, 

more generally: ( ) ˆ1U G→ , ( )1e e , ,e Niqiqiq diag θθθ −−− →  ; hence one has 

   
e

e

iq
a a

iq
a a

θ

θ

φ φ

φ φ

− ′∂ = ∂


′∂ = ∂
                        (7) 

therefore, the total Lagrangian density (5) remains unchanged, namely 

( ) ( )2 2a a
a am mφ φ φ φ φ φ φφ   ′ ′ ′ ′= − ∂ ∂ + = − ∂ ∂ +              (8) 

It can be seen that the total Lagrangian density is invariant under the field 
transformation of the gauge transformation (6), which reflects the symmetry 
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under the field transformation and is different from the space-time symmetry. 
Therefore, we call this invariance the internal symmetry of the field, which, like 
the space-time symmetry, can lead to the conservation law and can be expressed 
by the Noether theorem [27]. 

4.3. Local Gauge Invariance for Non-Abelian Fields 

In gauge transformation (6) θ does not change with time and space points, 
which is called the overall gauge transformation. The converse is called local 
gauge transformation. If the multiplication of the corresponding Lie group G is 
commutative, it is called an Abelian field, otherwise it is called a non-Abelian 
field. This non-Abelian field is also called Yang-Mills field, which was proposed 
by Yang-Mills in 1954 by extending G from ( )1U  to ( )2SU  [1]. From then 
on, it was the first time to open a river that the gauge field theory unified the 
fundamental physical interaction. Following the basic spirit of Yang-Mills field, 
we discuss the local gauge invariance of a generalized non-Abelian field: 

First, Equation (8) is generalized to the local gauge transformation: 

  
( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )1

e

e

i x

i x

x U x x x

x x U x x

φ φ φ

φ φ φ

− ⋅

− ⋅

 ′ = =

′ = =

L

L

θ

θ

θ

θ
               (9) 

Then, we make the following assumptions: 
1) The structure group and its representation group of the system are de-

noted as G and ˆ: G Gρ → , dimG R≡ , the physical field concerned is a mul-
ti-component complex particle field ( )x Vφ ∈  (representing space), which can 
be called the generalized Yang-Mills field, can be accompanied by R potentials 
(gauge potentials). These gauge potentials (also known as Yang-Mills potentials) 
are R complementary potential fields { }1, ,r

aA r R=   that can be generalized 
in general manifolds (including space-time manifolds of general relativity). Their 
coordinate components are marked as ( )rA xµ . 

2) The total Lagrangian density of the system can be expressed as: 

   1 YM= +                             (10) 

Here YM  is the Lagrangian density of the generalized Yang-Mills field, 1  
can be expressed as: 

  ( ) ( ) ( ) ( )( )1 0 , ; ,x D x x D xµ µφ φ φ φ=                 (11) 

Here ( )D xµφ  and ( )D xµφ  are respectively defined as: 

  
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

D x x ik x x

D x x ik x x
µ µ µ

µ µ µ

φ φ φ

φ φ φ

 = ∂ − ⋅


= ∂ + ⋅

L A

L A
               (12) 

which can also be defined as a derivative covariant operator, where k is defined 
as a coupling constant (and if ( )1G U= , then k e=  ↔ Electromagnetic gauge 
field; if ( )G SO N= ), then 1k = −  ↔ Gravitational gauge field); and ( )xµ⋅L A  
is defined as: 

( ) ( ) ( ) ( )1
1

R r
R rx L A x L A x L A xµ µ µ µ⋅ = + + =L A           (13) 
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Then under the local gauge transformation (9), formula (8) can be expressed as: 

  
( ) ( )( ) ( )

( ) ( ) ( )( ) 1

D x U x D x

D x D x U x

µ µ

µ µ

φ φ

φ φ
−

 ′ ′ =


′ ′  =  

θ

θ
               (14) 

and make 1  unchanged. To ensure these, we require the transformation form 
of ( )rA xµ  is as follows: 

(a) 
( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )
D x x ik x x

U x x U x x ik x U x x
µ µ µ

µ µ µ

φ φ φ

φ φ φ

′ ′ ′ ′ ′= ∂ − ⋅

  ′= ∂ + ∂ − ⋅ 

L A

L Aθ θ θ
(15)  

(b) 
( )( ) ( ) ( )( ) ( ) ( ) ( )

( )( ) ( ) ( )( ) ( ) ( )
U x D x U x x ik x x

U x x ikU x x x
µ µ µ

µ µ

φ φ φ

φ φ

 = ∂ − ⋅ 
= ∂ − ⋅

L A

L A

θ θ

θ θ
          (16) 

Obviously, considering formula (14), and comparing formula (16) with formula 
(15), to make (a) = (b), we only need to have: 

( )( ) ( ) ( )( ) ( )( ) ( ) ( )U x ik x U x ikU x x xµ µ µ φ′∂ − ⋅ = − ⋅L A L Aθ θ θ ,   (17) 

after sorting out, it is found that for group U(1), there is: 

( ) ( ) ( )1 1 1A x A x e xµ µ µθ
−′ = − ∂                     (18) 

For general case, defining *
ˆ

r riL eρ− ≡ ∈ , here ̂  is the representation of a 
Lie algebra of G, or Lie algebra of Ĝ ; re  is a basis of Lie algebra of ̂ ; *ρ  is 
a forward mapping of ρ , then ( ) ( ) ( )ˆ ˆr

rA x i x iL A xµ µ µ≡ − ⋅ = − ∈L A   can be 
defined. Therefore, Equation (17) becomes the following equation, which can be 
also proved that its right side belongs to ̂ . 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )1 11ˆ ˆA x U x A x U x k U x U xµ µ µ
− −−′ = − ∂θ θ θ θ     (19) 

what needs to be emphasized here is that formula (19) is essentially a form of 
“generalized gauge transformation”, that is, the general transformation formula 
between two connections of the bottom manifold in the intersection domain: the 
generalized gauge equation, if we also look at the gauge potential as it is a con-
nection. We shall return to this issue later. 

Now let’s introduce the generalized Yang-Mills field strength: because R gauge 
potentials ( )rA xµ  have been introduced, so there should be R gauge field strengths 

( )1, ,rF r Rµν =  , which can be expressed as: 

( ) ( ) ( ) ( ), 1 , 1, ,Rr r r r s t
sts tF x A A k C A x A x r Rµν µ ν ν µ µ ν=

= ∂ − ∂ + =∑      (20) 

where r
stC  represents the structural constant of the Lie algebra ̂  of G under 

the basis { }re . So it can be defined: 

YM 1

1
16

: R r r
r F F µν

µν=
= −

π∑                   (21) 

here, the metric g µα , gνβ  can be used to lift subscripts of rFαβ : 
The following task is to prove that YM  is also invariant under transformation 

(19). For this, we first introduce the simplified notation: ( ) ( ) ˆˆ r
rF x iL F xµν µν≡ − ∈ , 

similar Equation (20) can be changed to 
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  ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ,F x A x A x k A x A xµν µ ν ν µ µ ν
 = ∂ − ∂ +         (22) 

where ( ) ( )ˆ ˆ,A x A xµ ν
 
   is the Lie brackets of the Lie algebra elements ( )Â xµ  

and ( )Â xν . From this, it can be proved that YM  is invariant under the trans-
formation (19), that is, ( ) ( )YM YMx x′ =  . The proof is as follows: 

Firstly we prove that ( )YM16 tr F F µν
ρ µνλπ = . Let { }re  be the orthonormal 

basis, and let ( ) ( ) ˆr
rF x e F xµν µν= ∈ , then we can introduce ρ, so that  

( ) ( )*
ˆˆF x F xµν µνρ = ∈ , then we have 

( ) ( )( ) ( )( )
( )( ) ( )

( )

* * * *1 1

* *, 1 , 1

YM, 1 , 1

,

, 16

r s
r sr s

r s r s
r s r sr s r s

r s r s
r s rs

R R

R R

R
r s r s

R

tr F F tr F F tr F e F e

F F tr e e F F K e e

F F K e e F F

µν µν µν
µν µν µν

µν µν
µν µν

µν µν
ρ µν ρ µν ρ

ρ ρ ρ ρ

ρ ρ

λ λ δ λ

= =

= =

= =

  = =   

 = = 

= = − = π

∑ ∑

∑ ∑
∑ ∑





(23) 

where K  is the generalized Cartan metric satisfying K Kρλ= , and  
( ),r s rsK e e δ= − . The last step uses formula (21). 
Secondly, we can prove that ( ) ( )ˆ ˆ ˆ ˆtr F F tr F Fµν µν

µν µν′ ′ = , namely 

( ) ( ) ( ) ( )1 1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆtr F F tr UF U UF U tr U UF F tr F Fµν µν µν µν
µν µν µν µν

− − −′ ′ = = =   (24)  

where the last step used the rotation of the matrix under the tr operator. There-
fore, from formula (24), ( ) ( )YM YMx x′ =  . 

q.e.d. 

4.4. Gauge Potential and Connection 

The above discussion (including the generalization of Yang-Mills potential) 
shows that in a very general principal associated bundles structure, i.e. in the 
equation ( ) ( )( ) ( )x U x xφ φ′ = θ , one can choose a definition,  

( )( ) ( )( ) ˆU x g x Gρ≡ ∈θ , to construct a local gauge transformation:  
( ) ( ) ( ) ( )( ) ( )x U x x g x xφ φ ρ φ′ = ≡ , ( )x Vφ∀ ∈ . Here V is the representation 

space of Ĝ . So here ( )xφ  is a column matrix, ( )( )g xρ  is a square matrix. 
Reselect F V= , ( )f x F V∀ ∈ = , define ( ) ( ) ( ) [ ]1ˆx x f x x Qσ π −Φ ≡ ⋅ ∈ ⊂ ,  
where ( )f x F∈  (a typical fiber), one can introduce  

( ) ( ) ( ) [ ] ( )1ˆx x f x x xσ π −′ ′ ′Φ ≡ ⋅ ∈ = Φ . In addition, for the principal bundle FM 
and associated bundle TM, there is  

( ) ( ),q x f x e f e f e f Vµ µ µ µ
µ µ µσ ′ ′= ⋅ = = = ≡  which is called space-time vector, 

while ( )xΦ  can be called internal vector; ( )xσ  is called the internal frame, 
and ( )f x  is called the component of the internal vector expanded with the in-
ternal frame. But if ( ) ( ) ( )1x g x xσ σ− ′= , ( ) ( )f x f x′= , then: ( ) ( )x x′Φ = Φ . 
In the above discussion, we also see that in order to ensure the invariance of the 
total Lagrangian density   under the local gauge transformation, that is, 
equivalent invariance for the cross section transformation to the principal bun-
dle P, the gauge potential ( )A xµ  must be introduced, and make it under gauge 
transform (i.e. the section transform ( ) ( ) ( ) 1x x g xσ σ −′ = , where ( )g x  is a 
group element field) to change to ( )A xµ′ , then ( ) ( )A x A xµ µ′→  (that is, the 
transformation of gauge potential satisfying Equation (19)) also corresponds to 
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an absolute invariance, that is, the invariance of the connection on the principal 
bundle ω . In other words, the connection on the principal bundle is the gauge 
potential, which is invariant under the transformation of the gauge potential. 
For this reason, we firstly give three definitions of connection on the principal 
bundle: 

1) A connection on the principal bundle ( ),P M G  is to specify a horizontal 
subspace p pH T P⊂  for each point p P∈ , satisfying: 

a) p p pT P V H= ⊕ , p P∀ ∈ , 
b) * p pgg

R H H  =  , ,p P g G∀ ∈ ∈ , 
c) pH  gives a C∞  n-dimensional distribution on P. 
Here ( ){ }* 0:p pV X T P Xπ∈ ==  is the vertical subspace. 
2) A connection on the principal bundle ( ),P M G  is a first-order differen-

tial form (abbreviation: 1 form) field ω  of a Lie algebra   value of C∞  on P, 
and satisfies: 

a) ( )* , ,p pA A A p P= ∀ ∈ ∈ ω , 

b) ( ) ( )* 1 , , ,pg p pg g
R X d X p P g G X T P−= ∀ ∈ ∈ ∈ ω ω , 

Here *
pA  is a vertical vector field generated by A on p P∈ ; while 1g

d −  
represents an automorphism called adjoint isomorphism constructed by element 

1g −  through an isomorphic mapping 1
1 ,:

g
I g hg h G−

−= ∀ ∈  to induce a push 
forward mapping (tangent mapping) as 1 1*

:
g g

I d− −=  at ( )1g
I e e− =  point, that 

is, 1 :
g

d − = →    is a linear transformation on Lie algebra  . 
3) A connection on the principal bundle ( ),P M G  is to the local trivial  

[ ]1:UT U U Gπ − → ×  specifies a 1-form field Uω  of the   value of C∞  on 
U, that is a connection on U M⊂ . At this time, if [ ]1:VT V V Gπ − → ×  is 
another local triviality, that is, U V ≠ ∅ , and the conversion function from 

UT  to VT  is UVg , then there is 

( ) ( ) ( ) ( ) ( )1
1

** , ,
UVUV

V U UV xg xg x
Y d Y L g Y B A x U V Y T M−

−= + = + ∀ ∈ ∈ω ω  (25) 

where ( )
1
UVg xL−  is the inverse map of the left translation ( )UVg xL  generated by 

( )UVg x G∈ , ( ) ( )( )1 1
* *UV UVg x g xL L− −≡ . 

Furthermore, it can be shown that the three definitions are equivalent to each 
other. But the emphases are different: definition (1) means that the connection is 
the horizontal subspace of the point-tangent space on the fiber of the principal 
bundle; definition (2) means that the connection is the 1-form field with Lie al-
gebra value on the fiber point of the principal bundle; definition (3) means that 
the connection is the 1-form field of a point on the fiber-bottom manifold of the 
principal bundle, that is, ( )* 1,U U Uσ≡ ∈Λ ω ω , where the lower * indicates the 
push forward mapping, and the upper * indicates the pull back mapping. The 
connection coordination formula (25) in the third definition of connection is a 
form of generalized gauge potential transformation, where the local trivial UT  
corresponds to the local cross section :U U Pσ = → , and there is a pull back 
mapping 
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*

*

:

:
U U

V V

σ

σ



 =



= 



ω ω

ω ω
                          (26) 

Proof of the Equation (25): Firstly 

  ( )
( )( )( ) ( ) ( )*

*
*VV

V V Vxx x
Y Y Yσσ

σ σ= = ω ω ω              (27) 

but (the last step, Leibniz’s law, can be proved in the work [25]) 

( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( ) ( )( )

* *
0 0 0

0 0

d d d
d d d

d d
d d

V V V U UV

U UV U UV

Y t t t g t
t t t

t g x x g t
t t

σ σ η σ η σ η η

σ η σ η

 = = =  

   = +   

   (28) 

( )( ) ( ) ( ) ( )( ) ( ) ( )**
0 0

d d
d d UV UVU UV U Ug x g xt g x R t R Y
t t

σ η σ η σ  = =      (29) 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )1 1

1

VUV UV

U UV U UV V UV UV

V UV UVxg x g x

x g t x g t x g x g t

x L g t R L g tσ

σ η σ η σ η

σ η η− −

−= =

   = =      

(30) 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )
1 *

** * *
0

d
d V UV V VU UV UVx g x x xx g t R L g Y R A A
t σ σ σσ η −   = = =       (31) 

Therefore 

  ( ) ( ) ( )
*

* **UV VV Ug x xY R Y Aσσ σ= +                     (32) 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )

( )1

*
* **

* **

UV VV V V

UVV

V V Ug x xx x xx

U pg gg xx

pg

Y Y R Y A

R Y A R X A

d X A B A

σσ σ σ

σ

σ σ

σ

−

= = +

= + = +

= + = +

  

 



ω ω ω ω

ω ω

ω

  (33) 

where 

( ) ( ) ( ) ( ) ( ) ( )( )( )

( ) ( )
1 1 1

1

*
*U UUV UV

UV

p U Ux xg g x g x

U xg x

d X d Y d Y

d Y B

σ σ
σ σ− − −

−

= =

= =

    



ω ω ω

ω
 (34) 

      q.e.d. 
If the structure group G is a N N×  matrix group, { }V matrixN N≡ × , then 

V is a vector space, and VG ⊂ , V⊂ , then Equation (25) can be expressed 
in a simplified form: 

   1 1
V UV U UV UV UVg g g dg− −= +ω ω                    (35) 

For example, if we take the general gauge potential on the bottom manifold 
(that is, not limited to the electromagnetic gauge potential, it may also include 
the gravitational gauge potential, etc.) as: ( ) ( )r rA x A xµ µ′→  (1 form field of real 
or complex value), then there is: ( )1,r

r a Ue A ∈Λ  , where re  is the basis in Lie 
algebra  . In addition, * *σ σ′ ′= → = ω ω ω ω , ( )1,U∀Λ  , where ( )1,UΛ   
is a set of 1 form fields of Lie algebra   on U. So we can define:  

( )1,r
a r a Mke Aω ≡ ∈Λ  , or ( )1,r

r Mke k≡ ≡ ∈ΛA A ω , note that here M is a 
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suitable general bottom manifold (that is, our “universe” manifold satisfying the 
local trivial condition, which can be much more complicated than 4 dimensional 
real or complex manifolds and is the same as M in the structure diagram of the 
principal associated bundles of the universe). Now we want to prove that the ω  
defined in this way satisfies the transformation relation (25) of the connection 
definition (3) above, ( ) ( )V UY Y→ω ω . 

Proof: Let ( )0,r
r Mke Aµ µω ≡ ∈Λ  , then ( ) ( )r

rx ke A xµ µω ≡ ∈ , dxµ
µω=ω , 

now let again ( ) ( ) ( ) ( ) ( ) ( )1
V U UVx x g x x x g xσ σ σ σ −′= = = , then Equation (25) 

becomes 

( ) ( ) ( ) ( ) ( )1
** , , xg x g xY d Y L g Y x M Y T M−′ = + ∀ ∈ ∈ω ω         (36) 

If one taking 
0x

Y
xµ

∂
≡
∂

, then one gets ( ) ( ) ( )
0

0 0
x

Y x dx x
x

ν
ν µµω ω

 ∂
= =  ∂ 

ω , 

so proving Equation (36) only needs to prove 

( ) ( ) ( ) ( )0 0
0

1
0 0 **g x g x

x

x d x L g
xµ µ µω ω −

 ∂′ = +   ∂ 
             (37) 

Then, by considering r
a r a ake A kAω ≡ ≡ , and using the formula: 

( ) ( ) ( )( ) ( ) ( )( )
( )( )( ) ( )( )

*

* *

ˆˆ

ˆ,

r r
r r

r
r

x kA x k iL A x k e A x

k e A x x

µ µ µ µ

µ µ

ω ρ

ρ ρ ω

≡ ≡ − =

= = ∈
 

one can change Equation (19) as 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( ) ( )( )

( )( ) ( ) ( )( ) ( )( ) ( )( )

1 1

1 1

1 1

ˆ ˆ

ˆ

ˆ
x

x g x x g x g x g x

g x x g x g x g x

g x x g x g x g x
x

µ µ µ

µ µ

µ µ

ω ρ ω ρ ρ ρ

ρ ω ρ ρ ρ

ρ ω ρ ρ ρ

− −

− −

− −

 ′ = − ∂ 
 = + ∂  
 ∂

= +  ∂ 

    (38) 

Then, by defining ( )( ) ( )( )( ) 11

0x

g x g t
txµ ρ ρ η

−−∂ ∂
=
∂∂

, the second item of the 

above formula can be proved to be ([26], Volume III p. 308) 

( )( ) ( )( )

( )( ) ( )( )( ) ( )( ) ( )( )( )

( )( ) ( )( )( ) ( )( ) ( )

( )( ) ( )

1

1 1

0 0

1 1
* **

0 0

1 1
* * * ***

x

g x

g x g x

g xg x
x x

g x g x
x

g x g t L g t
t t

L g t L g t
t t

L g L g
x x

µ

ρ

ρ ρ

ρ µ µ

ρ ρ

ρ ρ η ρ η

ρ η ρ η

ρ ρ

−

− −

− −

− −

 ∂
 ∂ 

∂ ∂
= =
∂ ∂

∂ ∂
= =
∂ ∂

 ∂ ∂
= =  ∂ ∂ 

      (39) 

Then the first item of Equation (38) is: 

( )( ) ( ) ( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )
1

1 1
1 1

* *

ˆ ˆg g x

g x g x

g x x g x g Bg d B d x

d x d x

µ µρ

µ µρ ρ

ρ ω ρ ω

ρ ω ρ ω

− −= = =

 = =  

 

 
 (40) 
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therefore 

  ( ) ( )( ) ( ) ( )
1

* **ˆ g xg x
x

x d x L g
xµ µρ µω ρ ω − ∂′ = + ∂ 

          (41) 

So from ( ) ( )( )*ˆ x xµ µω ρ ω′ ′= , Equation (36) can be obtained. 
q.e.d. 

The above proof shows that the connection on the principal bundle is invaria-
ble, but the connection on the base manifold is variable and varies with the se-
lection of cross sections. The transformation relationship is the same as that of 
the gauge potential. What is invariable is the connection on the principal bundle 
ω , therefore ω  is the (quite generalized) gauge potential! The author should 

emphasize that Equation (25) is actually a generalized gauge potential transfor-
mation, and ( )Y′ω  or ( )Yω  is just components of ω , which include not 
only the electromagnetic gauge potential and other three basic interaction gauge 
potentials, but also the gravitational gauge potential; the transformation rela-
tionship between these components is exactly the gauge potential transformation 
relationship (25), but no matter how the gauge transformation, ω  is the same. 
This has implicitly pointed out that there is a unified universal gauge field cor-
responding to the invariable gauge potential in the universe! 

Not only that, but it can be seen from formula (20) that the gauge potential 
can define the gauge field strength. At this time, if there are physically:  

,r r r rA A F Fµ µ µν µν′ ′→ → , so what transformation does it correspond to in mathe-
matics? What is the constant quantity? 

5. Gauge Field and Space-Time Curvature 
5.1. Gauge Field Strength and Curvature 

The answer to the above question is the curvature transformation on the bottom 
manifold, that is, ′→Ω Ω , and the constant “original quantity” is the curvature 
on the principal bundle, denoted as Ω̂ . Now first define the curvature on the 
principal bundle: 

Let K be a manifold and   be a Lie algebra, then ( ),K iΛ   is the set of 
smooth i-form fields of all Lie algebras   valued on K, namely vector space. Set 
up ( ),K i∈Λ ϕ , ( ),K j∈Λ ψ , [ ] ( ), ,K i j∈Λ + ϕ ψ , then there is 

[ ]( ) ( ) ( )( ) ( ) ( )( )1 1 1
1, , , : , , , , ,
! !i j i i i jX X X X X X

i j π π π π ππ δ+ + +
 =  ∑  ϕ ψ ϕ ψ (42) 

Here π represents the arrangement, πδ  is defined as the even permutation is 1, 
and the odd permutation is −1, then [ ]( ) ( )1, , , ,i j KX X o+ ∈Λ ϕ ψ  becomes a 
Lie bracket when ( )1, , i jX X +  is fixed. If 2, 1i j= = , then 

[ ]( )

( ) ( )( ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) )

1 2 3

1 2 3 3 1 2 2 3 1

2 1 3 1 3 2 3 2 1

, , ,
1 , , , , , ,
2

, , , , , ,

X X X

X X X X X X X X X

X X X X X X X X X

     = + +     

     − − −     

ϕ ψ

ϕ ψ ϕ ψ ϕ ψ

ϕ ψ ϕ ψ ϕ ψ

 (43) 
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In addition, if ( )1,K∈Λ ω , then one has 

[ ]( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 2 1 1 2, , , , 2 ,X X X X X X X X= − =          ω ω ω ω ω ω ω ω (44) 

Usually, ( ),K i jΛ +   is called the graded Lie algebra, if the Lie bracket opera-
tions are also defined in ( ),K i jΛ +  . 

The covariant exterior differential is defined as follows: let the principal bun-
dle with connection ( ),P ω  have ( ),P i∈Λ ϕ , define: 

1) ( ),H
P i∈Λ ϕ  is the horizontal component of ϕ , 

( ) ( )1 1, , : , ,H H H
i iX X X X= ϕ ϕ                (45) 

where 1, , iX X  is an arbitrary vector field on P, respectively. 
2) The covariant external differential is defined as: 

( ) ( ): 1,H
PD d i= ∈Λ + ϕ ϕ                  (46) 

3) The curvature Ω  of a connection ( )1,P∈Λ ω  is defined as (note that 
connections on the principal bundle can determine the curvature.) 

( ) ( ): 2,H
PD d= ≡ ∈Λ

  ω ωΩ                 (47) 

Then it can be proved that: 

[ ]1 ,
2

d= +

  ω ω ωΩ                      (48) 

Proof:  
Science 

( ) ( ) ( ) ( ) ( )

( ) [ ] ( )

( ) ( ) ( )

, , , ,

1, , ,
2

, ,

H H H
p p pp

p p

p p p

X Y D X Y d X Y d X Y

d X Y X Y

d X Y X Y

= = =

= +

 = +  



  

  

  

ω ω ω

ω ω ω

ω ω ω

Ω

    (49) 

therefore 

  ( ) ( ) ( ) ( ), , ,H H
p p ppd X Y d X Y X Y = +     ω ω ω ω          (50) 

Then there are three cases:  
a) ( ) ( ), 0, 0p p pX Y H X Y∈ ⇒ = = ω ω , Equation (49) holds; 
b) ( ) ( ) ( )* *, , ,0 , ,p p p p p pX Y V X A Y B d X Y X Y ∈ ⇒ = = = +    ω ω ω ,  

hence 

( ) ( ) ( ) ( )* * * * * *, , ,r
p p r p p p p p pp p

d A B e d A B A B = = −     ω ω ω ω      (51) 

The formula is used here  

 

( ) ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

* * * *

* * * * * *

* * * * * *

* * * * * *

, ,

,

,

,

r
r

r r r
r r r

r r
r r

r r
r r

d A B e d A B

e A B e B A e A B

e A B e B A A B

A e B B e A A B

=

 = − −  

 = − −  

 = − −  

 

  

  

  

ω ω

ω ω ω

ω ω ω

ω ω ω
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( )( ) ( )( ) ( )
( )( ) ( )( ) ( )
( ) [ ]( ) [ ]

( ) ( )

* * * * * *

* * * * * *

** *

* *

,

,

, , ,

,p p p p

A B B A A B

d B A d A B A B

A B A B A B

A B

 = − −  

 = − −  

 = − = − = − 

 = −  

  

  

 

 

ω ω ω

ω ω ω

ω ω

ω ω

             (52) 

and used definitions and equations: 

( )( ) ( )( ) ( )( )
( )( ) ( )( )

* * * * * *

* * * *

:r r r
r r re A B e d B A de B A

d B A A B

= =

= =

  

 

ω ω ω

ω ω
         (53) 

Also ( )*Bω , ( )*Aω  is a constant scalar field with a value of  ,  

( )* 0d B∴ =ω , ( )* 0d A =ω . 
c) *, ,p p p pX V Y H X A Y∈ ∈ ⇒ = = Z  ( pZ  that is, the value of a horizontal 

lift field at p), then one gets 

( ) ( ) ( ) ( )
( ) [ ] ( )
( )( ) ( )( )

( )( )

* *

* *

* *

*

0, 0 , ,

, ,0 ,

0

0 0 0

p p p p p pp p

p p p pp p

p p p p p p

p p p

d d A A

d A A d A

A A

A

 ⋅ = = +  

= + =

= − −

= − − =

Z Z

Z Z

Z Z

Z

 

   

 

 

 

 





ω ω ω ω

ω ω

ω ω

ω

      (54) 

A theorem has been used here: * , 0A  = Z , and a vector field acting on a con-
stant scalar field is 0, ( ) 0A =Z , so there is 

  

( ) ( )( ) ( )( ) ( )
( )( ) ( )( )
( )( ) ( )

* * * *

* *

*

, ,

0 0

d A A A A

A A

A A

 = − −  

= −

= − = − =

Z Z Z Z

Z Z

Z Z

   

   

 

 

 



ω ω ω ω

ω ω

ω

      (55) 

q.e.d. 
Furthermore, it can be proved that: 

   0D =Ω                         (56) 

In fact, by definition (47), one gets, 

   ( )H
D d= Ω Ω                       (57) 

that is 

 

( ) ( ) ( )

( )( ) [ ]( )

[ ] [ ]{ }( ) [ ]( )

( ) ( ){ ( ) ( )
( ) ( ) ( ) ( )

, , , ,

1, , , , ,
2

1 , , , , , , ,
2
1 , , , ,
2

, , , ,

H

H H H H H H

H H H H H H

H H H H H H

H H H H H H

D X Y Z d X Y Z

d X Y Z d X Y Z

d d X Y Z d X Y Z

d X Y Z d Z X Y

d Y Z X d X Z Y

=

= =

= − =

   = +   

   + −   

 



 

     

   

   

ω ω

ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω

Ω Ω

Ω
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( ) ( ) ( ) ( ) }
( ){ ( ) ( )

( ) ( ) ( ) }

, , , ,

1 , ,0 , ,0 , ,0
2

, ,0 , ,0 , ,0

0

H H H H H H

H H H H H H

H H H H H H

d Z Y X d Y X Z

d X Y d Z X d Y Z

d X Z d Z Y d Y X

   − −   

     = + +     

     − − −     
=

   

  

  

ω ω ω ω

ω ω ω

ω ω ω

   (58) 

where 

   [ ] [ ] [ ]( ) [ ]1 10 , , , ,
2 2

d d d d d= + = − =

       ω ω ω ω ω ω ω ωΩ         (59) 

q.e.d. 
And there is also a theorem that holds: 

   ,d  =  
 

ωΩ Ω                          (60) 

Proof: 

[ ] [ ] [ ]1, , , , , 0
2

d d d   = + = + =  
 

       ω ω ω ω ω ω ω ωΩ Ω          (61) 

Again by the previous definition: 
* ,: , r r

U U r rke A dx k e A dxµ µ
µ µσ ≡ ≡= = A Aω ω ω  

one can introduce:  

  * 1: ,
2

r
U U re F dx dxµ ν

µνσ= ≡ ∧FΩ Ω                 (62) 

From this we can prove the theorem: Let 1
2

r
re F dx dxµ ν

µν≡ ∧F , then U k= FΩ , 

where k is a scale coefficient, and F  can be defined as the gauge field strength. 
Proof:  

[ ] ( )

[ ]

( )

( )

2

2

1 1, ,
2 2

1 ,
2

1 1
2 2
1
2
1
2

r s t
r s t

r s t
r s t

r r r s t
r st r

r r r s t
r st

r
r

d d ke A dx ke A dx ke A dx

ke dA dx k e e A A dx dx

ke A A dx dx k C e A A dx dx

ke A A kC A A dx dx

ke F dx dx k

µ µ ν
µ µ ν

µ µ ν
µ µ ν

µ ν µ ν
µ ν ν µ µ ν

µ ν
µ ν ν µ µ ν

µ ν
µν

 = + = +  

= ∧ + ∧

= ∂ − ∂ ∧ + ∧

= ∂ − ∂ + ∧

= ∧ = F

ω ω ωΩ

     (63) 

here, [ ], r
s t st re e C e= , as well 

( )

[ ]( ) ( )1
2

r
r r

r r r

A
dA dx dx dx A dx dx

x

A dx dx A A dx dx

µµ ν µ ν µ
µ ν µν

µ ν µ ν
µ ν ν µµ ν

∧ ∧ ∧

∧

∂
= = ∂
∂

= = ∂ ∧∂ ∂ −

    (64) 

The above proof shows that the defined Ω  is the gauge field strength, and the 
defined ω  is the gauge potential, which is constant. However, Ω  and ω  
change with the cross section, and the corresponding transformation also cor-
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responds to the transformation of the gauge potential. These transformations are 
caused by the transformation of the cross section (that is, the gauge transforma-
tion), but the “grand quantities” connection ω  and curvature Ω  in ( ),P ω  
and ( ),P Ω  are constant, and the change are only their components  

,′ ′→ →ω ω Ω Ω , respectively. 

5.2. Transformation Relation of Curvature 

Under the cross section transformation σ, the transformation relationship of 
′→ω ω  on the bottom manifold (that is, our world) is (25); what is the trans-

formation relationship of ′→Ω Ω ? To do this, we need to prove the following 
theorems: 

(Theorem A) [ ]1 ,
2U U U Ud= +ω ω ωΩ                   (65) 

Proof:  

[ ]

( )

[ ]

* *

* * *

1 ,
2

1 ,
2

1 ,
2

U U U

U U U

U U U

d

d

d

σ σ

σ σ σ

 = = + 
 

 = +  

= +



  

  

ω ω ω

ω ω ω

ω ω ω

Ω Ω

                  (66) 

(Theorem B) Equation (63) corresponds to Equation (20), namely 

[ ]

( ) ( ) ( ) ( ), 1

1 ,
2

, 1, ,Rr r r r s t
sts t

d

F x A A k C A x A x r Rµν µ ν ν µ µ ν=

 = +




= ∂ − ∂ + =


∑




ω ω ωΩ

     (67) 

Proof: the same as Equation (63), 

( ) [ ]

( )

2

2

1 ,
2

1
2
1
2

r s t
r s t

r r r s t
r st r

r
r

ke d A dx e e k A A dx dx

ke A A C e k A A dx dx

ke F dx dx

µ µ ν
µ µ ν

µ ν
µ ν ν µ µ ν

µ ν
µν

= + ∧

= ∂ − ∂ + ∧

= ∧

Ω

 

2r r r r s t
st rF A A C e k A Aµν µ ν ν µ µ ν∴ = ∂ − ∂ +  

Here Equations (62) and (63) are considered. 
(Theorem C) Let :UVg U V G→  be the local trivial transformation func-

tion from UT  to VT , then on U V  of the bottom manifold one gets 

1
UV

V Ug
d −=Ω Ω                        (68) 

Proof: 
, , xx U V X Y T M∀ ∈ ∈ , one has 

( ) ( )( ) ( )* * *, , ,V V V VX Y X Y X Yσ σ σ= = Ω Ω Ω             (69) 

https://doi.org/10.4236/jmp.2023.143016


B. Qiao 
 

 

DOI: 10.4236/jmp.2023.143016 232 Journal of Modern Physics 
 

Again considering Equations (31) and (32), one gets 

( ) ( ) ( )
( )

** 1
* 1 2* *UV UV

V
V U UVg x g x x

X R X L g X X X
σ

σ σ − = + = +        (70) 

( ) ( ) ( )
( )

** 1
* 1 2* *UV UV

V
V U UVg x g x x
Y R Y L g Y Y Y

σ
σ σ − = + = +          (71) 

Hence Equation (69) changes 

( ) ( )
( ) ( ) ( ) ( )

1 2 1 2

1 1 1 2 2 1 2 2

, ,

, , , ,
V X Y X X Y Y

X Y X Y X Y X Y

= + +

= + + +



   

Ω Ω

Ω Ω Ω Ω
    (72) 

The action objects of the last three items on the right side of the above formula 
involve the vertical vector 2X  or 2Y , so they are all 0, so it can be obtained 

( ) ( ) ( ) ( )( )
( )( )( ) ( )( )

( )( ) ( ) ( )

1

1 1

1 1 * ** *

*
* * * *

*

, , ,

, ,

, ,

UV UV

UV UV

UV UV

V U Ug x g x

U U U Ug x g

U Ug g x

X Y X Y R X R Y

R X Y d X Y

d X Y d X Y

σ σ

σ σ σ σ

σ

−

− −

= =

= =

= =

 

 





 

Ω Ω Ω

Ω Ω

Ω Ω

   (73) 

here, the theorem is used: 1
* ,g g

R d g G−= ∀ ∈ Ω Ω . 
q.e.d. 

(Theorem D) If the structure group is a matrix group, formula (68) can be 
further expressed as: 

1
V UV U UVg g−=Ω Ω                     (74) 

Therefore, under the cross section transformation σ, the transformation rela-
tionship of ′→ω ω  on the bottom manifold (that is, the world we assume) is 
the Equation (25), and the corresponding transformation relationship of ′→Ω Ω  
is the Equation (68)! 

5.3. Gravitational Gauge Field 

Physics has roughly unified the three fundamental interactions of electromag-
netism, weak and strong, but the fundamental interaction of gravitation has not 
been unified, which makes us pay special attention to the problem of the gravita-
tional gauge field. 1) Is gravity a gauge field? The answer is: suppose it is. Many 
authors have proposed gravitational gauge theory in this regard, such as Duan 
Yishi’s general theory of relativity and gravitational gauge theory and Yue-Liang 
Wu’s unified theory of gauge field [25] [28]; 2) the general gauge equation 
proved above (25) and the corresponding gauge potential in Equation (68) also 
include the gravitational gauge potential? The answer is yes! In fact, in Chapter 6 
and Appendix 3 of Duan Yishi’s book, the author has proved relatively well that 
in the principal fiber bundle where the ( )SO n  group is the structural group, 
the connection is the gravitational gauge potential, and the curvature is the gra-
vitational gauge field strength. And there is a very classic saying, “The gauge 
theory of physics is just the principal fiber bundle (principal bundle) theory in 
mathematics” [25]. Considering these circumstantial evidences, the author of 
this paper confirms that Equations (25) and (68) are some forms of GGE 
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(generalized gauge equations) that are generally valid for the gauge poten-
tial of fundamental interaction; the connection of space-time is the gauge 
potential, and the curvature of space-time is the gauge field strength; no 
matter for gravitation or for electromagnetic force and weak and strong in-
teraction forces, Equations (25) and (68) are true for the four fundamental 
interactions. 

So under the condition that the structure group is large enough, the genera-
lized gauge Equation (GGE) can express the transformation of the gauge poten-
tial on the bottom manifold (our universe) from one fundamental interaction 
gauge potential to another fundamental interaction gauge potential, such as the 
transformation from electromagnetic gauge potential to gravitational gauge po-
tential, while the universal unified gauge potential on the principal bundle (sim-
ilar to the “heaven” of high-dimensional space-time) is unchanged, these local 
gauge potentials on the base manifold are just the projection components of the 
choice of the unified gauge potential under different gauge (or the cross section 
of principal bundle). However, this transformation is not only the transforma-
tion within the same gauge field as understood in the traditional view, but may 
be the transformation between different gauge fields, or even the transformation 
between gauge potentials with cross fundamental interactions. We can call this 
transformation from gauge potentials with one fundamental interaction to gauge 
potentials with another fundamental interaction as “cross fundamental gauge 
potential transformation”. This is exactly the meaning of the great unity of 
physics revealed by Equation (25) and the corresponding Equation (68); it is also 
the outline significance of the grand unification of the cosmic gauge field re-
vealed by the structural picture of the principal associated bundles of the un-
iverse. 

5.4. Connection of Entangled States 

The above “grand unified outline” can first be used to explain the “paradox” of 
quantum entangled states. What is quantum entanglement first? The rough an-
swer of quantum theory is that if the wave functions of two particles cannot be 
written as the scalar product of two wave functions, then the two particles are 
entangled. Fan Hongyi believed in the book [29] that the entangled state is the 
common eigenstate of the commutator 1 2P P±  and 1 2Q Q , i.e.  
[ ]1 2 1 2,P P Q Q±  , here the momentum operator of two particle is respectively 

1P  or, 2P  and the position operator of two particle is respectively as 1Q  or 

2Q . Hence for [ ]1 2 1 2,P P Q Q+ − , it can be expressed as  

( )
( )

1 2 1

1 2 2

2

2

Q Q

P P

η η η

η η η

 − =


+ =
                     (75) 

Here, the form of the entangled state η  is 

  2 *
1 2 1 2

1exp 00
2

a a a aη η η η = − + − + 
 

† † † †              (76) 
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Among them, 1 2η η η= + , 
†

2
j j

j

a a
Q

+
= , 

†

2
j j

j

a a
P

i

−
= ; and η  satisfies the 

completeness relation and is also orthogonal. 
One of the strangeness of the entangled state is hidden in the Schmidt de-

composition in its coordinate representation: 

1 2 2
11 2

e d 2 ei i qq q qη η ηη η
+∞−

−∞
−⊗= ∫              (77) 

The above formula shows that when particle 1 is in its coordinate eigenstate 

1q , particle 2 is simultaneously in its coordinate eigenstate 12q η− , and 
these two particles have a distance, and the distance may even be great. Why 
does the state change of particle 1 cause the state of particle 2 to change corres-
pondingly “simultaneously”? From the general gauge Equation (25), if all the in-
teractions in the universe are regarded as the interaction of the gauge field and a 
kind of space-time regional force, then the various strange performances of the 
quantum entanglement state are easy to understand, so our answer is as follows: 

1) The so-called quantum entanglement means that the space-time of two 
particles establishes a connection, thus a gauge potential appears, and a gauge 
field acts on the two particles. 

2) This connection is a special connection, the regional gauge potential, which 
makes the sum of the two particles’ momentum and the difference of their coor-
dinates limit the common eigenstates of the two particles in this region, and as a 
whole, it is affected by the regional gauge field at the same time. This is different 
from the common sense of connection or gauge potential. The difference lies in 
the “simultaneous regional integration”. 

3) Any operation to change the state of one of the particles is equivalent to 
changing the structure of the gauge potential in this area at the same time, which 
must affect the role of all gauge fields in this area at the same time, and must also 
affect the corresponding state of another particle. 

In a word, quantum entanglement is to establish the gauge field of the whole 
region between two particles, so that the whole of the two particles are affected 
by the gauge field at the same time. Any change in the state of one particle must 
change the state of the other particle at the same time. Here, the gauge effect is 
simultaneous for the whole region, without the meaning of time and transmis-
sion speed. In fact, the quantum entangled state may be the common eigenstate 
of the operator of the relative distance between the two quanta and the total 
momentum operator of the two quanta, which indicates that the relative distance 
between the two quanta can change in the space time region where the entan-
glement occurs, and their total momentum can also change, but the region of the 
space time regional force that causes the entanglement will also change, still 
covering the entire region where the entangled state is located. Therefore, any 
“operation or measurement” behavior that changes a single quantum state will 
“simultaneously” cause the gauge field force of the whole space-time region en-
veloped to act on another entangled quantum to change its state. There is no 
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superluminal force transmission, which is the concept of assumption that the 
role of this special global gauge field force is still considered as a local part. 

6. Conclusions and Outlook 

A) In this paper, a general unified program of physics is proposed, and the 
unified formula is the generalized gauge equation GGE or Equation (25). All in-
teractions in the world are unified in the gauge potential (gauge field) in the un-
iverse picture of the principal associated bundles, and the fundamental interac-
tion of our universe on the bottom manifold is just the representation of the com-
ponent of the gauge potential of this principal bundle, which follows the trans-
formation of the generalized gauge equation from one component to another, or 
even the transformation of one fundamental interaction into another. 

B) The invariance of the gauge transformation or the satisfaction of the gene-
ralized gauge Equation (EEG) is a necessary condition for the universal unified 
field theory, but the quantization of the field is not a necessary condition for the 
universal unified field theory. 

C) Outlook: 1) The fundamental interactions may not be limited to four types, 
and the discovery of new fundamental interactions is possible. 2) The funda-
mental interaction may be transformed into each other, and the basic equation 
of transformation is just GGE. 3) It is found that the structure group can express 
more gauge field components; so it is an important task for physics in the future 
to simplify and solve EEG so that one can concretely express the transformation 
relationship between any two gauge field components, especially the transforma-
tion relationship between electromagnetic force and gravity (which is extremely 
important for solving human aerospace dynamics). 
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