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Abstract 
The creation of the theory of relativity, which discovered the equivalence of 
mass and energy, showed that the concept of a point charge, used in the for-
mulation of Coulomb’s law, one of the basic laws of classical electrodynamics, 
contradicts the famous formula establishing the equivalence of mass and ener-
gy. But the discovery of quarks makes it possible to present classical electro-
dynamics in a form free from the indicated contradiction. In the article, hav-
ing considered the electromagnetic field in a curvilinear coordinate system, a 
theory has been created that expands our understanding of the electromag-
netic field, the nature of quarks, the nature of strong interaction, and the 
connection between strong interaction and electromagnetic interaction. This 
theory is based on the principle of equivalence of an electromagnetic field to a 
free material particle formulated in the article and the law of formation of 
elementary particles from an electromagnetic field that follows from it.  
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1. Introduction 

In the theory of relativity, every elementary particle must be considered as a 
point particle. Therefore, according to classical electrodynamics, any elementary 
particle would have to have an infinite “intrinsic” energy, and, consequently, 
mass. To solve this problem, people tried in many ways. For example, the finite-
ness of the mass of an elementary particle can be interpreted by introducing an 
infinite negative mass of non-electromagnetic origin. This mass compensates for 
the infinity of the electromagnetic mass. This method is known as “renormaliza-
tion” of the mass. But this method does not eliminate all the internal contradic-
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tions of classical electrodynamics. The main problem of such solutions is that, 
when passing to sufficiently small distances, classical electrodynamics becomes 
an internally contradictory theory. It became possible to overcome these contra-
dictions only after the discovery of quarks. This allows us to speak not only about 
the electromagnetic interaction but also about the strong interaction in the tran-
sition to sufficiently small distances. Therefore, in this article, the solution of the 
problem is achieved by combining the electromagnetic and strong interactions. 

Classical theories, such as Newtonian Mechanics, Maxwell’s Electrodynamics 
are theories that do not have complete generality. So, Classical Mechanics can-
not describe mechanical systems in the entire range of speeds with which these 
systems can move. It describes mechanical systems that move at speeds, the 
magnitude of which is so much less than the speed of light that the speed of light 
can be considered an infinitely large value. As you know, mechanics, which have 
complete generality, since it describes mechanical systems over the entire range 
of speeds with which these systems can move, are called relativistic mechanics, 
and were created by Einstein. Classical Electrodynamics does not have complete 
generality, since it cannot describe the electromagnetic field in the entire four- 
dimensional space. It becomes an internally inconsistent theory in the field sur-
rounding a point elementary charged particle. Indeed, when tending to the point 
at which a point charged particle is located, the electric field according to Cou-
lomb’s Law will tend to infinity. Consequently, the field energy, and hence the 
mass corresponding to this energy, will also tend to infinity. The physical mea-
ninglessness of this result is the essence of this contradiction. This immediately 
implies the need to create electrodynamics with complete commonality. Howev-
er, before creating such electrodynamics, one should get rid of the contradiction, 
which can be done only by refusing to consider elementary particles as point par-
ticles. Moreover, we now know that elementary particles are not so elementary; 
they have a very complex internal structure. So, protons, neutrons, and a num-
ber of other particles consist of quarks; then, if they are considered point par-
ticles, not only do we neglect their size, but also their complex internal structure. 

Refusing to consider elementary particles to be point particles, we must con-
sider them particles having finite sizes. But if we consider them particles having 
finite sizes, then we must know the law by which the shape of the surface of the 
particles will change, because we cannot consider particles to be absolutely solid 
bodies, which is prohibited by the basic principles of the theory of relativity, 
working for electrodynamics. And we will know this law if we know the nature 
of the mass of elementary particles. To reveal the nature of the mass of elemen-
tary particles, we will use a hint. During the interaction of a particle and its an-
tiparticle that is during the annihilation reaction, the particle and antiparticle 
disappear and gamma quanta appear, which are electromagnetic waves. Elec-
tromagnetic waves, in their turn, are vibrations of electric and magnetic fields. 
Therefore, it is natural to assume that the nature of the mass of an elementary 
particle and its antiparticle also has an electromagnetic character. In other words, 
this means that the electromagnetic field is equivalent to an elementary particle. 
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For the entire subsequent presentation, this conclusion is of fundamental im-
portance. It lays down the mathematical foundations. Therefore, let’s call it the 
Principle of equivalence of an electromagnetic field to a free material particle. 
Here, we need to make the following clarifications. The article will show that the 
use of curvilinear coordinates makes it possible to represent the electromagnetic 
interaction and the strong interaction as two manifestations of one single inte-
raction. And in order not to come up with a name for it, we will call it electro-
magnetic interaction. Well, the field of this interaction will be called the elec-
tromagnetic field. It is this electromagnetic field (which includes the “ordinary” 
electromagnetic field and the field of strong interaction) that is equivalent to the 
mass of an elementary particle. An elementary particle can be a free material 
particle. This equivalence principle makes it possible to create electrodynamics 
capable of describing the electromagnetic field in the entire four-dimensional 
space. 

2. Method 

Obviously, such electrodynamics should be created using curvilinear coordi-
nates. But here we have a problem of how to connect the electromagnetic field 
with some curvilinear coordinate system. Unlike the gravitational field, which is 
directly related to the space-time metric, the electromagnetic field does not have 
such a direct connection. To overcome this problem, we will use one more hint. 
We know that electric and magnetic fields can be represented in the form of 
force lines, and if we direct the coordinate axes of a curvilinear coordinate sys-
tem along the force lines of an electromagnetic field, then this problem can be 
solved. But this is only an idea; to make it work, it is necessary to find a mathe-
matical expression of this idea. And here we have a clue—we know that if a vec-
tor field is specified in three-dimensional space, then the equations describing 
the lines of a given vector field can be found as follows: taking the vector of a 
given vector field at an arbitrary point of this field, and multiplying it vectorially 
by the radius vector element and equating the result to zero, we obtain a system 
of equations describing the lines of this vector field. Moving on to four-dimensional 
space, if we consider electromagnetic fields in four-dimensional space, and if the 
magnitude of the electromagnetic field is determined by the second-rank anti-
symmetric tensor and, using the analogy with three-dimensional space, we must 
therefore find another antisymmetric second-rank tensor in four-dimensional 
space that would describe some geometric object defined in this space. And we 
do have such an antisymmetric tensor of the second rank which describes a two- 
dimensional surface defined in four-dimensional space. Based on these two an-
tisymmetric second-order tensors, a number of quantities can be compiled, 
starting from a scalar, that is a zero-rank tensor, and ending with two second- 
rank tensors. Considering these two second-rank tensors in rectangular coordi-
nates (in four-dimensional non-curved space they are called Galilean Coordi-
nates), we see that each of these two tensors can be represented as the sum of a 
symmetric and antisymmetric tensor. The importance of this result is that the 
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symmetric tensor for each of these two tensors of the second rank is the metric 
tensor of the four-dimensional non-curved space. Thus, we have found the con-
nection of the electromagnetic field with the space-time metric using two tensors 
of the second rank compiled on the basis of two antisymmetric tensors of the 
second rank, one of which describes the electromagnetic field, while the second 
describes a two-dimensional surface. 

The main method, which is the basis of many mathematical calculations per-
formed in the article, is as follows. The article deals with four-dimensional vec-
tors and four-dimensional tensors and their “changes” caused by transforma-
tions from one coordinate system to another. In this case, transformation laws 
are used, which are a natural generalization to curvilinear coordinates of the de-
finitions of four-dimensional vectors and four-dimensional tensors made in Ga-
lilean coordinates. 

3. Harmonized Electromagnetic Field 

The trace of the stress-energy tensor of the electromagnetic field is zero: 0i
iT = , 

therefore, the scalar curvature of space-time R in the presence of a single elec-
tromagnetic field is also zero [1]. Thus, it may be concluded that the electro-
magnetic field has no connection with the space-time metric, in contrast to the 
gravitational field, where the metric tensor ikg  plays the role of “potentials”. 
Therefore, to describe the electromagnetic field in curvilinear coordinates, we 
must first match the electromagnetic field with a system of curvilinear coordi-
nates. Coordination is an operation that resembles the introduction operation 
for a vector field F, defined in three-dimensional space, of vector lines using dif-
ferential equations describing these same vector lines: d 0× =F r , where r is a 
radius vector. Moving to a four-dimensional space and having an antisymmetric 
tensor of the second rank ikF , describing an electromagnetic field, we take an 
antisymmetric tensor of the second rank 

d d d d dik i k k if x x x x′ ′= − ,                     (1) 

describing an infinitesimal element of a two-dimensional surface ( ),i ix x u v= , 
where u and v will be considered as curvilinear coordinates on the specified sur-
face. We choose these coordinates so that the four-dimensional vectors d ix  and 
d ix′  are tangent vectors to the coordinate lines u and v, respectively. This allows 
writing expression (1) as follows:  

d d dik ikf f u v= , 

where 

.
i k k i

ik x x x xf
u v u v

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

                     (2) 

Using the tensors ikF  and ikf , we construct two tensors of the second rank
ikA  and ikB : 

      
ik i kl i kl

l lA F f F f∗ ∗= − ,                      (3) 
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ik i kl i kl

l lB F f F f∗ ∗= + ,                      (4) 

where the pseudo-tensors ikF ∗ , ikf ∗  and accordingly the tensors ikF  and 
ikf  are dual to each other. We show that tensors (3) and (4) can be written as 

the sum of a symmetric tensor and an antisymmetric tensor. To do this, we write 
them in the Galilean coordinate system [1]. The quantities considered in the Ga-
lilean coordinate system will be denoted by the index Γ. Thus, in the Galilean 
coordinate system we have: 

1
4

ik ik ikA A g aΓ Γ Γ Γ= + ,                      (5) 

1
4

ik ik ikB B g a∗
Γ Γ Γ Γ= +                       (6) 

where i
iA AΓ Γ= , i

iB BΓ Γ= . The tensor ikaΓ  and pseudo-tensor ika∗
Γ  are dual to 

each other. The correctness of the equalities (5) and (6) can be verified by direct 
calculation, which gives the values to which are included in these equalities: 

( )Γ Γ Γ Γ Γ4A = −E f H s ,                     (7) 

( )Γ Γ Γ Γ Γ4B = +E s H f ,                     (8) 

where ΓE  and ΓH  are electric and magnetic field tension vectors, 

( )01 02 03
Γ f , f , f=f ,                       (9) 

( )23 31 12
Γ f , f , f=s ,                      (10) 

where, for instance,  

01f ct x x ct
u v u v

∂ ∂ ∂ ∂
= −
∂ ∂ ∂ ∂

,                     (11) 

and so on; 0
Γct x= , 1

Γx x= , Γ
ix : Galilean coordinates. 

The components of the antisymmetric tensor of the second rank Γ
ika  are 

components of the two vectors: 

Γ Γ Γ Γ= × + ×a E s H f ,                     (12) 

Γ Γ Γ Γ= × − ×b E f H s ,                     (13) 

where 

Γ

0
0

0
0

x y z

x z yik

y z x

z y x

a a a
a b b

a
a b b
a b b

 
 − − =  − −
  − − 

.                 (14) 

The connection of the tensor component ikA  written in curvilinear coordi-
nates ix  with the tensor component Γ

ikA  written in Galilean coordinates is given 
by the law of transformation: 

.
i k

ik lm
l m

x xA A
x x Γ
Γ Γ

∂ ∂
=
∂ ∂

                       (15) 

Substituting the right side of the Equation (5) instead of the tensor lmAΓ , we 
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take into account that the components of the tensors ikg  and Γ
ikg , ika  and 

Γ
ika  are also connected by the same transformation law (15) as the components 

of the tensors ikA  and Γ
ikA . Thus, after the substitution, we obtain that the 

tensor ikA  can be represented as a sum of symmetric and antisymmetric ten-
sors: 

Γ
1 .
4

ik ik ikA A g a= +                       (16) 

Simplifying this equation and taking into account the antisymmetric nature of 
the tensor ika , we find: Γ

i
iA A= . Denoting i

iA A= , we have a relation stating 
that the value of A remains unchanged in any coordinate system: ΓA A= . From 
here we finally obtain the following for the equation considered: 

1 .
4

ik ik ikA Ag a= +                       (17) 

Similarly, we find: 

1
4

ik ik ikB Bg a∗= + .                     (18) 

where Γ
i
iB B B= = . 

3.1. Equations of Motion 

Starting to find the equations to which the values under consideration are sub-
jected, we pay attention to the antisymmetric character of the tensors ika  and 

ika∗ . It implies the equation to zero of the double covariant derivatives of the in-
dicated tensors: 

; ; 0ik
i ka = ,                        (19) 

; ; 0ik
i ka∗ = .                        (20) 

In this article, we consider only the electromagnetic field, which, as mentioned 
above, is not related to the space-time metric, therefore, any coordinate trans-
formations considered in the article should not change the space-time metric. 
Such infinitesimal coordinate transformations are determined by the so-called 
Killing equations [1] ; ; 0i k k iξ ξ+ = , where iξ  are small values that describe 
the transformation from the coordinates ix  to coordinates i i ix x ξ′ = + . Killing 
equations mean that with the specified coordinate transformations the variation 
of the metric tensor is zero: 0ikgδ = . From here it is easy to get that the Jaco-
bians of such coordinate transformations are equal to one. To do so, we consider 
the indicated transformation from the Galilean coordinates Γ

ix  to the curvili-
near coordinates Γ

i i ix x ξ= + . With this coordinate transformation, the com-
ponents of the metric tensor are transformed according to the law: 

.
i k

ik lm
l m

x xg g
x x Γ
Γ Γ

∂ ∂
=
∂ ∂

                     (21) 

We first find the determinant from the left and right side of this transforma-
tion law, which leads to the following relation: 
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,
1 1 ,

i
i
il

x
xg

ξ
Γ

∂
= ≈ +
∂−

                    (22) 

where ikg g=  is a determinant of the metric tensor ikg . Killing’s equations 
in Galilean coordinates are as follows: , , 0i k k iξ ξ+ = . Simplifying them, we get 
the following: , 0i

iξ = . Thus, in Galilean coordinates we have 1g− = , as it 
should be. It will be proved below that this equality holds not only in Galilean 
coordinates, but also in curvilinear coordinates describing spherically symmetric 
systems (80). 

Taking into account this condition, twice covariantly differentiating between 
the left and right parts of Equations (17) and (18) and considering Equations 
(19) and (20), we obtain equations resulting from the matching of the electro-
magnetic field and the curvilinear coordinate system ( )0 1 2 3, , ,x x x x : 

; ;4 ,ik ik
i ki k

Ag A
x x
∂ ∂  = ∂ ∂ 

                    (23) 

; ;4 .ik ik
i ki k

Bg B
x x
∂ ∂  = ∂ ∂ 

                    (24) 

In electrodynamics, considered in curvilinear coordinates, the Equations (23) 
and (24) play the role of equations of motion. 

3.2. Variational Problem 

Let us consider an electromagnetic field that is not limited in space or time and 
does not experience any influences. 

We write the law of transformation connecting the components of the tensor 

  
i kl
lF f , given in the curvilinear coordinates ix , and the components of the ten-

sor Γ Γ
i kl
lF f , given in the Galilean coordinates Γ

ix . We write the law of transfor-
mation connecting the components of the tensor ( ) ( )1 1

i kl
lF f , given in the curvili-

near coordinates ( )1
ix , and the components of the same tensor Γ Γ

i kl
lF f , given in 

the Galilean coordinates Γ
ix . Since the left sides of the relations obtained are 

equal, we equate the right sides of these relations and then, simplifying them, we 
get [2]: 

( ) ( )1 1 .ik ik
ikikF f F f=                        (25) 

We multiply the left and right sides of Equation (25) by dudv. Then, integrat-
ing over an arbitrary domain S lying on a two-dimensional surface ( ),ix u v , we 
get the following equation: 

( ) ( )1 1 d d d d .ik ik
ikikS S

F f u v F f u v=∫∫ ∫∫                  (26) 

We transform from the curvilinear coordinates ix  to the curvilinear coordi-
nates ( )1

i i ix x ξ= + , where iξ  means small values. Substituting ( )1
i i ix x ξ= +  

in left part of the Equation (26) and decomposing the integrand in a series of 
powers iξ , we get after reduction:  

d d 0.ik
ikS

F f u vδ =∫∫                       (27) 
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When matching the electromagnetic field with a curvilinear coordinate sys-
tem, the components of the tensor ikF  should be considered as functions of the 
coordinates ix : ( )i

ik ikF F x= . Thus, from the Equation (27) we get the follow-
ing variational problem: 

( ), ,Λ , , d d 0,i i i
u vS

x x x u vδ =∫∫                   (28) 

where , , , ,
1Λ , ,
2

i i
ik i k i i

ik ik u v u v
x xF f F x x x x
u v

∂ ∂
= = ≡ ≡

∂ ∂
. 

Performing the variation in the left-hand side of the Equation (28), we arrive 
at the Euler equation and the natural boundary conditions 

2 2

, ,

Λ Λ Λ 0,i i i
u vx u x v x

∂ ∂ ∂
− − =

∂ ∂ ∂ ∂ ∂
                   (29) 

, ,

Λ Λ d d 0i i
i iS
u v

x x u v
u vx x

δ δ
    ∂ ∂ ∂ ∂

+ =       ∂ ∂∂ ∂     
∫∫             (30) 

Substituting the value Λ in the Euler equation and performing differentiation, 
we find: ; ; ; 0ik l kl i li kF F F+ + = . This is the first pair of Maxwell’s equations. It 
follows that the Euler equation is carried out automatically. 

Since the region S is arbitrary, therefore, it can be chosen so small that it is 
close to the plane. Let’s designate this region as ∆S. Consider the natural boun-
dary conditions for the region ∆S of a two-dimensional surface. Let us apply to 
the integral (30) written for the region ΔS the Green formula. Thus we get:  

, ,

Λ Λd d 0i i
i iC
u v

x v x u
x x

δ δ
∆

 ∂ ∂
− =  ∂ ∂ 

∫                 (31) 

where ∆C is a closed loop enclosing ∆S.  
We introduce another system of curvilinear coordinates 0 1 2 3, , ,x x x x′ ′ ′ ′ , the 

first two coordinates of which are coordinates on the two-dimensional surface 
under consideration 0 1,x u x v′ ′= = . The two remaining coordinates will be 
denoted as 2 3,x w x n′ ′= = . The (') sign was used only once in the Formula (1), 
so its new use should not cause any confusion. The tangent vectors to the coor-
dinate lines w and n are denoted by: ,

i i
wx x w≡ ∂ ∂ , ,

i i
nx x n≡ ∂ ∂ .  

Let ΔS tend to zero and reach zero at some point M. Let us place the origin of 
coordinates ix  at the point M. Thus, at point M we have: 0ix = . Let us pass at 
the point M to the locally geodesic coordinate system. To do this, we use the ex-
pression [1]: 

( )1 Γ
2

i i i k l
kl M

x x x x′ = +                   (32) 

From here at point M we have:  
i

i
kk

M

x
x

δ
 ′∂

= ∂ 
; ( ) ( )i i

M M
x xδ δ′ = .              (33) 

Therefore, at point M, we can write: 
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0 2 3
, 1 01 21 31

,

Λ l
i k i i

ik v li i
u

xx F x x F x F x F x F x
x x

δ δ δ δ δ δ
′∂ ∂′ ′ ′ ′ ′ ′ ′= = = + +

∂ ∂
;   (34) 

1 2 3
, 0 01 02 03

,

Λ l
i k i i

ki u li i
v

xx F x x F x F x F x F x
x x

δ δ δ δ δ δ
′∂ ∂′ ′ ′ ′ ′ ′ ′= = = + +

∂ ∂
.   (35) 

We substitute the value of Λ into the integral (31) and after differentiation we 
substitute the right side of expressions (34) and (35), we obtain: 

( )0 1 2 3
01 21 31

2 3
02 03

d d d d

d d 0
C

F x v x u F x v F x v

F x u F x u

δ δ δ δ

δ δ
∆
 ′ ′ ′ ′ ′ ′ ′− + +

′ ′ ′ ′− − =

∫
         (36) 

We choose natural boundary conditions (36) so that the variational problem 
has a solution. This variational problem has three solutions. First decision: all 
components of the antisymmetric tensor ikF ′  are equal to zero, except for the 
component 23F ′ . Let’s call this solution a neutron. Second solution: all compo-
nents of the tensor ikF ′  are equal to zero, except for 01F ′  and 23F ′ . Let’s call 
this solution a proton. Third solution: all components of the tensor ikF ′  are 
equal to zero, except for 01F ′ . Let’s call this solution electron. The meaning of 
these decisions will become clear below. Here it is necessary to say the following. 
When 01 0F ′ ≠ , in order for the variational problem to have a solution, the fol-
lowing natural boundary conditions must be satisfied:  

0 1 0x xδ δ′ ′= =                         (37) 

and 

02 03 12 13 0.F F F F′ ′ ′ ′= = = =                      (38) 

Taking into account the arbitrary choice of the ΔS region on the surface 
( ),ix u v , we can say that condition (37) must be satisfied at any point of the sur-

face ( ),ix u v . Variations 0xδ ′  and 1xδ ′  occur in the tangent plane to surface 
( ),ix u v . Therefore, condition (37) means that the distances between infinitely 

close points on the surface ( ),ix u v  remain unchanged. Thus condition (37) 
means that the two-dimensional surface ( ),ix u v  behaves like an incompressi-
ble and inextensible film. Variations 2xδ ′  and 3xδ ′  lead to such consequences 
which in mathematics are called bendings. They do not change anything on sur-
face ( ),ix u v . Therefore, they can be different from zero. 

Let’s make an important remark. In [1] it is said: it can be shown that a locally 
geodesic system can be obtained not only at a point, but also along the world line 
[3]. Therefore, the solutions obtained are valid not only at the point M, but also 
along the world line. Therefore, we do not write the letter M in the obtained so-
lutions of the variational problem. The obtained solutions are achieved by ap-
plying the following transformation law:  

.
i k

ik lml m

x xF F
x x
∂ ∂ ′=
′ ′∂ ∂

                       (39) 

It follows from (38) that the tensor ikF ′  has only two non-zero components 

01F ′  and 23F ′ . For them, the transformation law (39) can be written as follows, 
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for example: 

01
1
2

ik
ikF f F ′=  or Γ Γ 01

1
2

ik
ikF f F ′= ,                (40) 

if we write the transformation law (39) connecting the components of the ten-
sors ΓikF  and ikF ′ , considered in the Galilean coordinates Γ

ix  and the curvili-
near coordinates ix′ , respectively. From the obtained equations we find: 

01
1 .
4

F A′ =                           (41) 

Now we consider the value Γ
1
4

B . Since Γ
i
iB B B= = , we will do all calcula-

tions in Galilean coordinates. It is easy to verify that 

Γ Γ Γ Γ
ik ik

ik ikF f F f∗ ∗= ,                      (42) 

but 

Γ Γ
Γ Γ Γ 010 1

1 .
2

i k
ik

ik ik
x xF f F F
x x

∗ ∗ ∗∂ ∂ ′= =
′ ′∂ ∂

                (43) 

Thus, we get: 

01
1 .
4

F B∗′ =                          (44) 

3.3. Two-Dimensional Spaces 

Let us return to condition (37) and its corollary: the surface ( ),ix u v  is an in-
compressible and inextensible film. All this suggests that the surface ( ),ix u v  
can be considered a two-dimensional space, which has certain properties and 
preserves them with variation. Indeed, with variation, the distances between any 
two points of the surface, and hence the two-dimensional space, remain constant. 
When bending, the Gaussian curvature at each point of the surface ( ),ix u v , and 
therefore at every point of two-dimensional space, remains unchanged. Addi-
tional confirmation of the above can be obtained by considering the following 
calculations. We write the first pair of Maxwell’s equations in curvilinear coordi-
nates ix′  taking into account the condition (38): 01,2 01,3 23,0 23,1 0F F F F′ ′ ′ ′= = = = . 
It follows there from that ( )0 1

01 01 ,F F x x′ ′ ′ ′= , i.e. this component is a function of 
the coordinates 0x u′ =  and 1x v′ = , and ( )2 3

23 23 ,F F x x′ ′ ′ ′= , i.e. this compo-
nent is a function of the coordinates 2x w′ =  and 3x n′ = . Thus, we find that 
in the curvilinear coordinates ix′  each of the two nonzero components of the 
electromagnetic field tensor depends on a strictly individual set of coordinates 
consisting of only two curvilinear coordinates. This fact is another confirmation 
of the fact that we are dealing with two two-dimensional spaces. One of them is 
formed by a two-dimensional surface ( ),ix u v ; the second two-dimensional space 
is formed by a two-dimensional surface ( ),ix w n . Since these surfaces are coor-
dinate surfaces of four-dimensional curvilinear coordinate system (u, v, w, n), 
therefore, their geometry, and hence, the geometry of two-dimensional spaces, is 
determined by metric tensors [3]: 
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Γ Γ
Γ ,

i k

ikab a b

x xg g
x x
∂ ∂′ =
′ ′∂ ∂

                      (45) 

Γ Γ
Γˆˆˆ ˆ ,

i k

ikaab b

x xg g
x x
∂ ∂′ =
′∂ ′∂

                      (46) 

where , , 0,1a b = ; ˆˆ, , 2,3a b = . 
Each of these tensors is obviously connected with the metric tensor of a curvi-

linear coordinate system (u, v, w, n): 

.
l m

ik lmi k

x xg g
x x
Γ Γ

Γ
∂ ∂′ =
′ ′∂ ∂

                      (47) 

Using the calculation of Riemannian spaces [3], it is arguable that the surface 
( ),ix u v  is a two-dimensional space with a metric tensor (45). It is clear that all 

this can be repeated for a two-dimensional space with the metric tensor ˆâb
g ′ . In 

each of these two-dimensional spaces, respectively, one can enter the tensor of 
the electromagnetic field: 

01

01

0
0ab

F
F

F
′ 

′ =  ′− 
, 23

ˆ
2

ˆ
3

0
0ab

F
F

F
′ 

′ =  ′− 
              (48) 

and write accordingly the following tensor equation: 

( )1
2

cd
a

cd
ac bdb ac bd ad bcF g g F g g g g F′ ′ ′ ′ ′ ′ ′ ′ ′= = − ,            (49) 

( )ˆ ˆˆ
ˆ ˆ ˆ ˆ

ˆ
ˆ ˆ ˆ ˆˆˆ ˆ ˆˆ ˆ

1
2

c
ac ac

d
a

cd
bd db b ad bc

F g g F g g g g F′ ′ ′ ′ ′ ′ ′ ′ ′= = − .            (50) 

From here we get: 
01

01 ,F qF′ ′=                          (51) 

23
23 ˆ ,F qF′ ′=                          (52) 

where 

[ ]2
00 11 01 det ,abq g g g g′ ′ ′ ′= − =                   (53) 

2
3 ˆˆ22 3 23ˆ det .

ab
q g g g g ′ ′ ′ ′= − =                     (54) 

The Formulas (51) and (52) establish a connection between the covariant and 
contravariant components of the electromagnetic field in the corresponding 
two-dimensional space. We note that if two-dimensional surfaces are represented 
as planes and viewed in Galilean coordinates, then for the values (53) and (54) 
we will have the following values: 1q = −  and ˆ 1q = . Substituting these values 
in (51) and (52) we arrive at a well-known connection between the various types 
of components of the tensor of the electromagnetic field, given in Galilean coor-
dinates.  

3.4. The Law of Stress-Energy Tensors Equality 

For further calculations, we consider the stress-energy tensor of the electromag-
netic field, and then we write it in Galilean coordinates as follows: 
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   14 .
4

l lm
ik il k ik lmT F F g F FΓ Γ Γ Γ Γ Γπ = − +                  (55) 

We prove that for a given tensor the equation is true: 
( )

Γ Γik ikT T ∗= ,                         (56) 

where 

( )  14 .
4

l lm
ik il k ik lmT F F g F F∗ ∗ ∗ ∗ ∗

Γ Γ Γ Γ Γ Γπ = − +                 (57) 

To do this, we substitute the right-hand sides of the calculations (55) and (57) 
in the Equation (56), after multiplying the left and right sides of Equation (56) 
by 4π. Considering that  

2 2
Γ Γ

1 1
2 2

lm lm
lm lmF F F F∗ ∗

Γ Γ Γ Γ− = = −H E ,               (58) 

we get: 

( )     2 2
Γ Γ Γ Γk Γ Γ Γ .l l

il k il ikF F F F g∗ ∗− = −H E                 (59) 

The validity of tensor Equation (59) can be checked directly for each of its 
components. That proves the validity of the Equation (56). Next, applying the 
transformation law connecting the components of the tensor lmTΓ , given in the 
Galilean coordinates Γ

ix , with the components of the tensor ikT , given in curvi-
linear coordinates ix , and applying the same law respectively for the tensors 

( )
lmT ∗

Γ  and ( )
ikT ∗ , to the left and right sides of Equation (56), we obtain:  

( ) .ik ikT T ∗=                          (60) 

The validity of this equation follows from the validity of Equation (56). The 
form of the stress-energy tensors of the electromagnetic field, which are in the 
Equation (60), can be established by using the laws of transformation given above. 
Substituting in their right-hand side, respectively, the values of ΓikT  or ( )

ΓikT ∗ , 
found from the calculations (55) and (57), and taking into account that their 
values are related by the same transformation laws, we get:  

 14
4

l lm
ik il k ik lmT F F g F FΓ Γπ = − + , ( ) 14

4
l lm

ik il k ik lmT F F g F F∗ ∗ ∗ ∗ ∗
Γ Γπ = − + .  (61) 

Simplifying these calculations and taking into account that the trace of the 
stress-energy tensor of the electromagnetic field is zero, and from (60) it follows 
that ( ) 0i

iT ∗ = , we find: ik lm
ik lmF F F FΓ Γ= , ik lm

ik lmF F F F∗ ∗ ∗ ∗
Γ Γ= . Considering these 

equalities, we can write down the calculations of the stress-energy tensors of the 
electromagnetic field in the system of curvilinear coordinates ix  in the follow-
ing form:  

 14
4

l lm
ik il k ik lmT F F g F Fπ = − + , ( ) 14

4
l lm

ik il k ik lmT F F g F F∗ ∗ ∗ ∗ ∗π = − + ,     (62) 

where all members of these calculations are expressed in the same coordinate 
system ix . Once again applying the transformation law now to the left and right 
side of the tensor Equation (59), we get: 
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( ) 2 2
Γ Γ .l l

il k il k ikF F F F g∗ ∗− = −H E                   (63) 

The validity of this formula follows from the validity of Formulas (59) and 
(60). Note that Formula (63) can also be obtained by substituting the calcula-
tions of the stress-energy tensors of the electromagnetic field in the Equation 
(60), considered in the curvilinear coordinates ix . The Equation (60) extends 
our understanding of the properties of electromagnetic fields, therefore, to em-
phasize this, it can be called the law of stress-energy tensor equality, composed 
of the electromagnetic field tensors dual to each other.  

3.5. Field in Two-Dimensional Spaces 

Since the Formula (63) is another form of writing the law the law of stress- 
energy tensor equality of an electromagnetic field, therefore, writing down the 
Formula (63) in curvilinear coordinates ix′  and taking into account 

il i
kl kg g δ′ ′ = ,                          (64) 

we write the Formulas (63) and (64) in the components. In order not to give all 
thirty-two equations, which are obtained by writing the Formulas (63) and (64) 
in the components, we restrict ourselves to the minimum number of equations 
necessary to demonstrate the method of calculations. From (63) we have in cur-
vilinear coordinates ix′ :  

( ) ( )00 2 2 2
01 01 Γ Γ 11

2g F F g∗′ ′ ′ ′− = −H E , ( ) ( )01 2 2 2
01 01 Γ Γ 01

2g F F g∗′ ′ ′ ′− = − −H E ,   (65) 

( ) ( )02 2 2
01 23 01 23 Γ Γ 13g F F F F g∗ ∗′ ′ ′ ′ ′ ′− = −H E ,                 (66) 

( ) ( )03 2 2
01 23 01 23 Γ Γ 12g F F F F g∗ ∗′ ′ ′ ′ ′ ′− = − −H E .                 (67) 

Multiply the first equation by 00g ′ , the second equation by 01g ′ , the third eq-
uation by 02g ′  and the fourth equation by the value 03g ′ . From (64) we have: 

00 01 02 03
00 01 02 03 1.g g g g g g g g′ ′ ′ ′ ′ ′ ′ ′+ + + =                   (68) 

We substitute here the values of the components from the left-hand side of 
this equation, which can be found from the four equations obtained after mul-
tiplying by the components of the metric tensor. Performing similar calculations 
for the other components of the Formulas (63) and (64) and taking into account 
the calculations (53) and (54), we arrive at the following equation:  

( ) ( )22 2
01 0

2
1 23 23q̂ F F q F F∗ ∗′ ′ ′ ′− = − ,                     (69) 

Considering the condition 1g ′− = , we can write for a pseudo-tensor given 

in curvilinear coordinates, 1
2

lm
ik iklmF e F∗′ ′= . Hence, using the Equations (51) 

and (52), we find: 

23
01 ,

ˆ
F

F
q

∗ ′
′ = −                            (70) 

01
23 .

F
F

q
∗ ′
′ = −                            (71) 
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Substituting (70) and (71) in (69), we finally get:  
2 2

01 23 .
ˆ

F F
q q
′ ′
=                           (72) 

From (38) it follows that 

01

01

23

23

0 0 0
0 0 0

0 0 0
0 0 0

ik

F
F

F
F

F

′ 
 ′− ′ =
 ′
 

′− 

.                 (73) 

The components of the tensor (73) ˆ 0
ba

F ′ =  that are equal to zero are con-
nected with the components b̂aF ′  of the tensor ikF ′  by the relation:  

ˆ
ˆ ˆˆ 0cd

aca bdb
F g g F′ ′ ′ ′= = , from which it follows that ˆ 0baF ′ = , therefore 

1
01

1
01

1
23

1
23

0 0 0
0 0 0

ˆ0 0 0
ˆ0 0 0

ik

q F
q F

F
q F

q F

−

−

−

−

 ′
 ′− ′ =  ′
  ′− 

.           (74) 

From (72), (73) and (74) we find: 

01
1 0,
2

ik
ikF F F q′ ′ ′− =                     (75) 

23
1 ˆ 0.
2

ik
ikF F F q′ ′ ′− =                     (76) 

These equations determine the electromagnetic field in two-dimensional spaces. 
The Equations (75) defines an electromagnetic field in a two-dimensional space 
(u, v), and the Equation (76) defines a field in a two-dimensional space (w, n), 
and establishes a relationship between the electromagnetic field and determi-
nants of the metric tensors (45) and (46) that define the two-dimensional spaces. 

3.6. Spherically Symmetric Systems 

We show that the Formula (75) is the Coulomb law written in curvilinear coor-
dinates. To do this, we write the Formula (75) in three-dimensional space in or-
thogonal coordinates. Using the formulas [1]: 

0 0

00

, , 1, 2,3,
g g

g
g
α β

αβ αβγ α β
′ ′

′= − + =
′

                (77) 

00 ,g g γ′ ′− =                           (78) 

where det αβγ γ =    is the determinant, and αβγ , is three-dimensional metric 
tensor. Considering that 1g ′− =  from (78) we find: 00 1g γ′ = . From (77) we 
find: 2

11 11 01 00g g gγ′ ′ ′= − + . Substituting instead of 00g ′  and 11g ′  the right parts 
of these equalities in (53) and taking into account that in orthogonal coordinates 

11 22 33γ γ γ γ=  we get: 

22 33

1 .q
γ γ

= −                          (79) 

The electric field, which is considered in the Coulomb law, is spherically 
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symmetric. Such a field is most conveniently viewed in spherical coordinates. 
Therefore, to determine 22γ  and 33γ , we write the square of the element of 
length in spherical coordinates 2 2 2 2 2 2 2d d d sin dS r r rϑ ϑ ϕ= + + . But in this 
form it is impossible to use this equation to determine the components of the 
three-dimensional metric tensor. The fact is that the spherical coordinates ϑ  
and ϕ  enter it non-symmetrically and, moreover, they are dimensionless.  

To eliminate these shortcomings, one should consider an infinitely small 
neighborhood of a point with the spherical coordinates ( )0 0 0, ,ρ ϑ ϕ . Then we 
draw through this point a tangent plane to a sphere of the radius 0ρ . Let us in-
troduce on this plane a rectangular coordinate system ( x , y ) with the origin at 
a point ( )0 0 0, ,ρ ϑ ϕ  so that the coordinate axis x  is tangent to the coordinate 
line ϑ , and the coordinate axis y  is tangent to the coordinate line ϕ . In an 
infinitely small neighborhood of the point, we have: 0d dx ρ ϑ≈ ;  

0 0 0d sin d sin dy ρ ϑ ϕ ρ ϑ ϕ≈ ≈ . From here, we get:  
2 2

2 2 2 2
2 2
0 0

d d d dS r xr yr
ρ ρ

= + +  .                   (80) 

From (80), we have the following values for the components of the three- 
dimensional metric tensor in an infinitely small neighborhood of the point ( 0ρ , 

0ϑ , 0ϕ ):  
2

22 33 2
0

.rγ γ
ρ

= =                          (81) 

For the transformations considered in the article from (37) we have  
0 1 0x xδ δ′ ′= = . Consequently, for the variation of the metric tensor, we obtain, 

further omitting the prime sign ('): 

2 3
2 3

lik ik ik
ik l

g g g
g x x x

x x x
δ δ δ δ

∂ ∂ ∂
= = +
∂ ∂ ∂

.               (82) 

Hence, if the components ikg  depend only on the coordinates 0x , 1x , for 
example, as in the spherically symmetric system (80), then in this system 

0ikgδ = . Let us construct a tensor ikg , satisfying the above conditions. We find 
the component 00g  from (78). The components gαβ  are determined from  

(77). They will depend on 
2

2
0

r
ρ

 (81) and on the components ( )0 1
0 0 ,g g x xα α= .  

It is easy to check that the determinant of this tensor is −1. Let us find the values  
of the diagonal components of the metric tensor ikg  given in curvilinear coor-

dinates ix . We neglect the terms 
4

2
04

0

r g αρ
, which have a higher order of smallness.  

Using Γ
i i ix x ξ= − ,  we get:  0

00 ,01 2g ξ= − ;  1
11 ,11 2g ξ= − + ;  2

22 ,21 2g ξ= − + ; 
3

33 ,31 2g ξ= − + . In Galilean coordinates, the values of the diagonal components 
of the metric tensor on the left side of these equalities will be as follows: 1, −1, 
−1, −1. Hence, we obtain that the derivatives on the right-hand side of these 
equalities will be equal to zero. This is one more proof that the equality , 0i

iξ =  
holds in Galilean coordinates. Now let us consider the curvilinear coordinates 
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ix  describing a spherically symmetric system. As mentioned above, such a sys-
tem should be considered in the tangent plane to a sphere of radius 0ρ  in an 
infinitesimal neighborhood of the point of tangency ( )0 0 0, ,ρ ϑ ϕ  of the plane 
with the sphere. In an infinitely small neighborhood of this point, we can write  

0

1r δ
ρ

≈ + , where δ  is a small quantity, therefore, for the diagonal compo-

nents of the metric tensor of a spherically symmetric system, we have: 00 1 4g δ= − ;  

11 1g = − ; 22 33 1 2g g δ= = − − . Comparing these values with the previously ob-
tained ones, we find: 0

,0 2ξ δ= ; 1
,1 0ξ = ; 2 3

,2 ,3ξ ξ δ= = − . From this, we see that 
for a spherically symmetric system , 0i

iξ = . 
Substituting (81) into (79) and the result of this substitution into (75), we ar-

rive at the formula:  
2
0

01 2

1 .
2

ik
ikF F F

r
ρ′ ′ ′= −                     (83) 

Considering that ΓA A= , the Equation (41) and the calculation (7), we find 

01 Γ Γ Γ ΓF ′ = −E f H s . But we consider only the electric field, therefore Γ 0=H . In 
the absence of any movement and change, time remains unchanged, therefore

0 0
Γu x x ct′≡ = ≡ . Thus, everything comes down to the transformation of spatial 

coordinates: the rectangular Cartesian coordinates , ,x y z  and the curvilinear 
coordinates , ,v w n , which naturally should be taken as spherical coordinates. 
So, for instance, v r= , and for the electric field we have rE E= ; 0E Eϑ ϕ= = . 
It follows that [ ]Γ sin cos ,sin sin ,cosE ϑ ϕ ϑ ϕ ϑ=E . From (9), (11), etc., we ob-
tain: [ ]Γ sin cos ,sin sin ,cosϑ ϕ ϑ ϕ ϑ=f . Considering the above, we arrive at this 
value 01 Γ ΓF E′ = =E f . Now the Formula (83) can be written as follows: 

2
0
2

1 .
2 ik

ikE F F
r
ρ′ ′= −                     (84) 

From this formula it follows that a physical value equal to 
2

0 02 ,ik
ikF Fε ρ ′ ′π −                      (85) 

is an electric charge e, where 0ε —electric constant. Thus, we get the formula 

2
04

eE
rε

=
π

, which completely coincides with Coulomb’s law. 

Now we will consider the Formula (76) in a three-dimensional space in 
spherical coordinates. To do this, we again use the Formulas (77), (78) and again 
we take into account that 1g ′− = . Thus, after the transformation, we obtain 
the determinant (54): 

22
32

22 33
11 22 11 33

ˆ ,
ggq γ γ

γ γ γ γ
= − −                  (86) 

where 0

00

g
g

g
α

α

′
= −

′
 [1]. Substituting in this expression the values of the compo-

nents of the three-dimensional metric tensor (81), as well as 11 1γ = , see (80), we 
arrive at the following formula: 
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( )
24

2 20
2 34 2

0

ˆ .rq g g
r
ρ

ρ
= − +                       (87) 

We multiply the left side and the right side of the Formula (87) by the value
2

2
0

r
ρ

. Then, denoting 
2

2
0

rχ
ρ

= , we represent (87) as a cubic equation  

3 2 2
2 3ˆ 0.q g gχ χ− − − =                       (88) 

Its solution is three roots: 
22 2

31 2
1 2 32 2 2

0 0 0

; ; .
rr r

χ χ χ
ρ ρ ρ

= = =                     (89) 

These roots satisfy the following relations: 

1 2 3 0.χ χ χ+ + =                          (90) 

1 2 2 3 3 1 ˆ.qχ χ χ χ χ χ+ + = −                       (91) 

2 2
1 2 3 2 3 .g gχ χ χ = +                          (92) 

Raising the left side of the Equation (90) to the square and taking into account 
(91), we get: 

4 4 4
1 2 3

4
0

ˆ .
2

r r r
q

ρ
+ +

=                          (93) 

We divide the left side of the Equation (91) by the left side of the Equation 
(92) and, accordingly, the right side of the Equation (91) by the right side of the 
Equation (92), and thus, we find: 

( )2 2 2
0 2 32 2 2

1 2 3

1 1 1ˆ .q g g
r r r

ρ
 

= − + + + 
 

                  (94) 

From (94) it follows that the value q̂  is formed by three separate “particles” 
with relative charges as follows: 

2 2 2
0 0 0
2 2 2

1 2 31 2 3

1 1 1; ; .
r r r
ρ ρ ρ

χ χ χ
= = =                     (95) 

Their total relative charge is equal to the relative charge of the proton. Taking 
the relative charge of the proton equal to unity, from (94) we obtain the rela-
tionship between the coefficient and the free term of Equation (88): 

2 2
2 3q̂ g g= − − . Obviously, only quarks can be such “particles”. It is easy to verify  

as for quarks forming a proton and having charges of 2 2 1; ;
3 3 3

−  the relation 

(90) is really fulfilled: 3 3 3 0
2 2 1
+ − = . From these simple considerations, it follows  

that the two-dimensional space ( ),w n  has finite dimensions and it, in fact, is 
what we call an elementary particle, for example, a proton. 

Here is one more proof of the correctness of the theoretical calculations and 
the conclusions made on their basis. From (75) and (76), we find: 
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23

01

ˆ
.

F q
F q
′
=

′
                           (96) 

For the proton 2 2
2 3q̂ g g= − − , and from (78) and (79) we have 00q g ′= − . If we 

use these values, by means of (87), we obtain: 
5

5
23 0

2
01

2
0

.

1

r
F
F r

ρ

ρ

′
=

′
−

                        (97) 

At 
2

2
0

0r
ρ

→ , 23

01

0
F
F
′
→

′
; at 

2

2
0

1r
ρ

→ , 23

01

F
F
′
→ ∞

′
. This result proves that  

Formula (76) describes a strong interaction acting in a finite region of space, the 
magnitude of which is determined by the radius 0ρ . And in this region of 
space, the magnitude of the strong interaction grows with the increasing radius 
r. 

3.7. Evidence 

The solution to Equation (88) was obtained for ˆ 0q > . This inequality is fulfilled 
in the region of four-dimensional space, which in spherical coordinates is de-
fined as follows: 0 rρ < ≤ ∞ . It is in this region that the quark nature of an ele-
mentary particle is manifested. This can be explained by the fact that two inva-
riants q̂  and ik

ikF F′ ′  (their invariance follows from the equality to unity of the 
Jacobian transformation, since 1g− = ) in Galilean coordinates decompose 
into three invariants of Lorentz transformations [2]. For example, 2 2

Γ Γx xH E− ; 
2 2
Γ Γz yH E− ; 2 2

Γ Γy zH E−  which behave like independent entities. But in curvilinear 
coordinates, these three invariants will no longer be invariants. Therefore, their 
complete independence is impossible. Because of this, quarks are not particles in 
the usual sense. In the absence of a magnetic field 2

Γ2 0i
ik

kF F′ ′ = − <E , and in 
the indicated region of space, a complex quantity appears in equality (76), which 
is unacceptable. Therefore, Equality (76) is inapplicable in this region of four- 
dimensional space. Equality (76) will consist of real values for ˆ 0q < . This in-
equality holds in the region defined as 00 r ρ≤ < . This is easy to prove if we 
notice that it is in this region of the four-dimensional space that Equation (88) 
has one more solution. Substituting the equal value 2 2

2 3q̂ g g= − −  into Equation 
(88) instead of the free term, we find 

3

ˆ .
1

q χ
χ

=
−

                        (98) 

Hence it follows that for 1χ ≤  we have q̂ ≤ −∞ . It can be seen that the in-
dicated solution is obtained for ~ 1χ , when 3q̂ χ , therefore 3χ  in the 
equation can be neglected. Note, that in the region 00 r ρ≤ <  the electromag-
netic field radically changes its dependence on the spatial coordinates (76) and 
completely coincides with the dependence that is observed for the strong inte-
raction.  
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4. Geodesic Line Equation 

The principle of equivalence of an electromagnetic field and a free material par-
ticle allows us to apply the principle of least action to an electromagnetic field. 
As is known, the principle of least action establishes the law of motion of a free 
material particle. Application of the principle of least action to an electromag-
netic field allows us to find a law explaining how an elementary particle is 
formed from an electromagnetic field. 

Thus, the geometry of the electromagnetic field, determined by the field lines 
of force, must obey the principle of least action, which determines the motion of 
a free material particle [1]: 

d 0mc sδ− =∫ .                        (99) 

The following physical quantities were used here: m-mass of a free material 
particle; c-speed of light; ds-interval, equal: 2d d di k

iks g x x= , ( , , 0,1, 2,3i k = ); 
d ix -differential of curvilinear coordinates ix . 

Let us vary the integral on the left side of expression (99). At the same time, 
we take into account that the variations 0xδ ′  and 1xδ ′  are equal to zero (37). 
Taking into account the above, the result of the variation is the equation: 

ˆ
ˆ

d 1 0
d 2

i kia
a
ku g

u u
s x

∂
− =

∂
,                   (100) 

d
d

i
i xu

s
=  is the four-dimensional speed; ˆ 2,3a = . In Equation (100), the 

prime sign is omitted. 
Equation (100) is the equation of a geodesic line for an electromagnetic field. 

The field is not limited by anything, does not experience any influences and is 
completely equivalent to a free material particle. 

Let us consider Equation (100) in more detail. We write the second term in 
Equation (100) using the three-dimensional metric tensor αβγ  (77) and the 
three-dimensional vector: 0 00g g gα α= − . Considering transformations: 

0
0 00 0 0 0

00 00 00

d d d d
d d d

i
ig x g x g x x

u g u
g s g s g s

α
α α

α
+

− = = = ,         (101) 

the second term in Equation (100) can be rewritten as follows: 
2

00 0 0
ˆ ˆ ˆ2

00

d d1
d d2 a a a

g x g x
u u u

s sg x x x
αβα α βα γ∂∂ ∂ − + + ∂ ∂ ∂ 

.         (102) 

Let us represent the third term of the sum (102) in the following form: 

ˆ, au uα β
α βλ .                        (103) 

To do this, we use three-dimensional Christoffel symbols: 

,
1
2 x x x

αβ αγ βγ
α βγ γ β α

γ γ γ
λ

∂ ∂ ∂ 
= + − ∂ ∂ ∂ 

.               (104) 

Consider the electric field of an immobile and non-interacting elementary 
charged particle. Such a field will be spherically symmetrical. Therefore, in 
three-dimensional space we will use spherical coordinates ( , ,r ϑ ϕ ). In three- 
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dimensional space in spherical coordinates, non-zero Christoffel symbols are 
equal to the following values: 1,22 rλ = − ; 2,12 rλ = ; 2

1,33 sinrλ ϑ= − ;  
2

3,13 sinrλ ϑ= ; 2
2,33 sin cosrλ ϑ ϑ= − ; 2

3,23 sin cosrλ ϑ ϑ= . These values turn 
expressions (103), and hence the third term of the sum (102), to zero: 

ˆ,ˆ
1 0
2 aa u u u u

x
αβ α β α β

α β

γ
λ

∂
= =

∂
.                 (105) 

Let an elementary charged particle move at a constant speed. As a result of the 
Lorentz contraction of the length along the direction of motion, the electric field 
of the elementary particle will be cylindrically symmetrical. Let’s consider this 
field in three-dimensional space in cylindrical coordinates ( , , zρ ϕ ). In three- 
dimensional space in cylindrical coordinates, non-zero Christoffel symbols are 
equal to the following values: 1,22λ ρ= − ; 2,12λ ρ= . These values also satisfy 
equality (105). Thus, equality (105) is also fulfilled in a cylindrically symmetric 
electromagnetic field. 

Now let’s find the conditions under which the first two terms in expression 
(102) are equal to zero. This becomes possible if the clocks in the system under 
consideration are synchronized. The clock synchronization condition means 
that expression (101) is equal to zero. This is possible if 

0d 0x = .                         (106) 

Clock synchronization is not possible along a line whose ends converge at one 
point. An example of such a line is a circle. In spherical coordinates, such a line 
is the coordinate line of the φ (i = 3) coordinate. Therefore, condition (106) is 
not applicable along this coordinate. But the components of the metric tensor, 
which describes a spherically symmetric system, do not depend on the coordi-
nate φ. It means that 

00
3 3 0

g g
x x

α∂ ∂
= =

∂ ∂
.                     (107) 

Therefore, in a spherically symmetric system, expression (102) is equal to ze-
ro. 

In cylindrical coordinates, the coordinate line coordinates (i = 2) φ is also a 
circle. Therefore, condition (106) is not applicable along this coordinate. But the 
components of the metric tensor describing a cylindrically symmetric system do 
not depend on the coordinate φ. It means that 

00
2 2 0

g g
x x

α∂ ∂
= =

∂ ∂
.                    (108) 

Therefore, in a cylindrically symmetric system, expression (102) is also equal 
to zero.  

The equality to zero of expression (102) means that the second term in Equa-
tion (100) is equal to zero. Therefore, the equation of the geodesic line (100) for 
an electromagnetic field with spherical or cylindrical symmetry will be as fol-
lows:  

ˆd
0

d
au
s
= .                      (109) 
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But the same equation of a geodesic line will have an electromagnetic field in 
the Galilean four-dimensional coordinate system. This means that we have found 
two types of curvilinear coordinates (spherical and cylindrical) for which Equa-
tion (109) coincides with the equation obtained in Galilean coordinates. This 
means that the transition from spherical (and cylindrical) coordinates to Gali-
lean coordinates does not change the electromagnetic field. Since Equation (109) 
does not change during this transition. Summarizing the above, we can formu-
late a law explaining how an electromagnetic field turns into an elementary par-
ticle. It follows from the principle of least action that it is the spherically (cylin-
drically) symmetric configuration of the electromagnetic field that provides the 
minimum for the action integral. This law explains that the mass and charge of 
an elementary particle is a consequence of the spherical configuration of the 
field.  

An experimental confirmation of this law can be considered the creation of 
particle-antiparticle pairs from a gamma-ray quantum. This process was first 
observed in 1933 by the Joliot-Curies.  

5. Conclusions 

Summing up, it must be said that in electrodynamics, considered in curvilinear 
coordinates, the second pair of Maxwell’s equations can be obtained using the 
antisymmetric character of the electromagnetic field tensor. From this antisym-
metry, it follows: ; ; 0ik

i kF = . If we mark  

;4
ik
k

c F−
π

                       (110) 

as a four-dimensional vector of current density, we obtain the second pair of 
Maxwell’s equations in a known form, and from the equation ; ; 0ik

i kF = , taking 
into account the introduced notation, we get the continuity equation. So, classic-
al electrodynamics which neglects the internal structure of elementary particles 
can be called a macroscopic theory that considers electromagnetic fields on the 
scale of the macro-world.  
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