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Abstract 
Extending the spacetime manifold of general relativity (GR) to incorporate 
the Hubble expansion of space as a specific curvature, generates a modified 
solution with three additional non-zero Christoffel symbols and a reformu-
lated Ricci tensor and curvature. The observational consequences of this re-
formulation are compared with the ΛCDM model for luminosity distance 
using the extensive type 1a supernovae (SNe 1a) data with redshift corrected 
to the CMB, and for angular diameter distance using the recent baryonic 
acoustic oscillation (BAO) data. For the SNe 1a data, the modified GR and 

ΛCDM models differ by 0.11
0.15 Bµ
+
−  mag. over 0.01 1.3cmbz = − , with overall 

weighted RMS errors of 0.136 Bµ±  mag for modified GR and 0.151 Bµ±  
mag for ΛCDM respectively. The BAO measures span a range 0.106 2.36z = − , 
with weighted RMS errors of ±0.034 Mpc with 0 67.6 0.25H = ±  for the 
modified GR model, and ±0.085 Mpc with 0 70.0 0.25H = ±  for the ΛCDM 
model. The derived GR metric for this new solution describes both the SNe 1a 
and the BAO observations with comparable accuracy to the w’ΛCDM model. 
By incorporating the Hubble expansion of space within general relativity as a 
specific curvature term, these observations may be described without requir-
ing additional parameters for either dark matter or accelerating dark energy. 
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1. Introduction 

To the early successes of the precession of the perihelion of Mercury and gravi-
tational bending of star light during a solar eclipse have been added many fur-
ther observations confirming that General Relativity (GR) well describes the be-
haviour of masses and photons in a local gravitational field. Observational data 
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have confirmed without exception that solutions to the general field equations 
are exact when applied to static or rotating localised gravitational masses, in-
cluding gravitational redshift [1], the production of Einstein rings by DM halos 
[2], X-ray emission data in the neighbourhood of black holes [3] [4] [5], and the 
Sunyaev-Zeldovich effect [6] [7]. 

In addition to these observations, GR has also been used to analyse an array of 
observational data using supernovae type 1a (SNe 1a) as “standard candles” and 
the recent Baryon Acoustic Oscillation (BAO) clustering data as a “standard ru-
ler” for the length scale in cosmology. This interpretation using standard GR can 
only be fully fitted to the data by the addition of a dark mass (DM) component 
and the incorporation of a hypothetical dark energy, neither of which have been 
directly observed, and neither of which can be accounted for with current theo-
ries of particle physics. 

The standard definition of the Hubble expansion coefficient is as velocity per 
distance (km/s/Mpc), but this may also be interpreted as a velocity per photon 
travel time, which is dimensionally an acceleration. For 0 67.7H =  km/s/Mpc, 
this gives an equivalent value of 0 20.74H ≡  km/s/Myr for photon travel time 
across the Hubble expansion. Under GR, any acceleration is equivalent to a cur-
vature, and by considering this expansion to be an additional curvature of space 
we may extend Einstein’s general equation to produce a solution with three ad-
ditional non-zero Christoffel symbols and a reformulated Ricci tensor and cur-
vature (Section 5). This solution retains the standard components of GR while 
reducing to the equations of SR as 0mΩ → . Sections 4 and 6 examine this 
proposed model by comparing its predictions for luminosity distance (LD) with 
the extensive apparent magnitude data of supernovae type 1a (SNe 1a), and with 
a wide range of recently published angular diameter distances from the Baryonic 
Accoustic Oscillation (BAO) data out to 2.36z = . 

2. The FLRW Metric 

Geometrically, the constancy of c for any observer may be represented by the 
locus of a logarithmic spiral to generate a curve of constant angle to the local 
time axes [8] (Figure 1). 

This geodesic of SR may be illustrated as a hyperbolic curve crossing diverging 
imaginary time axes, and is independent of the spatial curvature which is al-
lowed to be flat, spherical or hyperbolic. The Friedmann, Lemaître, Robertson, 
Walker (FLRW) equation allows this expansion curvature of SR to be introduced 
by the hyperbolic curvature of space as the combined mass-energy of space → 0, 
which contrasts with observations that show space to be essentially flat. In GR, 
curvature occurs by the distortion of space by gravitational energy, and these 
gravitational effects on the curvature of the Universe will increase in significance 
as look-back time extends and temperature and energy densities increase to-
wards the CMB radiation and the early universe at 1090z   [7]. The loss of an 
innate hyperbolic curvature of expansion may be mimicked in GR by introducing  
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Figure 1. Geodesic for a photon traversing mass-free space, from frame eΣ  moving at 
velocity V relative to an observer 0Σ , with a small element of the geodesic Sδ  for ref-

erence frames V and V Vδ−  rotated through δψ , with two local light cones. The 
photon path (red line) is a logarithmic spiral, 1 expz ψ+ = , across diverging galaxies on 
the complex plane ( 1 45c = ≡  ). [8]. Redshifts referenced to 0Σ . 

 
extra mass as dark matter (DM) and dark energy as a variable acceleration com-
ponent, with both components being required and adjusted to match current 
cosmological observations. 

A model geometry of the evolving Universe may be constructed as a simply 
connected smooth Riemannian manifold mR  with metric gµν . It is taken as 
axiomatic that the Universe is homogeneous and isotropic in space, but not in 
time. Of the eight Thurston 3-manifold Riemannian geometries, only three fulfil 
the criteria of homogeneity and isotropy for the observable Universe: the 
3-sphere S3, the 3-D Euclidean space E3, and the 3-D hyperbolic space H3. Finite 
volume manifolds with E3 geometry are all compact and have the structure of a 
Seifert fibre space, remaining invariant under Ricci flow. S3 manifolds are exactly 
closed 3-manifolds with a finite fundamental group, and under Ricci flow such 
manifolds collapse to a point in finite time. In contrast, manifolds with H3 
hyperbolic geometry are open and expand under Ricci flow [9]. Using a Lie 
group acting on the metric to compute the Ricci tensor Rµν , these manifolds 
are deformed by Ricci flow as a function of time t and we may then define the 
geometric evolution equation, 2t ij ijd R∂ = −  [10], with normalised Ricci flow 
given by: 

22 .
3t ij ij ijg R Rg∂ = − +                       (1) 
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This is equivalent to a Universe that can be foliated into space-like slices, and 
spacetime itself may therefore be represented by 3-Γ   where Γ  represents 
the time direction, with the general form 2d d ds g x xµ ν

µν=  in the standard no-
tation. 3  must be a maximally symmetric space to conform to a homogeneous 
and isotropic three-manifold, with metric 2d d di j

ij x xσ γ= . By scaling t such 
that 00 1g = −  with 1c = , we may write the metric as: 

( ) ( )22 2d d d d ,i j
ijs t a t x x xγ= − +                  (2) 

where ijγ , ix , jx  are the co-moving co-ordinates. 
In cosmology, homogeneity and isotropy imply that 3  has the maximum 

number of Killing vectors and, with the additional constraint of the metric being 
torsion-free (the Levi-Civita connection), ijγ  is the maximally symmetric me-
tric of 3 . This yields the general solution to Einstein’s equation [11] [12] [13] 
which may be stated in polar coordinates (Equation (3)): 

( ) ( )22 2 2 2 2d d d d ,ks t a t r S r = − + + Ω                 (3) 

where ( )
( )

( )

2 2
0 0 0

2 2
0

2 2
0 0 0

sin for 0
for

sinh for 0
k

r
S r r

r

ℜ ℜ ℜ >


≡ ℜ = ∞
ℜ ℜ ℜ <

 

or ( ) ( )1 sin ,kS r r K
K

≡  

and ( ) 2
0 0sgnK = ℜ ℜ  is the curvature. With χ  as a third angular coordi-

nate, 0r χ= ℜ  is the radial distance along the surface of the manifold, 0ℜ  is the 
comoving 4-space radius of 3  at the present epoch, and 2 2 2 2d d sin dθ θ φΩ = +  
is the angular separation. The signature ( ), , ,− + + +diag  defines this as a Pseu-
do-Riemannian manifold with metric gµν  and spatial metric ijg , and ( )a t  
is the scale factor at proper time t. The actual form of ( )a t  is determined by 
the curvature of the manifold and the energy tensor of Einstein’s field equations, 
with curvature K (or radius ℜ ), and scale factor ( )a t  to be determined. The 
curvature or shape of the homogeneous hyper-surfaces are defined by the spatial 
3-metric d di j

ij x xγ  of Equation (2), but the whole dynamics of the Universe are 
embodied only in the expansion factor, ( )a t  [11]. 

Just as the surface of a sphere is a curved 2-D manifold embedded in Eucli-
dean 3-space, this manifold is a curved 3-D volume embedded in Euclidean 
4-space. Measurements on the surface of a 2-D sphere involve a distance and an 
angle, with the third dimension the implicit radius of the sphere. For the 3-D 
volume, χ  is a third angular measure, with the implicit radius ℜ  now the 
fourth dimension [14]. For an expanding 2-D manifold in 3-D space, time is 
geometrically a fourth dimension, and-by extension-for the expanding 3-D vo-
lume in 4-D space, time must be represented geometrically as a fifth dimension. 

To understand physical reality we may invoke geometrical representations, 
with intrinsic curvature equivalent to embedding in higher dimensions. This 
purely geometric dimensionality is distinct from attempts to introduce extra 
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physical dimensions into GR such as by quantum gravity, string theory or loop 
theory [15], and it must be emphasised that the intrinsic curvature here is a ma-
thematical construct relating the deviation of parallel lines towards or away from 
each other and does not represent higher physical dimensions. With r as the 
radial coordinate, radial distances are Euclidean but angular distances are not, 
but if we are only interested in photon redshift distances, d 0Ω =  and Equation 
(3) is the more useful form of the metric. Setting 2d 0s =  and 0g gθθ φφ= = , 
dr  now represents a radial photon distance from the era of emission et  to the 
present epoch at 0t , with: 

( )0

dd .
t

t

tR r
a tγ = =∫ ∫                        (4) 

Rγ  is a function of ( )a t  only, and may be independent of the curvature of 
the spatial manifold. Symmetry ensures that proper time for standard clocks at 
rest relative to the spatial grid is the same rate as the cosmological time (t), 
making the interval dt  Lorentzian. Any coordinate system in which the line 
element has this form is said to be synchronous because the coordinate time t 
measures proper time along the lines of constant ix  [11]. 

The substitution ( )sin rχ = ℜ , rχ = ℜ , or ( )sinh rχ = ℜ  into ( )kS r  
in Equation (3) makes χ  a radial coordinate with ℜ  absorbed into ( )a t , 
and now angular distances are Euclidean but radial distances are not (Equation 
(5)): 

( )
2

22 2 2 2
2

dd d d .
1

s t t
k
χ χ
χ

 
= − +ℜ + Ω − 

               (5) 

This form is useful for measuring angular distances on a shell of fixed radius 
( ( ) 121g kχχ χ

−
= − , d 0χ = ), such as the proper diameters of clusters or spatial 

volume for galaxy counts. 

3. The Expanding Universe as Geometry 

Milne described a dust universe expanding with constant relative velocity as-
signed to each galaxy, and with a mass-energy density sufficiently low that any 
deceleration could be neglected [16]. Such a universe does not have to be spa-
tially flat, but it does have the property that ( ) constanta t = , and hence  
( ) ( )0 0a t a t t= , where 0a  is the scale factor at the current epoch 0t , defined 

to be 0 1a = . Taking Equation (3) to be the FLRW metric for the photon path, 
we may state that d d 0θ φ= = , and hence d 0Ω =  and consider only the radial 
coordinate dr . This modified Milne model (M3) is therefore independent of 
the space curvature: this may be an expanding 3-sphere, a flat 3-sheet, or a 
3-saddle. What M3 does demand is that the time-like foliation of these 3-spaces 
is linear; the space itself may be infinite or closed, but will maintain its initial 
curvature signature whether expanding forever or contracting. 

Einstein’s first postulate in a system of non-accelerating inertial frames may 
be summarised as: the velocity of light is constant for any observer, independent 
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of the velocity of the source. Interpreting the time coordinate as the imaginary 
axis has become depreciated, but to do so forces the proper time axis to be a ra-
dius of length ictτ =  and allows a graphical interpretation of the interval S to 
be unvarying under rotation, providing a geometric visualisation to this post-
ulate. In Figure 1, the infinitesimal geodesic is extended to illustrate the path of 
photons between galaxies in the uniformly expanding homogeneous, isotropic 
universe of M3. 

This geometrical figure is generated by assuming that: 1) observed redshifts 
represent a true relative motion (whatever the underlying cause); 2) galaxies are 
moving apart with a velocity that is constant over the time period of the observa-
tions, generating a set of diverging inertial reference frames in space; 3) photons 
traverse these reference frames at constant velocity c to all local observers, in 
their local Minkowski space under a Lorentzian transformation; 4) this is a 
“dust” Universe, with no gravitational effects. 

Any individual volume of space such as a specific galaxy may be considered 
stationary within its own reference frame. Let us define this reference frame as 

0Σ  for our own local galactic space (Figure 1). This neglects small-scale local 
movements, being a simple representation and first order approximation of an 
idealised world line for a particle in space, because the components of v are as-
sumed to relate only to local motions that are generally much less than the re-
cessional velocity, and are taken to be zero in most theoretical models of the 
Universe. 

The relative motion of two inertial frames, 0Σ  and eΣ , diverging from a 
common origin with velocity v may then be viewed as a hyperbolic rotation ψ  
(the rapidity) of the spacetime coordinates on the imaginary plane (Figure 1). 
This is a Lorentz boost with a rotational 4-matrix '

µ
νΛ : 

'
'x xµ µ ν

ν= Λ                           (6) 

cosh sinh 0 0
sinh cosh 0 0

0 0 1 0
0 0 0 1

'
µ
ν

ψ ψ
ψ ψ

 
 
 Λ =
 
 
   

where ( ) 1 22 2cosh 1 v cψ γ
−

= − = , tanh v cψ β= = , and sinhψ βγ= , in the 
standard notation, with 1Λ = +det . 

Now consider a volume of space receding from us with velocity v as defined 
by its redshift, with a proper radial distance eℜ  at the time of emission. The 
photon path can now be represented geometrically as a logarithmic spiral on the 
complex plane (PQ in Figure 1). It will be noted that ψ  is the hyperbolic an-
gle, so the geometry allows 360ψ >   because tanh 1v c ψ= →  as v c→  and 
ψ →∞ , whereas local velocities are represented by real angles with trigonome-
tric functions. The scale is chosen by convention such that 45α =   with 1c = , 
hence the maximum angle in the local frame of reference corresponds to the 
standard light cone with ( )atan 1 45=  . Although the spatial component of the 
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M3 model may have curvature, M3 has no matter density and Figure 1 is there-
fore geometrically flat as a consequence of the linear relationship between the 
radial and time axes. 

For a photon, 0Sδ =  (null geodesic for photon); it then follows that  
2 2 2c tδ δℜ = , or c tδ δℜ = ± , where the sign represents an incoming or outgoing 

photon. But ctδ δψℜ = , thus t tδ δψ=  . Using δψ−  for the incoming pho-
ton and integrating: 

0 0d d .
e

t

t

t
t ψ

ψ= −∫ ∫                         (7) 

i.e. ( )0ln et t ψ=  or 0 eet t ψ= .                 (8) 

Although all diverging world lines are equivalent and will “see’’ photons in-
tercepting and leaving them at velocity c, the source lines are Doppler red-shifted 
with a wavelength of emission eλ  in eΣ , and a wavelength at observation 0λ . 
Redshift is defined as: 

0
0 1e

e
e

z
λ λ

λ λ
λ
−

= = −                      (9) 

and setting e etλ = ∆ , 0 0tλ = ∆ , it is easy to show that 

0 01 e .e ez t t t t ψ+ = ∆ ∆ = =                   (10) 

But e cosh sinhψ ψ ψ= + , hence ( )1 1z γ γβ γ β+ = + = + , which is the rela-
tivistic Doppler shift in SR, with z →∞  as v c→ . 

We may perform a topological transform of the Milne model of Figure 1 into 
an imaginary 4-cone (Figure 2) without loss of generality. From Equation (10), 

( )log 1 zψ = + , and the three galaxies represented in Figure 2, with redshifts of 
0.5, 1.0 and 1.5, have corresponding hyperbolic angles of 23.2 ,39.7ψ =    and 
52.5˚ respectively. 

 

 
Figure 2. The Milne manifold of Figure 1 as a 3-D cone for two photons crossing ex-
panding space, originating at redshift 1.5z =  and crossing the paths of galaxies at red-
shifts 1.0z = , 0.5z = , and 0z =  at constant (45˚) angles. The increase in Doppler 
wavelength ( eτ∆  to 0τ∆  equivalent to eλ  to 0λ ) is visualised in this exaggerated 
plot. 
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Despite the appearance of curvature, there is no acceleration ( constanta = ;
0a = ) and this remains a topologically flat figure. The imaginary proper time 

axes (e.g. 0τ  and eτ ) are straight lines that diverge linearly. Likewise, the radii 
of curvature round the vertical axis are proportional to ( )a t , the radial dis-
tances on the manifold at constant cosmological (proper) times (e.g. 0ℜ  and 

eℜ ) are orthogonal functions of ( )a t  only, and the locus of each photon track 
is a line of constant angle. 

4. GR as Geometry 

The presence of mass-energy in the Universe introduces a non-linear compo-
nent to ( )a t  with consequent curvature of the time axis, and an additional 
curvature to the path of the photon. This cannot be displayed on a flat 2-D dia-
gram, but can be demonstrated using the topological transform of Figure 2. The 
presence of acceleration now introduces curvature to the imaginary τ  coordi-
nate (Figure 3), representing accelerations from gravitational or dark mass and 
dark energy that may be attractive/positive or negative/repulsive respectively. 

The manifold of a sphere in 3-space is sufficiently described as a curved 
two-dimensional surface with time as a third dimension. Similarly the extra di-
mensions required to visualise the geometry of an expanding curved spacetime 
do not represent real dimensions, but are a helpful aid to geometrical visualisa-
tion of the manifold. Because 3-space with curvature require a 4-dimensional 
space and the curved time coordinate occupies a further dimension, space-time 
now exists in 5-space, compacted in Figure 3 to a 2-manifold in 3-space. Inte-
gration of the photon path across this surface may be represented by considering 
a thin wedge or petal of the time-space manifold in GR (Figure 4), with the im-
aginary surface curved by mass-energy as well as by expansion. 

 

 
Figure 3. The cone manifold of Figure 2 with curvature of the imaginary time axes by the 
presence of matter, and two photons crossing the expanding curved space at a constant 
45˚ angle. 
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Figure 4. Thin slice of curved GR manifold, L∆  vs. τ , with imaginary values shown 
in red. Rβ τ∆ = ∆  is rate of change of expansion; ( ) ( )1sinh a f Hβ τ−= = . (The 

mass-energy radius of curvature, R, is considerably foreshortened in this exaggerated 
plot). 

 
The new radius of curvature is ( ) ( )1 d dR τ β τ= , and this is independent of 

the spatial curvature, K. In the Milne model, the manifold is flat with  
d d 0β τ = , and R = ∞ , and the cone base angle, 0β , can take any arbitrary 
value, with 0 2β = π  for Figure 1. Referring to Figure 4, the lines of longitude 
are the imaginary time axes, with d di tτ = , whilst the lines of latitude represent 
the spatial component defined by ( )d d di j

ijL x x xγ=  (Equation (2)); 0L∆  is 
the comoving distance; ( ) 0L a t L∆ = ∆  is the proper distance at time t; and the 
curvature ( )21 R f a=   is the acceleration. It may be noted that—in contrast to 
a standard radius v. time plot with t as the vertical axis—the time axis is here 
embedded in the manifold. Unlike Figure 2, the apex of this cone does not con-
verge onto the vertical axis, but curls round itself as 0R →  and a →∞ . The 
model therefore still requires an inflationary scenario to close the gap and ensure 
causal connectedness. 

5. Geometry with Curvature 

Geometrically, redshift is observed when otherwise parallel curved photon paths 
diverge from each other, as evidenced in the flat Minkowsky Milne model of 
Figure 2. However, actual spacetime is not flat but has curvature imposed upon 
it through the presence of gravitational masses, requiring the mathematical in-
terpretation of GR. In the modified model of GR presented in this paper, the di-
verging (redshifted) photons generate a distinct but separate curvature supe-
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rimposed on the intrinsic curvature of spacetime that can be accounted for as an 
additional geometrical term in standard GR. 

Standard vectors are restricted in the presence of curvature on the spacetime 
manifold, but we may use Cartan vectors as operators [14]. Assign to each par-
ticle in the Universe the set of observer-dependent coordinates xµ . This 
represents an invariant line element with proper time 0x t= , whose spacetime 
geometry is encoded in the metric 2d d ds g x xµ ν

µν= , with space coordinates 
( )i ix x t= . Free particles then move along curved geodesics, with 4-velocity 

d .
d
xU
s

µ
µ =                          (11) 

With t as a parameter, the spatial derivatives are the velocity components 
d di iU x t= , and we may introduce the differential operator d d i it U x= ∂ ∂ , 

which is the directional derivative along the curve [14]. The components iU  of 
the operator now form the local coordinate basis, 

d ;  ,
d i it x

∂
= =

∂
U e                       (12) 

and the basis vectors i
iU=U e  define the parameterised vector space asso-

ciated with the point xµ . 
Acceleration may be expressed in terms of Equation (11): 

d d .
d d
U U x UU
s sx x

µ µ α µ
α

α α

∂ ∂
= =
∂ ∂

                  (13) 

The motion is then described by the geodesic equation: 

d 0,
d
U U U
s

µ
µ α β
αβ+ Γ =                      (14) 

i.e. = 0,UU U U U
x

µ
α µ β α µ

αβ αα

 ∂
+ Γ ≡ ∇ 

∂ 
             (15) 

where µ
αβΓ  are the Christoffel symbols, defined by: 

( )1 .
2

g g g gµ µλ
αβ α βλ β αλ λ αβΓ = ∂ + ∂ − ∂               (16) 

5.1. Curvature of Space from the Velocity Vector 

Parallel transport of a vector is different over different paths. For redshift obser-
vations, we are interested in the parallel transport of photons across an expand-
ing space whose rate of expansion changes with time and distance. The standard 
FLRW metric is generally written as a symmetrical function (Equation (2)), with 

, 0, ,3µ ν =  . However, as demonstrated in Section 2, a further curvature term 
representing the divergence of space may be added to the R-axis as a conse-
quence of its expansion. This requires an additional dimension represented by 

cosz iτ ψ′ =  ( coshτ ψ  on the imaginary plane), with divergent angle ψ  and 
, 0, , 4µ ν =  . 
Because ψ  is a hyperbolic angle, this geometry allows 360ψ >  , in contrast 
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to local velocities that are represented by real angles and trigonometric func-
tions. This divergence velocity is not a physical separation velocity in static 
space, but an observational velocity from the expansion of space itself, and this 
introduces a new component 2 2sinhψψγ τ ψ=  to the geodesic equation (Equa-
tion (17)): 

( )2 2 2 2 2d d d d sinh d .i j
ijs t x x xγ τ ψ ψ= − + +             (17) 

The time component is 2dt− , the spatial component is  
( ) ( )2 2 2 2d dka t r S r + Ω  , and the expansion component is 2 2 2sinh dτ ψ ψ . The 

corresponding metric to the geodesic, gµν , is: 

( )
( ) ( )

( ) ( )

2

2 2

2 2 2

2 2

1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 sin 0
0 0 0 0 sinh

k

k

a t

a t S r

a t S r θ
τ ψ

− 
 
 
 
 
 
 
  

     (18) 

5.2. Christoffel Symbols and Ricci Curvature 

This new curvature term introduces an extra component to Equations (11) and 
(13), with d dU sψ  the time rate of change of the curvature of expansion. The 
new non-zero Christoffel symbols from Equation (17) are then given by: 

2sinh ; ; 1 tanh .t
t t
ψ ψ ψ

ψψ ψ ψ ψψττ ψ τ τ ψΓ = Γ = Γ = Γ =           (19) 

The non-zero components of the Ricci tensor are now: 

00 3 aR
a

= −


 
2

22 2ij ij
a a K aR g
a a aa

τ
τ

  = + + +  
   

   

 
23 sinhaR

aψψ ττ ψ =  
 





 
and the Ricci curvature is: 

2

26 .a a K aR
a a aa

τ
τ

  = + + +  
   

   

                  (20) 

A consequence of these new non-zero Christoffel symbols (Equation (19)) is 
discussed in Section 8. 

5.3. The Einstein Equation and Mass-Density Tensor 

The Einstein field equation describes gravity as a manifestation of the curvature 
of spacetime. In particular, the curvature of spacetime is directly related to the 
energy—stress tensor through the Einstein field equation (Equation (21)): 

4 2

1 8 ,
2

GR Rg T g
c cµν µν µν µν

Λ
− −

π
=                 (21) 
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where Rµν  and R are functions of gµν  and its first two derivatives, and Tµν  
and Λ  are the stress-energy tensor and the cosmological expansion parameter 
respectively [17]. It may be noted that in the standard solution, the source of 
curvature is attributed entirely to matter, including dark matter, and Λ  is a 
curvature accounted for by dark energy. For an ideal fluid with mass/unit vo-
lume ρ  and pressure P, the stress-energy tensor in the rest frame of the fluid is 

( )T P U U Pµ µ µ
ν ν νρ δ= + + , or: 

( ) ,T P U U Pgµν µ ν µνρ= + +                   (22) 

from which, by assuming symmetry with all off-diagonal components = 0, set-
ting 1c = , and using d da aτ τ=  (Figure 4) with 2 2tτ = − , we may solve 
Equation (21) in terms of a a  and a a . 

2

2 2

1 8
3 3

a K G
a a t

ρ Λ  + − =


π + 




                  (23) 

2

2 2

22 8 .a a K GP
a a a t

   + + − = − + Λ   
 

π
 

 

              (24) 

or eliminating a a  from Equations (23) and (24), 

( )2
2 2

8 1
3 3

KH t G
a t

ρπ
Λ

= − + +                   (25) 

( ) 2

4 13 .
3 32

a G P
a t

ρ Λ
= − + + +

π

                 (26) 

Defining 2
03 8c H Gρ ≡ π  as the critical density of the Universe, and setting 

Equation (25) to the present epoch with ( ) 0H t H= , 0 1a = , and 0t T= , 

0 0
0 2

0

3 3 ,
8 88c

K
G GGT

ρ ρ
π ππ

Λ
= − + +                 (27) 

and defining: 0
2 2
0 0

8
,

3m K
G K
H H
ρ

Ω ≡ Ω ≡ −
π

 

2 2 2
0 0 0

1 , ,
3C H T HΛ
Λ

Ω ≡ Ω ≡
 

Equation (27) may now be rewritten as 1 m K c Λ= Ω +Ω +Ω +Ω . Using  
( )0 1 1a a z= + , ( )1a a z z= − +  , ( )3

0 0a aρ ρ=  [12], and the defined density 
parameters, we may write: 

( ) ( )0 0 0
0

d ddet z z
C t

t a zd z
a t a H E z

 = = = 
 ∫ ∫ ∫


              (28) 

where Cd  is the comoving distance, ( )0a a H E z= , and 

( ) ( ) ( ) ( )3 12 221 1 1 .m K CE z z z z Λ
 = Ω + +Ω + +Ω + +Ω         (29) 

5.4. Solutions 

Letting 0PΛΩ = Ω = , and assuming a flat Euclidean Universe with 0KΩ = , we 
may state 1C mΩ = −Ω . This has an analytical solution in z (Equation (30)), 

https://doi.org/10.4236/jmp.2022.136055


J. H. Marr 
 

 

DOI: 10.4236/jmp.2022.136055 981 Journal of Modern Physics 
 

( ) ( )( )
( ) ( )( )0

1 1 0.5 11 log
1 1 0.5 1 1 1

m m
C

m m m m

zcd
H z z

 + − Ω + −Ω
 =
 −Ω + Ω − + −Ω +Ω 

    (30) 

which reduces to ( ) ( )0 ln 1Cd c H z= +  in the Milne limit 0mΩ → . In Sec-
tions (6) and (7), this derivation for Cd  is compared with luminosity distance 
measures and the recently extended angular diameter distance measures respec-
tively. 

6. Luminosity Distance 

Correlation between the distance modulii derived from the standard Λ-Cold 
Dark Matter model (ΛCDM) and modified gemeral relativity (GR) model was 
assessed using the extensive type 1a supernovae (SNe 1a) observations [18]. 
These include SN 1a data for 740 sources [18] [Table F.3] covering the redshift 
range 0.01 1.3z≤ ≤  and include data from: the Supernova Legacy Survey 
(SNLS) [19]; the SDSS SNe survey [20]; the compilation comprising SNe from 
SNLS, HST and several nearby experiments [21]; photometry of 14 very high 
redshift ( 0.7 1.3z< < ) SNe 1a from space-based observations with the HST 
[22]; and low-z ( 0.08z < ) SNe from the photometric data acquired by the Har-
vard-Smithsonian Center for Astrophysics (CfA3) [23]. The corrected apparent 
brightness parameter *

Bm  for each SN 1a was plotted against its CMB-corrected 
redshift ( CMBz ) to create the Hubble diagram of Figure 5. Normalisation de-
pends on the assumed absolute magnitude of the SNe and H0; varying either is 
equivalent to sliding the curves vertically. 

 

 
Figure 5. Hubble diagram of the combined sample of 920 SNe 1a with the observed peak 
magnitudes in rest frame B-band ( *

Bm ) [18] with redshifts corrected to CMB background. 
Overlain are the weighted RMS-minimisation fit for the modified GR model (solid line) 
and the best-fit ΛCDM cosmology with 1 1

0 km s70 MpcH − −= ⋅ ⋅ , 0.295mΩ =  and  
0.705ΛΩ =  (dashed line). 
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Figure 6. Hubble diagram of 920 SNe 1a binned logarithmically in cmbz , with mean er-
rors and corrected distance modulii Bµ . Overlain are the unweighted least-squares fit 
for the modified GR model (solid line; RMS error 0.136 Bµ±  mag) and the best-fit 
wCDM cosmology with 0.305mΩ = , 0.695ΛΩ =  (dashed line; RMS error 0.151 Bµ±  
mag). Data from [18] Table F.1. 

 
Betoule et al. [18] fitted a ΛCDM cosmology to the SNe measurements by as-

suming an unperturbed FLRW geometry [24], using a fixed fiducial value of  
1 1

0 km s70 MpcH − −= ⋅ ⋅  ( 19.12 0.05BM = − ± ) to obtain a best fit value for mΩ  
of 0.295 ± 0.034, with 0.705ΛΩ =  (dashed line). The modified GR model 
curve (solid line) was fitted by weighted RMS-minimisation to the full data set 
assuming 0.04mΩ =  as the best current assessment of the mean total observed 
baryonic density of the Universe, and is comparable to that for the ΛCDM mod-
el (weighted RMS ±0.016 and ±0.017 respectively). Their ΛCDM model is 0.15 
mag fainter than the modified GR model at 1.0cmbz = , and the two curves differ 
by 0.11 *

0.15 Bm+
−  mag over the range 0.01 1.3z< < . 

Betoule et al. [18] made a substantial effort to correct the distance modulus for 
each individual SN, using a parameter ( 1X ) for time stretching of the light-curve, 
and a colour-correction parameter (C) for the supernova colour at maximum 
brightness [25]. Using a corrected distance modulus ( )* *

1B B Bm M X Cµ α β= − − + , 
the resultant plots had less scatter than the raw *

Bm  data and became progres-
sively fainter than the ΛCDM curve with increasing cmbz  (Figure 6). To correct 
for this, they considered three alternatives to the basic ΛCDM model: 1) a 
non-zero spatial curvature, kΩ ; 2) a wCDM model with an arbitrary constant 
equation of state for the dark energy with the parameter w equivalent to the jerk 
parameter of Riess et al. [26]; 3) a time-dependent equation of state with a 
third-order term equivalent to the snap parameter, w’ [26]. They concluded that 
the best overall fit was to a flat universe with typical 0.002 0.003kΩ ± , and a 
wCDM model, with 1.018 0.057w = − ±  (stat + sys), and with these corrections 
their wCDM curve overlays the binned plots at the faint end (Figure 6). The 
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modified GR model was normalised to the standard model at 0.01z = . The 
overall unweighted RMS errors remain comparable for the wCDM and modified 
GR models, being ±0.151 and 0.136 Bµ±  mag. respectively, differing by 0.00

0.24 Bµ
+
−  

mag. over the range 0.01 1.3cmbz = − . 

Intrinsic Errors to the SNe Data Set 

Evidence for the presence of dark energy comes most strongly from the mea-
surement of galaxy distances using SNe 1a markers. This result is based on the 
assumption that the corrected brightness of supernovae do not evolve with 
look-back time, but this assumption has been challenged by a number of more 
recent observations. Shanks et al. have suggested that metallicity-dependence of 
the Cepheid P-L relation is stronger than expected, decreasing the value of H0 
[27]. This may impact on the corrected Cepheid distances to galaxies with SNe, 
suggesting that the supernova peak luminosity is fainter in metal poor galaxies, 
and the evidence for a non-zero cosmological constant from the SNe 1a Hubble 
Diagram may be subject to corrections for metallicity which are as big as the ef-
fects of cosmology. Meyers et al. studied the properties of 17 SNe 1a at high 
redshift ( 0.9z > ) in early-type galaxies, confirming that the SNe in these hosts 
brighten and fade more quickly than those hosted by late-type galaxies and may 
be related to the mass of the host galaxy, although the errors from this were like-
ly to be <0.06 mag [28]. Other recent studies have shown that the standardised 
brightness of SN 1a correlates with host morphology, host mass, and local star 
formation rate (SFR) [29]. These studies suggest that much of the H0 residual used 
to support dark energy appears to be affected by SN luminosity evolution. Thus, 
whilst modern observations remain impressive in their extent, detail and number, 
there remains an overall element of error of 0.15±  mag, which is within the 
error range of fitting the ΛCDM curves and the GR model to the SN data. 

7. Angular Diameter Distance 

Angular diameter distance Ad  is defined for an object of known proper size D, 
that subtends an angle φ  to the observer such that 

.Ad D φ=                          (31) 

Experimental verification for Ad  is notoriously difficult because of the un-
known evolution of galaxies, clusters and quasars [30] [31] [32], but recent work 
using the phenomenon of baryonic acoustic oscillation (BAO) as a suitable 
measuring rod has enabled measurements of Ad  with considerable accuracy. 
The BAO signal is one of the key modern methods for measuring the expansion 
history. The BAO arose because the coupling of baryons and photons in the ear-
ly Universe allowed acoustic oscillations to develop that led to anisotropies of 
the cosmic microwave background (CMB) radiation and a rich structure in the 
distribution of matter [33] [34]. The acoustic scale length ( Sr ) can be computed 
as the comoving distance that the sound waves could travel from the Big Bang 
until recombination. The imprint left by these sound waves provides a feature of 
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known size in the late-time clustering of matter and galaxies, and by measuring 
this acoustic scale at a variety of redshifts, one can infer ( )Ad z  and ( )H z . 

BAO is independent of galactic evolution, with the points of D fixed on the 
surface of the space-like sphere defined by the proper radius eℜ  (Figure 2, 
Figure 3), where we identify eℜ  with the angular size distance. This may be 
used with the standard expression for Ad  [30] [35] in terms of Cd  from Equ-
ation (28): 

.
1

C
A

d
d

z
=

+
                         (32) 

Determination of Sr  comes from the matter-to-radiation ratio and the ba-
ryon-to-photon ratio, both of which are well measured by the relative heights of 
the acoustic peaks in the CMB anisotropy power spectrum [36] [37]. Both cos-
mological perturbation theory and numerical simulations suggest that this fea-
ture is stable to better than 1% accuracy, making it an excellent standard ruler. 
The propagation distance of the acoustic waves becomes a characteristic com-
oving scale fixed by the recombination time of the Universe after approximately 
379,000 years, at a redshift of 1089z   [38] [39] [40]. Eisenstein et al. provide 
a discussion of the acoustic signal in configuration space [41], and reviews of 
BAO as a probe of dark energy [42]. The acoustic scale is expressed in abso-
lute units (Mpc) rather than h−1 Mpc, and is imprinted on very large scales 
(~150 Mpc) thereby being relatively insensitive to small scale astrophysical 
processes, making BAO experiments less sensitive to this type of systematic 
error [37]. 

Figure 7 combines the BAO results from a number of sources using spectros-
copic data sets, and the quasar Lyman-α results from the SDSS-III Baryon Oscil-
lation Spectroscopic Survey (BOSS). The volume ( )VD z  corresponds to the 
peak position for an isotropic distribution of galaxy pairs and the 2-point iso-
tropic clustering strength ( )zξ  of the observations, computed using  

( )( )2
1 321V AD d cz H z z ≡ +   to convert the line-of-sight distance into an equiv-

alent transverse length scale, where Ad  is the angular diameter distance and 
( )H z  is the Hubble parameter in the appropriate model. As the BAO method 

actually measures V dD r , this quantity was multiplied by the fiducial scale 
length ,s fidr  to restore a distance [34] [43]. 

Included are the acoustic peak detection from the 6dF Galaxy Survey at 
0.106z =  [44]; the MGS survey at 0.15z =  [45]; a combination of Sloan Dig-

ital Sky Survey (SDSS)-II DR7 LRG and main sample galaxies combined with the 
2dF data (B1) at 0.275z =  [46]; the BOSS CMASS measurements at 0.32z =  
and 0.57z =  [47] [48]; the SDSS-II LRG (B2) measurement at 0.35z =  using 
reconstruction to sharpen the precision of the BAO measurement [49] [50]; and 
the WiggleZ measurement of three partially covariant data sets at 0.44 .6, 0z =  
and 0.73 [51]. The published values for ( )VD z  are presented in Table 1. 
Font-Ribera et al. [52] measured the large-scale cross-correlation of quasars with 
the Lyman-α forest absorption, using over 164,000 quasars from DR11 of the  

https://doi.org/10.4236/jmp.2022.136055


J. H. Marr 
 

 

DOI: 10.4236/jmp.2022.136055 985 Journal of Modern Physics 
 

 
Figure 7. A plot of the distance-redshift relation from the spectroscopic data BAO mea-

surements and quasar Lyman-α BOSS, plotting ( )( ),V s fid dD z r r  (Table 1). Overlain are 

the modified GR model fitted by weighted RMS-minimisation to 0 67.6 0.25H = ±  with 
0.04mΩ = , 0.96CΩ =  (red solid line) and the best-fitting flat ΛCDM 1 − σ prediction 

from WMAP under the assumption of a flat universe with a cosmological constant 
( 0.308mΩ = ; 0.692ΛΩ = ) [44] [53] (dashed line). 

 
Table 1. Parameters from the BAO surveys. 

Survey z ( ),V d d fidD r r  (Mpc) Ref 

6dFGS 0.106 456 ± 27 [44] 

MGS 0.15 664 ± 25 [45] 

BOSS (B1) 0.275 1104 ± 30 [46] 

BOSS LowZ 0.32 1264 ± 25 [47] [48] 

BOSS (B2) 0.35 1356 ± 25 [49] [50] 

WiggleZ (W1) 0.44 1716 ± 83 [51] 

CMASS 0.57 2056 ± 20 [47] [48] 

WiggleZ (W2) 0.6 2221 ± 101 [51] 

WiggleZ 0.73 2516 ± 86 [51] 

Lyman-α forest 2.36 6474 ± 163 [52] 

 
SDSS-III BOSS. Their result was an absolute measure of 1590 60Ad = ±  Mpc at 

2.36z = , equivalent to ( ),6474 163V d s fidD r r= ±  Mpc, with 147.49dr =  
Mpc. 

The data of Figure 7 are overlain with the best-fit curves for the two models. 
The solid curve is the modified GR model with 0.04mΩ = , 0.96CΩ = , and the 
dashed line is the ΛCDM prediction from WMAP under the assumption of a flat 
universe with a cosmological constant using Planck Collaboration data  
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( 0.308 0.012mΩ = ± ; 0.692 0.012ΛΩ = ± ; 0KΩ = ) [7].  
As in Section 6, changing H0 slides the curves up or down the vertical axis, but 

does not alter the shapes of the curves which were fitted by weighted RMS mi-
nimisation against the combined BAO samples of Table 1. For the modified GR 
model, 0 67.6 0.25H = ±  with weighted RMS errors of ±0.034 Mpc in good 
concordance with the most recent Planck results of 0 67.4 0.5H = ±  [7], rather 
than the high value of Riess ( 0 73.24 1.7H = ± ) [54] [55]. For the ΛCDM model, 

0 70.0 0.25H = ±  with weighted RMS errors ±0.085 Mpc which is intermediate 
between the two extremes. The uncertainties in the two lines come largely from 
uncertainties in 2

mhΩ  but, as with the luminosity distance measures, the stan-
dard model can be improved with non-linear parameters added to ΛΩ  in a 
w’CDM model. 

8. Discussion 

While the nature of dark matter and dark energy remain elusive [56], several al-
ternative theories to standard GR have emerged. Recently published work fol-
lowing the observation of gravitational waves from the binary neutron star 
GW170817 [57] have, however, determined 1510gc c −= ±  with sufficient accu-
racy to eliminate several gravitational theories that predict an anomalous gc  
propagation speed [58] [59], such as some MOND-like gravities including Ten-
sor-Vector-Scalar gravity (TeVeS), Hernández forms, Einstein-Aether, Genera-
lised Proca and Hořava gravity [60], and scale invariance as an alternative to 
dark energy [61]. 

We explore the consequences of considering Hubble expansion as a distinct 
curvature of space, across which photons move from distant galaxies until ob-
served locally on Earth. The standard definition of the Hubble expansion coeffi-
cient as velocity per distance (km/s/Mpc) can be reformulated as a velocity per 
photon travel time. Dimensionally, this is an acceleration with 0 20.74H ≡  
km/s/Myr as the photon transit time across an expanding Universe (for  

0 67.7H =  km/s/Mpc). The first postulate of special relativity (SR) states that 
the velocity of light c is constant for all observers in their local reference frame, 
leading to a central tenet of GR: that it is always valid to choose a coordinate 
system that is locally Minkowskian. For this to remain true across an expanding 
Universe with time as one of the axes, the photon path must curve geometrically 
in a logarithmic spiral [8], and this curvature has the dimensions of an accelera-
tion across the expanding space, represented by an additional curvature term in 
Einstein’s general equation for GR. 

The extension to GR presented in this paper incorporates both kinematic and 
gravitational components, with parallel transport along the photon path and ro-
tation across curved diverging time lines. Non-zero Christoffel symbols arise 
with any acceleration, whether from a gravitational field, or by the action of 
fields other than those associated with gravitational mass, or by curvilinear mo-
tion [62]. The emergence of new non-zero Christoffel symbols (Equation (19)) 

https://doi.org/10.4236/jmp.2022.136055


J. H. Marr 
 

 

DOI: 10.4236/jmp.2022.136055 987 Journal of Modern Physics 
 

supports the presence of curvilinear motion imposed on the red-shifted photons 
by the expansion of space ( CΩ ) that is distinct from the curvature of space by 
the presence of mass ( MΩ ) or any intrinsic curvature within space itself ( KΩ ). 

By considering GR as a geometrical manifold with an imaginary time-axis, 
time-separated photon paths trace out a thin ribbon that everywhere subtends 
an angle of 45˚ to the expanding time axes, this being the locally Minkowskian 
metric. In a static universe with no relative velocity between emitter and receiv-
er, this is a plane ribbon-like Euclidean quadrilateral with parallel time-lines and 
parallel photon paths, and it retains this form when wrapped round a cylinder. 
In the Milne SR model the relative velocity of emitter and receiver cause an in-
trinsic curvature of space on which this ribbon is curved and stretched to pro-
duce the observed redshift whilst retaining the feature of constant c to every ob-
server in the path of the photon stream (Figure 1) [8]. This curvature can, how-
ever, be wrapped without distortion round a uniform cone (Figure 2). 

In contrast, the presence of mass-energy ( 0ρ  and P) generates an additional 
curvature and twist in the ribbon (Figure 3, Figure 4) requiring Einstein’s equa-
tions of GR, generally solved using the standard FLRW metric. Assuming spatial 
curvature to be zero, the observed matter in the Universe is insufficient in this 
model to account for the measured SN redshifts and requires the inclusion of an 
additional dark-matter component, while to conform to the more detailed SNe 
1a measurements an additional dark-energy acceleration, Λ, is included, ma-
thematically equivalent to a gravitationally repulsive negative mass [63]. Deeper 
and more detailed SNe 1a measurements have required second and third order 
refinements to Λ, with jerk (w) and snap (w’) parameters [18] [26]. 

9. Conclusions 

The introduction of an independent curvature term from the expansion of space 
generates a magnitude-redshift curve that well matches current SNe 1a observa-
tions out to 1.3z = , with mρ  representing observable baryonic mass. For the 
SNe 1a data, the modified GR and ΛCDM models differ by 0.11

0.15 Bµ
+
−  mag. over 

0.01 1.3cmbz = − , with overall weighted RMS errors of 0.136 Bµ±  mag for mod-
ified GR and 0.151 Bµ±  mag for ΛCDM respectively. BAO measurements for 
angular diameter distances also give an excellent fit from low-z out to 2.36z =  
without requiring additional or arbitrary parameters. The combined BAO samples 
of Figure 7 (Table 1) have weighted RMS errors of ±0.034 Mpc for the modified 
GR model, and ±0.085 Mpc for the ΛCDM model with 0 67.6 0.25H = ± , in good 
concordance with the recent Planck results [7]. On both the SNe 1a and the BAO 
data, the modified GR model is comparable to the bast current w’CDM models 
[64]. 

The nature of and theoretical basis for dark energy currently remains as elu-
sive as quintescence or the luminiferous ether [65]. Although DM may still be 
required within galaxies to account for galactic rotation, gravitational lensing, 
and the motion of clusters, there is still neither theoretical nor direct observa-
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tional support for it [66]. By treating the Hubble expansion of space as an inde-
pendent curvature in general relativity, the equations of GR can accommodate a 
scenario in which the observations of SNe 1a and BAO may be described with-
out requiring additional parameters for DM or accelerating dark energy. 
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