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Abstract 
Our recent arXiv preprints and published papers on the solution of the Rie-
mann-Lanczos and Weyl-Lanczos problems have brought our attention on 
the importance of revisiting the algebraic structure of the Bianchi identities in 
Riemannian geometry. We also discovered in the meantime that, in our first 
GB book of 1978, we had already used a new way for studying the compatibil-
ity conditions (CC) of an operator that may not be necessarily formally in-
tegrable (FI) in order to construct canonical formally exact differential se-
quences on the jet level. The purpose of this paper is to prove that the 
combination of these two facts clearly shows the specific importance of the 
Spencer operator and the Spencer δ-cohomology, totally absent from mathe-
matical physics today. The results obtained are unavoidable because they only 
depend on elementary combinatorics and diagram chasing. They also provide 
for the first time the purely intrinsic interpretation of the respective numbers 
of successive first, second, third and higher order generating CC. However, if 
they of course agree with the linearized Killing operator over the Minkowski 
metric, they largely disagree with recent publications on the respective num-
bers of generating CC for the linearized Killing operator over the Schwarz-
schild and Kerr metrics. Many similar examples are illustrating these new 
techniques, providing in particular a few resolutions in which the orders of 
the successive operators may go “up and down” surprisingly, like in the con-
formal situation for various dimensions.  
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1. Introduction 

The present study is mainly local and we only use standard notations of diffe-
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rential geometry. For simplicity, we shall also adopt the same notation for a vec-
tor bundle ( ), ,E F   and its set of sections ( ), , ,ξ η ζ  . Now, if X is the 
ground manifold with dimension n and local coordinates ( )1, , nx x  and E is a 
vector bundle over X with local coordinates ( ),x y , we shall denote by ( )qJ E  
the q-jet bundle of E with local coordinates ( ), qx y  and sections qξ  trans-
forming like the q-derivatives ( )qj ξ  of a section 0ξ ξ=  of E. If F with section 
η  is another vector bundle over X and ( ): qJ E FΦ →  is an epimorphism 
with kernel the linear system ( )q qR J E⊂ , we shall associate the differential 
operator : :qj E F ξ η= Φ → →  and set ( )kerΘ =  . All the operators 
considered will be locally defined over a differential field K with n derivations 
( )1, , n∂ ∂  and we shall indicate the order of an operator under its arrow. It is 
well known and we shall provide many explicit examples, that, if we want to 
solve, at least locally the linear inhomogeneous system ξ η= , one usually needs 
compatibility conditions (CC) of the form 1 0η =  defined by another diffe-
rential operator 1 0 1: :F F F η ζ= → →  that may be of high order in general 
but still locally defined over K. However, two types of “phenomena” can arise for 
exhibiting such CC but, though they can be quite critical in actual practice, we 
do not know any other reference on the possibility to solve them effectively be-
cause most people rely on the work of E. Cartan. 

1) As shown in ([1], Introduction) or ([2]) with the Janet system  

( )2
33 11 220, 0xξ ξ ξ− = =  over the differential field ( )K x=   and in ([3]), it 

may be possible to find no CC of order one, no CC of order two, one CC of or-
der three, then nothing new but one additional CC of order six and so on with 
no way to know when to stop. For the fun, when we started computer algebra 
around 1990, we had to ask a special permit to the head of our research depart-
ment for running the computer a full night and were not even able after a day to 
go any further on. Hence, a first basic problem is to establish a preliminary list of 
generating CC and know their maximum order.  

2) Once the previous problem is solved, we do know a generating 1  of or-
der 1q  and may start anew with it in order to obtain a generating 2  of order 

2q  and so on as a way to work out a differential sequence. Contrary to what can 
be found in the Poincaré sequence for the exterior derivative where all the suc-
cessive operators are of order one, things may not be so simple in actual practice 
and “jumps” may appear, that is the orders may go up and down in a apparently 
surprising manner that only the use of “acyclicity” through the Spencer coho-
mology can explain. As we shall see with more details in the case of the confor-
mal Killing operator of order 1, the successive orders are ( )1,3,1  when 3n = , 
( )1,2,2,1  when 4n = , ( )1,2,1,2,1  when 5n =  ([4]).  

A we have shown in our seven books, the only possibility to escape from these 
two types of problems is to start with an involutive operator   and construct 
in an intrinsic way two canonical differential sequences, namely the linear Janet 
sequence ([5], p. 185, 391 for a global definition):  

11 2

0 1 11 1 1 1
0 0

n n

n nq
E F F F F

−

−→ Θ→ → → → → → →

  
            (1) 

https://doi.org/10.4236/jmp.2022.134036


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134036 622 Journal of Modern Physics 
 

and the linear Spencer sequence ([5], p. 185 for a global definition):  
3 11 2

0 1 2 11 1 1 1 1
0 0

q n nj D D DD D

n nC C C C C
−

−→ Θ→ → → → → → →             (2) 

As in both cases, the central operator is the Spencer operator but not the exte-
rior derivative, contrary to what is done in ([6] [7] [8]) and the corresponding 
references, in particular ([6], Ref. [8]), we do not agree on the effectivity of their 
definition of “involutivity” ([6], pp. 1608-1609). In fact, the most important 
property of theses two sequences is that they are formally exact on the jet level as 
follows. Introducing the (composite) r- prolongation by means of the formal de-
rivatives id :  

( ) ( ) ( )( ) ( ) ( ) ( )0: : , , ,0r q r r q r q rJ E J J E J F x y x z d rν νρ ν+ +Φ → → → = Φ ≤ ≤  

with kernel ( ) ( ) ( ) ( )( )q r r q r q q r r qR R J R J E J J Eρ+ += = ∩ ⊂ , we have the long 
exact sequences:  

( ) ( )00 q r q r rR J E J F+ +→ → →                   (3) 

( ) ( ) ( )
1 1 1 0 10 q q r q q r q r rR J E J F J F+ + + + +→ → → →             (4) 

( ) ( ) ( ) ( )
1 2 1 2 1 2 20 1 20 q q q r q q q r q q r q r rR J E J F J F J F+ + + + + + + + +→ → → → →    (5) 

and so on till the similar ones stopping at ( ) , 0r nJ F r∀ ≥ . As shown by the 
counterexample exhibited in ([9], p. 119-126), all these sequences may be abso-
lutely useful till the last one. We shall also define the symbol *

q q qg R S T E= ∩ ⊗  
and its r-prolongations ( )q r r qg gρ+ =  only depends on qg  in a purely alge-
braic way, that is no differentiation is involved. On the contrary, we shall say 
that qR  or   is formally integrable (FI) if q rR +  is a vector bundle 0r∀ ≥  
and all the epimorphisms ( ) ( ) ( ) ( )1

1 1: : , ,q r
q r q r q r q r q rJ E J E x y x yπ + +
+ + + + + + +→ →  

are inducing epimorphisms 1q r q rR R+ + +→  of constant rank 0r∀ ≥ , which is a 
true purely differential property.  

Of course, for people familiar with functional analysis, the definition of Θ  
could seem strange and uncomplete as it is not clear where to look for solutions. 
In our opinion (See [10] and review Zbl 1079.93001) it is mainly for this reason 
that differential modules or simply D-modules have been introduced but we 
shall explain why such a procedure leads in fact to a (rather) vicious circle as 
follows. Working locally for simplicity with ( )dim E m= , ( )dim F p= , we 
may turn the definition backwards by introducing the non-commutative ring  

[ ] [ ]1, , nD K d d K d= =  of differential polynomials ( ), ,P Q   with coefficients 
in K. Then, instead of acting on the “left” of column vectors of sections by diffe-
rentiations as in the previous differential setting, we shall use the same operator 
matrix still denoted by   but now acting on the “right” of row vectors by 
composition. Introducing the canonical projection onto the residual module M, 
we obtain the exact sequence 0p m

q
D D M→ → →


 of differential modules also 

called “free resolution” of M because mD  and pD  are clearly free differential 
modules. However, as D is filtred by the order of operators, then  

( ) mI im D= ⊂  is filtred too and, as we shall clearly see on the motivating 
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examples, the induced filtration of mM D I=  can only been obtained in any 
applications if and only if qR  or   is FI. Accordingly, all the difficulty will be 
to use the following key theorem (For Spencer cohomology and acyclicity or in-
volutivity, see [1] [2] [5] [9]-[14]):  

THEOREM 1.1: There is a finite Prolongation/Projection (PP) algorithm 
providing two integers , 0r s ≥  by successive increase of each of them such that 
the new system ( ) ( )s q r s

q r q r q r sR Rπ + +
+ + + +=  has the same solutions as qR  but is FI 

with a 2-acyclic or involutive symbol and first order CC. The order of a generat-
ing 1  is thus bounded by 1r s+ +  as we used r s+  prolongations.  

EXAMPLE 1.2: In the Janet example we have ( ) ( ) ( )1 2 2
2 3 4 5R R R R→ → →  with 

8 11 12 12< < =  and ( ) ( )12 0K Ddim M rk M= ⇒ = . The final system is trivial-
ly involutive because it is FI with a zero symbol, a fact highly not evident a 
prori because it needs 5 prolongations and the maximum order of the CC is 
thus equal to 3 2 1 6+ + = . We obtain therefore a minimum resolution of the 
form 

2 12 2

4 6 2
0 0D D D D M→ → → → → →

  
 (See the introduction of [1] or [2] for 

details).  
When a system is FI, we have a projective limit  

1 0qR R R R R∞= → → → → →  . 
As we are dealing with a differential field K, there is a bijective correspon-

dence:  

( ) ( ), ,q K q q K qM hom R K R hom M K= ⇔ =              (6) 

and we obtain the injective limit 0 10 qM M M M M∞⊆ ⊆ ⊆…⊆ ⊆ ⊆ =  pro-
viding the filtration of M. We have in particular 1i q qd M M +⊆  and qM DM=  
for 0q . 

THEOREM 1.3: ( ),KR hom M K=  is a differential module for the Spencer 
operator.  

Proof: As the ring D is generated by K and { }|i i
iT a d a K= ∈ , we just need to 

define:  

( )( ) ( )( ) ( )
( )( ) ( )( ) ( )

,

, , , ,i i i i

af m a f m f am

d f m f m f d m a K m M d T f R

= =

= ∂ − ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
 

and obtain i i id a ad a= + ∂  in the operator sense. Choosing m M∈  to be the 
residue of k kd y yµ µ=  and setting ( ) ( ): k k

q qf y f y Kµ µξ ξ= = ∈ , we obtain in 
actual practice exactly the Spencer operator: *: : i

id R T R f dx d f→ ⊗ → ⊗  
with ( ) 1i

k k k
i id f µ µµ

ξ ξ += ∂ −  or ( )1 1 1q q qd jξ ξ ξ+ += −  or simply d δ= ∂ −  with a 
slight abuse of language. We notice that a “section” q qRξ ∈  has in general, par-
ticularly for the non-commutative case (See [4] for examples), nothing to do 
with a “solution”, a concept missing in ([6] [7] [8]). 

 
As we shall see in the motivating examples, once a differential module M or 

the dual system ( ),KR hom M K=  is given, there may be quite different diffe-
rential sequences or quite different resolutions and the problem will be to choose 
the one that could be the best in the application considered. During the last 



https://doi.org/10.4236/jmp.2022.134036


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134036 624 Journal of Modern Physics 
 

world war, many mathematicians discovered that a few concepts, called exten-
sion modules, were not depending on the sequence used in order to compute 
them but only on M. A (very) delicate theorem of (differential) homological al-
gebra even proves that no others can exist ([15]). Let us explain in a way as sim-
ple as possible these new concepts.  

As a preliminary crucial definition, if P a d Dµ
µ= ∈ , we shall define its (for-

mal) adjoint by the formula ( ) ( )1ad P d aµ µ
µ= −  where we have set  

1 nµ µ µ= + +  whenever ( )1, , nµ µ µ=   is a multi-index. Such a definition 
can be extended by linearity in order to define the formal adjoint ( )ad   to be 
the transposed operator matrix obtained after taking the adjoint of each element. 
The main property is that  

( ) ( ) ( ) ( ) ( ) ( )1 1, ,ad PQ ad Q ad P P Q D ad ad ad= ∀ ∈ ⇒ =     . 
EXAMPLE 1.4: With 2 1

22 12,ξ η ξ η∂ = ∂ =  for  , we get 2 1
1 2η η ζ∂ − ∂ =  

for 1 . Then ( )1ad   is defined by 2 1
1 2,µ λ µ λ= −∂ = ∂  while ( )ad   is 

defined by 1 2
12 22ν µ µ= ∂ + ∂  but the CC of ( )1ad   are generated by  

1 2
1 2ν µ µ′ = ∂ + ∂ . In the operator framework, we have the differential sequences: 

( ) ( )

1

1ad ad

ξ η ζ

ν µ λ

ν

→ →

← ←

′




 

                     (7) 

where the upper sequence is formally exact at η  but the lower sequence is not 
formally exact at µ .  

Passing to the module framework, we obtain the sequences:  

( ) ( )

1

1

2

2

0
ad ad

D D D M

D D D

→ → → →

← ←

 

 
               (8) 

where the lower sequence is not exact at 2D . The “extension modules” have 
been introduced in order to study this kind of “gaps”. 

Therefore, it may be important or useful to prove that certain extension mod-
ules vanish, that is ( )ad   generates the CC of ( )1ad   whenever 1  gene-
rates the CC of  . Such a problem is even essential for checking controllability 
in control theory ([2]) but we also remind the reader that it is not so easy to ex-
hibit the CC of the Maxwell or Morera parametrizations when 3n =  and that a 
direct checking for 4n =  should be strictly impossible ([16]). It has been 
proved by L. P. Eisenhart in 1926 (Compare to [5]) that the solution space Θ  
of the Killing system has ( )1 2n n +  infinitesimal generators { }τθ  linearly 
independent over the constants if and only if ω  had constant Riemannian 
curvature, namely zero in our case. As we have a Lie group of transformations 
preserving the metric, the three theorems of Sophus Lie assert than  

, cτρ σ ρσ τθ θ θ  =   where the structure constants c define a Lie algebra  . We 
have therefore τ

τξ ξ λ θ∈Θ⇔ =  with cstτλ = . Hence, we may replace the 
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Killing system by the system 0i
τλ∂ = , getting therefore the differential se-

quence:  

0 * 1 * *0 0
d d d

nT T T→Θ→ ∧ ⊗ →∧ ⊗ → →∧ ⊗ →            (9) 

which is the tensor product of the Poincaré sequence for the exterior derivative 
by the Lie algebra  . Finally, as the extension modules do not depend on the 
resolution used and that most of them do vanish because the Poincaré sequence 
is self adjoint (up to sign), that is ( )ad d  generates the CC of ( )ad d  at any 
position, exactly like d generates the CC of d at any position. We invite the 
reader to compare with the situation of the Maxwell equations in electromagnet-
ism ([13]). However, we have proved in ([17] [18] [19] [20]) why neither the Ja-
net sequence nor the Poincaré (de Rham in USA!) sequence can be used in 
physics and must be replaced by another resolution of Θ  called Spencer se-
quence (See [14] for details and compare to [21]).  

We are now in a position to tell about the unpleasant story that has motivated 
such a paper. In October 23-27, 2017, I was invited to lecture at the Albert Eins-
tein Institute (AEI, Potsdam/Berlin). Though the series of lectures was already 
planned and written (arXiv: 1802.09610 published in [18]), the day before the 
first lecture the group leader decided that I should lecture on compatibility con-
ditions (CC). I suddenly understood that General Relativity (GR) at AEI was no 
longer a Science but became a Religion that does not admit any criticism by lec-
turing visitors, with a similar comment for Gauge Theory (GT) ([1] [13] [14]). 
The following elementary example will explain the title of this paper and the 
problems raised by its content in such a framework.  

With 2n = , ( )[ ]1 2,D a d d=  , y an indeterminate and a an arbitrary con-
stant parameter, let us consider the second order system ( )2 2R J E⊂  defined 
by the PD equations 22 0y = , 12 1 0y ay+ = . When 0a = , we have the involu-
tive system 22 0y = , 12 0y =  defined over [ ]1 2,D d d=   and the minimum 
resolution 2

1 2
0 0D D D M→ → → → →  already considered with one first order 

CC.  
However, if 0a ≠ , after a few crossed derivatives, we may obtain the succes-

sive strict inclusions ( ) ( )2 1
2 2 2R R R⊂ ⊂  providing first the intermediate subsys-

tem 22 0y = , 12 0y = , 1 0y =  and then the final involutive subsystem 22 0y = , 

12 0y = , 11 0y = , 1 0y = . Not only the final subsystem is surprisingly no longer 
depending on the parameter but the corresponding minimum resolution, name-
ly 2

2 2
0 0D D D M→ → → → → , is quite different as it now involves one second 

order CC because ( ) ( )12 1 22 22 12 1 0d ad d d d ad+ − + = . One can also consider the 
linear inhomogeneous second order system 22y u= , 12y v aw= − , 11 1y w= , 

1y w=  with 2
1 2a w u v av= − +  and discover that the 4 canonical CC deter-

mined by the corresponding Janet tabular are in fact generated by a single 
second order CC (See [1] [3] and [5] for other more sophisticated explicit exam-
ples).  

As a kind of training exercise, I solved the PP problem for the linearized Kill-
ing operator over the Minkowski and Schwarzschild (S) metrics with parameter 
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(a) in ([22]) and over the Kerr (K) metric with parameters ( ),a m  in ([23]). As 
I hope to have convinced the reader that the previous example is exactly similar, 
my claim in this paper is that the search for CC has nothing to do with GR and is 
a purely mathematical problem of “Formal Integrability”. 

After this long introduction, the content of the paper will become clear:  
In Section 2 we provide the mathematical tools from homological algebra and 

differential geometry needed for finding the generating CC of various orders.  
Then, Section 3 will provide motivating examples in order to illustrate these 

new concepts.  
They are finally applied to the Killing systems for the S and K metrics in Sec-

tion 4 in such a way that the results obtained, though surprising they are, cannot 
be avoided because they will only depend on diagram chasing and elementary 
combinatorics. They largely disagree with ([6] [7] [8]) because the techniques 
used in these papers are not intrinsic. As the final involutive systems do not de-
pend any longer on the S or K parameters like in the above example, the worst 
conclusion concerns the physical usefulness of solving such a problem but… this 
is surely another story! 

2. Mathematical Tools 

A) HOMOLOGICAL ALGEBRA 
We now need a few definitions and results from homological algebra ([2] [10] 

[15]). In all that follows, , , ,A B C   are modules over a ring or vector spaces 
over a field and the linear maps are making the diagrams commutative. We in-
troduce the notations rk rank= , nb number= , dim dimension= , ker kernel= , 
im image= , coker cokernel= . When : A BΦ →  is a linear map (homomor-
phism), we may consider the so-called ker/coker exact sequence where  

( ) ( )coker B imΦ = Φ :  

( ) ( )0 0ker A B coker
Φ

→ Φ → → → Φ →  

In the case of vector spaces over a field k, we successively have:  

( ) ( )( ) ( )( ) ( ) ( )
( )( ) ( ) ( )

, ) ,rk dim im dim ker dim A rk

dim coker dim B rk

Φ = Φ Φ = − Φ

Φ = − Φ
 

with ( )( ) ( )dim coker nb compatibility conditionsΦ = . We obtain thus by sub-
straction:  

( )( ) ( ) ( ) ( )( ) 0dim ker dim A dim B dim cokerΦ − + − Φ =  

In the case of modules, using localization, we may replace the dimension by 
the rank and obtain the same relations because of the additive property of the 
rank. The following result is essential: 

SNAKE THEOREM 2.A.1: When one has the following commutative dia-
gram resulting from the two central vertical short exact sequences by exhibiting 
the three corresponding horizontal ker/coker exact sequences: 
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0 0 0

0 0

0 0

0 0

0 0 0

K A A Q

L B B R

M C C S

↓ ↓ ↓
′→ → → → →
′↓ ↓ Φ ↓ Φ ↓

′→ → → → →
′↓ ↓ Ψ ↓ Ψ ↓

′→ → → → →
↓ ↓ ↓

       (10) 

then there exists a connecting map M Q→  both with a long exact sequence:  
0 0.K L M Q R S→ → → → → → →  

Proof: We start constructing the connecting map by using the following suc-
cession of elements:  

0

0

a a q

b b

m c

′ →
↓
′→

↓
→



 







 

Indeed, starting with m M∈ , we may identify it with c C∈  in the kernel of 
the next horizontal map. As Ψ  is an epimorphism, we may find b B∈  such 
that ( )c b= Ψ  and apply the next horizontal map to get b B′ ′∈  in the kernel 
of ′Ψ  by the commutativity of the lower square. Accordingly, there is a unique 
a A′ ′∈  such that ( )b a′ ′ ′= Φ  and we may finally project a′  to q Q∈ . The 
map is well defined because, if we take another lift for c in B, it will differ from b 
by the image under Φ  of a certain a A∈  having zero image in Q by compo-
sition. The remaining of the proof is similar and left to the reader as an exercise. 
The above explicit procedure will not be repeated.  

 
We may now introduce cohomology theory through the following definition: 

DEFINITION 2.A.2: If one has any sequence A B C
Φ Ψ
→ → , then one may  

introduce ( ) ( )coboundary im ker cocycle B= Φ ⊆ Ψ = ⊆  and the cohomology 
at B is the quotient cocycle/coboundary. 

THEOREM 2.A.3: The following commutative diagram where the two central 
vertical sequences are long exact sequences and the horizontal lines are ker/ 
coker exact sequences:  

0 0 0

0 0

0 0

0 0

0 0

0 0 0

K A A Q

L B B R
cut

M C C S

N D D T

↓ ↓ ↓
′→ → → → →
′↓ ↓ Φ ↓ Φ ↓

′→ → → → →
′↓ ↓ Ψ ↓ Ψ ↓

′→ → → → →
′↓ ↓ Ω ↓ Ω ↓

′→ → → → →
↓ ↓ ↓

       

   (11) 


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induces an isomorphism between the cohomology at M in the left vertical col-
umn and the kernel of the morphism Q R→  in the right vertical column. 

Proof: Let us “cut” the preceding diagram into the following two commutative 
and exact diagrams by taking into account the relations ( ) ( )im kerΨ = Ω , 

( ) ( )im ker′ ′Ψ = Ω : 

0 0 0

0 0

0 0

0

0 0

K A A Q

L B B R

cocycle im im

↓ ↓ ↓
′→ → → → →
′↓ ↓ Φ ↓ Φ ↓

′→ → → → →
′↓ ↓ Ψ ↓ Ψ
′→ → Ψ → Ψ

↓ ↓

 

0 0 0

0

0

0

0 0

cocycle ker ker

M C C

N D D

↓ ↓ ↓
′→ → Ω → Ω

↓ ↓ ↓
′→ → →
′↓ ↓ Ω ↓ Ω

′→ → →
↓ ↓

 

Using the snake theorem, we successively obtain:  

( )
( )

0

0 0

K L cocycle Q R exact

coboundary cocycle ker Q R exact

cohomology at M ker Q R

Ψ
⇒ ∃ → → → → →

⇒ ∃ → → → → →

⇒ →

 

 
B) DIFFERENTIAL GEOMETRY  
Comparing the sequences obtained in the previous examples, we may state:  
DEFINITION 2.B.1: A differential sequence is said to be formally exact if it is 

exact on the jet level composition of all the prolongations involved. A formally 
exact sequence is said to be strictly exact if all the operators/systems involved are 
FI (See [1] [5] [11] [14] [24] [25] for more details). A strictly exact sequence is 
called canonical if all the operators/systems are involutive. Forty years ago, we 
did provide the link existing between the only known canonical sequences, 
namely the Janet and Spencer sequences ([5], See in particular the pages 185 and 
391).  

With canonical projection ( ) ( )0 0: q q qJ E J E R FΦ = Φ ⇒ = , the various 
prolongations are described by the following commutative and exact “introduc-
tory diagram” often used in the sequel:  


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( )

( )
( )

( )

( )
( )

( )

1

1

* *
1 1 1 0 1

1 1 1 0 1

0

0 0 0

0 0

0 0

0 0

0 0 0

r

r

r

q r q r r r

q r q r r r

q r q r r r

g S T E S T F h

R J E J F Q

R J E J F Q

σ

ρ

ρ

+

+

Φ

+ + + + + +

Φ

+ + + + + +

Φ

+ +

↓ ↓ ↓

→ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓

 (12) 

Chasing along the diagonal of this diagram while applying the standard “snake” 
lemma, we obtain the useful “long exact connecting sequence” also often used in 
the sequel:  

1 1 1 10 0q r q r q r r r rg R R h Q Q+ + + + + + +→ → → → → → →         (13) 

which is thus connecting in a tricky way FI (lower left) with CC (upper right).  
We finally recall the “fundamental diagram I” that we have presented in many 

books and papers, relating the (upper) canonical Spencer sequence to the (lower) 
canonical Janet sequence, that only depends on the left commutative square 

qj= Φ   with 0Φ = Φ  when one has an involutive system ( )q qR J E⊆  over 
E with ( )dim X n=  and ( ):q qj E J E→  is the derivative operator up to or-
der q while the epimorphisms 1, , nΦ Φ  are successively induced by Φ :  

( ) ( ) ( )

1 2

1 2

1 2

0 1

0 1

0 1

0 1

0 0 0

0 0

0 0

0 0

0 0 0

q n

q n

n

j DD D

n

j DD D

n

n

n

C C C

E C E C E C E

E F F F

↓ ↓ ↓

→ Θ → → → → →
↓ ↓ ↓

→ → → → → →
↓Φ ↓ Φ ↓ Φ

→ Θ → → → → → →
↓ ↓ ↓









 

 

(14) 

This result will be used in order to compare the M, S and K metrics when 
4n =  but it is important to notice that this whole diagram does not depend any 

longer on the parameter (m) of S or on the parameters ( ),a m  of K ([22] [23]).  
PROPOSITION 2.B.2: If ( )q qR J E⊂  and ( )1 1q qR J E+ +⊂  are two sys-

tems of respective orders q  and 1q + , then ( )1 1q qR Rρ+ ⊂  if and only if 

( )1
1

q
q q qR Rπ +

+ ⊂  and *
1q qdR T R+ ⊂ ⊗ .  

Proof: First we notice that necessarily we must have ( )1
1

q
q q qR Rπ +

+ ⊂  because, 
as ( )1 qRρ  may not project onto qR , it is nevertheless defined by (maybe) 
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more equations of strict order q than qR . Now, if ( )1 1 1q q qR J Eξ + + +∈ ⊂  is such 
that *

1q qd T Rξ + ∈ ⊗ , then ( ) ( )1 1q q q qR j J Rξ ξ∈ ⇒ ∈ . As ( )1 qJ R  is an affine 
bundle over qR  modelled on *

qT R⊗  (or simply ( )*
1q qT R J R⊗ ⊂ ) and 

( ) ( )( )1 1q qJ E J J E+ ⊂ , we have thus  

( ) ( ) ( ) ( )1 1 1 1 1 1q q q q q qj d J R J E Rξ ξ ξ ρ+ + += − ∈ ∩ = . 
The converse way is similar.  

 
The next key idea has been discovered in ([5]) as a way to define the so-called 

Janet bundles and thus for a totally different reason.  
DEFINITION 2.B.3: Let us “cut” the preceding introductory diagram by 

means of a central vertical line and define ( )( ) ( )0r r rR im J Fρ′ = Φ ⊆  with  

0 0R F′ = . Chasing in this diagram, we notice that ( ) ( )1
1:r

r r rJ E J Eπ +
+ →  in-

duces an epimorphism 1
1: , 0r

r r rR R rπ +
+′ ′→ ∀ ≥ . However, a chase in this dia-

gram proves that the kernel of this epimorphism is not ( )( )1rim σ + Φ  unless 

qR  is FI (care). For this reason, we shall define it to be exactly 1rg +′ .  
THEOREM 2.B.4: ( )1 1r rR Rρ+′ ′⊆  and ( )( ) ( )1 1r rdim R dim Rρ +′ ′−  is the 

number of new generating CC of order 1r + .  
Proof: First of all, we have the following commutative and exact diagram ob-

tained by applying the Spencer operator to the top long exact sequence:  

( ) ( )

( ) ( )

1 1 1 0 1

* * * *
0

0 0

0 0

q r q r r r

q r q r r r

R J E J F Q
d d d d

T R T J E T J F T Q

+ + + + + +

+ +

→ → → → →
↓ ↓ ↓ ↓

→ ⊗ → ⊗ → ⊗ → ⊗ →
 

“Cutting” the diagram in the middle as before while using the last definition, 
we obtain the induced map *

1

d

r rR T R+′ ′→ ⊗  and the first inclusion follows from 
the last proposition. Such a procedure cannot be applied to the top row of the 
introductory diagram through the use of δ  instead of d because of the com-
ment done on the symbol in the last definition.  

Now, using only the definition of the prolongation for the system and its 
symbol, we have the following commutative and exact diagram:  

( )
( )

( ) ( )
( )

( )

( )

1

1

* *
1 1 0 1

1 1 0 1 1

0

0 0 0 0

0 0

0 0

0 0

0 0 0

r r r

r r r

r r r

g S T F T Q Q

R J F J Q Q

R J F Q

σ

ρ

ρ

ρ

Ψ

+

Ψ

+

Ψ

↓ ↓ ↓ ↓

′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓

′ ′→ → → → →

↓ ↓ ↓ ↓

′→ → → →

↓ ↓ ↓



 

and obtain the following commutative and exact diagram:  


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( )

( )

1 1

1 1

0 0 0

0 0

0 0

0 0

0 0

r r

r r

r r

g g A

R R A

R R

ρ

ρ

+

+

↓ ↓ ↓
′ ′→ → → →
↓ ↓
′ ′→ → → →
↓ ↓ ↓
′ ′→ = →
↓ ↓



 

The computation of ( ) ( )( ) ( )1 1r ry dim A dim R dim Rρ +′ ′= = −  only depends on 
( )1x dim Q′=  and is rather tricky as follows (See the motivating examples):  

( ) ( ) ( )( ) ( )( )0r q r r q rdim Q dim R dim J F dim J E+ += + −  

( )( ) ( )( ) ( )( )1 1 0 1r r rdim R dim J F x dim J Qρ +′ = + −  

( ) ( )( ) ( )1 1 1r q r q rdim R dim J E dim R+ + + + +′ = −  

As we shall see with the motivating examples and with the S or K metrics, the 
computation is easier when the system is FI but can be much more difficult 
when the system is not FI.  

However, the number of linearly independent CC of order 1r +  coming 
from the CC of order r is ( )( )1 rdim J Q x−  while the total number of CC of or-
der 1r +  is:  

( ) ( ) ( )( ) ( )( )
( )( ) ( )

1 1 1 0 1

1 0 1

r q r r q r

r r

dim Q dim R dim J F dim J E

dim J F dim R
+ + + + + +

+ +

= + −

′= −
 

The number of new CC of strict order 1r +  is equal to y because  
( )( )1 0rdim J F+  disappears by difference. For a later use in GR, we point out the 

fact that, if the given system ( )q qR J E⊂  depends on parameters that must be 
contained in the ground differential field K (only (m) for the S metric but 
( ),a m  for the K metric), all the dimensions considered may highly depend on 
them even if the underlying procedure is of course the same.  

As an alternative proof, we may say that the number of CC of strict order 
1r +  obtained from the CC of order r is equal to  

( ) ( )( )*
1 0 1r rdim S T F dim gρ+ ′⊗ −  while the total number of CC of order 1r +  

is equal to ( ) ( )*
1 0 1r rdim S T F dim g+ +′⊗ − . The number of new CC of strict order 

1r +  is thus also equal to ( )( ) ( )1 1r ry dim g dim gρ +′ ′= −  because  

( )*
1 0rdim S T F+ ⊗  also disappears by difference. However, unless qR  is FI, we 

have in general ( )( )r rg im σ′ ≠ Φ  and it thus better to use the systems rather 
than their symbols.  

 
COROLLARY 2.B.5: The system ( )0r rR J F′ ⊂  becomes FI with a 2-acyclic 

or involutive symbol and ( ) ( )1 1 1 0r r rR R J Fρ+ +′ ′= ⊂  when r is large enough.  
Proof: According to the last diagram, we have ( )1 1r rg gρ+′ ′⊆  and 1rg +′  is 


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thus defined by more linear equations than ( )1 rgρ ′ . We are facing a purely al-
gebraic problem over commutative polynomial rings and well known noetherian 
arguments are showing that ( )1 1r rg gρ+′ ′=  or, equivalently, 0y =  when r is 
large enough. Chasing in the last diagram, we obtain therefore ( )1 1r rR Rρ+′ ′=  
for r large enough and rR′  is a vector bundle because because q rR +  is a vector 
bundle. If we denote by M ′  the differential module obtained from the system 

( )0r rR J F′ ⊂  exactly like we have denoted by M the differential module ob-
tained from the system ( )q qR J E⊂ , we have the short exact sequence  
0 0mM D M′→ → → → . Accordingly, mM I D′ ⊂  is a torsion-free diffe-
rential module and there cannot exist any specialization as an epimorphism 

0M M′ ′′→ →  with ( ) ( )D Drk M rk M′ ′′=  because the kernel should be a tor-
sion differential module and thus should vanish. This comment is strengthening 
the fact that the knowledge of M and thus of I can only be done through Theo-
rem 1.1. Therefore, if ( ),r s  are the ones produced by this theorem, then the 
order of the CC system must be 1r s+ + . We obtain 3 2 1 6+ + =  for the Janet 
system with systems rR′  of successive dimensions 2, 8, 20, 39, 66, 102, 147 and 
ask the reader to find ( )7 202dim R′ =  (Hint: [1]).  

 
We are now ready for working out the generating CC 1 0 1:D F F→  and start 

afresh in a simpler way because this new operator is FI (Compare to [5], Propo-
sition 2.9, p 173). However, contrary to what the reader could imagine, it is pre-
cisely at this point that troubles may start and the best example is the conformal 
Killing operator. Indeed, it is known that the order of the generating CC for a 
system of order q which is FI is equal to 1s +  if the symbol q sg +  becomes 
2-acyclic before becoming involutive. This fact will be illustrated in a forth-
coming motivating example but we recall that the conformal Killing symbol 

*
1ĝ T T⊂ ⊗  is such that 2ĝ  is 2-acyclic when 4n ≥  while 3ˆ 0g = , a fact ex-

plaining why the Weyl operator is of order 2 but the Bianchi-type operator is al-
so of order 2, a result still neither known nor even acknowledged today ([4] [9]). 

3. Motivating Examples 

We now provide three motivating examples in order to illustrate both the use-
fulness and the limit of the previous procedure.  

EXAMPLE 3.1: With 1, 3,m n K= = =  , we revisit the nice example of Ma-
caulay ([26]) presented in ([3]), namely the homogeneous second order linear 
system ( )2 2R J E⊂  defined by 33 0ξ = , 13 2 0ξ ξ− =  which is far from being 
formally integrable. We let the reader prove the strict inclusions  

( ) ( ) ( )2 1
2 2 2 2R R R J E⊂ ⊂ ⊂  with successive dimensions 6 7 8 10< < < . The re-

spective symbols are involutive but only the final system ( )2
2R  is involutive. It 

follows that the generating CC of the operator defined by 2R  are at most of or-
der 3 but there is indeed only one single generating second order CC ([3]). Ele-
mentary combinatorics allows to prove the formulas ( )2 4rdim g r+ = + ,  

( )2 4 8rdim R r+ = + , 0r∀ ≥ . We have the short exact sequences: 


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( )2 2 00 0, 0 8 10 2 0R J E F→ → → → → → → →  

( ) ( )3 3 1 00 0, 0 12 20 8 0R J E J F→ → → → → → → →  

and the following commutative diagram:  

( ) ( ) ( )

( ) ( )

* * *
5 5 3 0 1

5 5 3 0 1 1

4 4 2 0 1

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T E S T F T F

R J E J F J F

R J E J F F

↓ ↓ ↓ ↓

→ → ⊗ → ⊗ → ⊗ →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓



 

0 0 0 0

0 7 21 20 3 0

0 20 56 40 4 0

0 16 35 20 1 0

0 0 0

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓

 

First of all, we have 0 0R F′ = , ( )1 1 0R J F′ = , ( )2 35 16 19dim R′ = − = ,  
( )3 56 20 36dim R′ = − = .  

It follows that we have successively:  
( )( ) ( )1 0 1 8 8 0dim R dim Rρ ′ ′− = − = ⇒  0 CC of order 1.  
( )( ) ( )1 1 2 20 19 1dim R dim Rρ ′ ′− = − = ⇒  1 new CC of order 2.  
( )( ) ( )1 2 3 36 36 0dim R dim Rρ ′ ′− = − = ⇒  0 new CC of order 3 and so on with: 

( ) ( )( ) ( ) ( )( )( ) ( )3 5 5 6 7 8 6 4 20r r rdim R dim J E dim R r r r r+ + +′ = − = + + + − +  

( )( ) ( )( ) ( )( )
( )( )( ) ( )( )( )

1 2 3 0 1 1

2 4 5 6 6 2 3 4 6
r r rdim R dim J F dim J F

r r r r r r

ρ + + +′ = −

= + + + − + + +
 

and check that ( ) ( )( ) ( )( )2
3 1 2 4 17 54 6r rdim R dim R r r rρ+ +′ ′= = + + + , 0r∀ ≥ .  

Then, counting the dimensions, it is easy to check that the two prolongation 
sequences are exact on the jet level but that the upper symbol sequence is not 
exact at *

3 0S T F⊗  with coboundary space of imension 21 7 14− = , cocycle 
space of dimension 20 3 17− =  and thus cohomology space of dimension  
17 14 3− =  that is ( )( )1

4 4dim R R  as we check that 7 20 16 3 0− + − = . The 
reader may use the snake theorem to find this result directly through a chase not 
evident at first sight.  

We have then ( )( ) ( ) ( )1
2 3 3 3 7r r rdim R dim R dim g r+ + += − = +  and similarly 
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( )( )1
2 3rdim g r+ = +  leading to ( )( ) ( )( ) ( )( )2 1 1

2 3 3 2 6r r rdim R dim R dim g r+ + += − = +  with 

( )( )2
2 2rdim g + = , 0r∀ ≥ . This result is of course coherent with the fact that the  

involutive system with the same solutions as 2R  is ( )2
2R  which is defined by 

33 0ξ = , 23 0ξ = , 22 0ξ = , 13 2 0ξ ξ− = .  
EXAMPLE 3.2: With 1, 3, 2,m n q K= = = =   and the commutative ring 

[ ]1 2 3, ,D K d d d=  of PD operators with coefficients in K, we revisit another 
example of Macaulay ([26]), namely the homogeneous second order formally 
integrable linear system ( )2 2R J E⊂  defined in operator form by  

33 0Pξ ξ≡ = , 23 11 0Qξ ξ ξ≡ − = , 22 0Rξ ξ≡ =  and an epimorphism  
( )2 1 0R J E→ → . As for the systems, we have ( )2 7dim R = , ( )3 8rdim R + = , 

0r∀ ≥ . As for the symbols, we have ( )2 3dim g = , ( )3 1dim g = , 4 0rg + = ,  
0r∀ ≥ . This finite type system has the very particular feature that 3g  is 

2-acyclic but not 3-acyclic (thus involutive) with the short exact δ-sequence:  

2 * 3 *
3 23 1 3 1 3 0 0T g T g

δ
× = = × ⇒ → ∧ ⊗ →∧ ⊗ →  

and we have the three linearly independent equations:  

11,123 111,23 112,31 113,12 111,23

12,123 112,23 122,31 123,12 111,12

13,123 113,23 123,31 133,12 111,31

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

 = + + =


= + + =
 = + + =

 

Collecting these results, we get the two following commutative and exact dia-
grams:  

( ) ( )

( ) ( )

* *
4 2 0 1

4 4 2 0 1

3 3 1 0

0 0 0

0 0

0 0

0 0

0 0 0

S T E S T F F

R J E J F F

R J E J F

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

( ) ( ) ( )

( ) ( )

* * *
5 3 0 1

5 5 3 0 1 1

4 4 2 0 1

0 0 0

0 0

0 0

0 0

0 0 0 0

S T E S T F T F

R J E J F J F

R J E J F F

↓ ↓ ↓
→ ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓
→ → → → →

↓ ↓ ↓ ↓

 

We obtain from these diagrams ( ) *
1 1 0 1 0R J F g T F′ ′= ⇒ = ⊗ ,  

( ) ( ) ( )1 1 2 0 2 1 1R J F R Rρ ρ′ ′ ′= ⇒ ⊂  with a strict inclusion because 27 30<  and 
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we have at least 30 27 3− =  generating second order CC. However, from the 
second diagram, we obtain ( )( ) ( )1 2 360 12 48 56 8dim R dim Rρ ′ ′= − = = − =  and 
thus ( )3 1 2R Rρ′ ′= , a result showing that there are no new generating CC of or-
der 3.  

As ( ) 1dim E = , we have * *
q qS T E S T⊗   and the commutative diagram of 

δ-sequences:  

* * * 2 * * 3 * *
6 5 4 3

* 2 * 3 *
4 3 2 1

0 0 0

0 0

0 0

0 0 0 0

S T T S T T S T T S T

g T g T g T g

↓ ↓ ↓
→ → ⊗ → ∧ ⊗ → ∧ ⊗ →

↓
′ ′ ′ ′→ → ⊗ → ∧ ⊗ → ∧ ⊗ →
↓ ↓ ↓ ↓

  
 

Using the fact that the upper sequence is known to be exact and  
( ) ( )*

1 39 10dim g dim S T′ = < = , an easy chase proves that the lower sequence 
cannot be exact and thus 2g ′  cannot be 2-acyclic.  

The generating CC of 1  is thus a second order operator 2 1 2: F F→  
where 2F  is defined by the long exact prolongation sequence:  

( ) ( ) ( )6 6 4 0 2 1 20 0R J E J F J F F→ → → → → →  

or by the long exact symbol sequence (by chance if one refers to the previous 
example!): 

* * *
6 4 0 2 1 20 0S T E S T F S T F F→ ⊗ → ⊗ → ⊗ → →  

showing that  
( ) ( ) ( ) ( )* * *

2 6 4 23 3 28 45 18 1dim F dim S T dim S T dim S T= − + = − + =  in a cohe-
rent way with ([9] [14]).  

We have thus obtained the following formally exact differential sequence 
which is nevertheless not a Janet sequence because 2R  is FI but not involutive 
as 2g  is finite type with 4 0g = :  

1 2

0 1 22 2 2
0 0E F F F→Θ→ → → → →

 
 

2
0 1 3 3 1 0→Θ→ → → → →  

3 30 0
p

D D D D M→ → → → → →  

Surprisingly, the situation is even quite worst if we start with ( )3 3R J E⊂  
which has nevertheless a 2-acyclic symbol 3g  which is not 3-acyclic (thus in-
volutive because 3n = ). Indeed, we know from the second section or by re-
peating the previous procedure for this new third order operator   that the 
generating CC are described by a first order operator 1 . However, the symbol 
of this operator is only 1-acyclic but not 2-acyclic (exercise). Hence, one can 
prove that the corresponding CC are described by a new second order operator 

2  which is involutive… by chance, giving rise to a Janet sequence with first 
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order operators as follows 3 4 5, ,    ([9], p 119-125):  
3 51 2 4

3 1 2 1 1 1
0 1 12 21 46 72 48 12 0→Θ→ → → → → → → →

   
 

One could also finally use the involutive system ( )4 4R J E⊂  in order to 
construct the canonical Janet sequence and consider the first order involutive 
system ( )5 1 4R J R⊂  in order to obtain the canonical Spencer sequence with 

*
4

r
rC T R= ∧ ⊗  and dimensions ( )8,24,24,8 :  

34 1 2

0 1 2 31 1 1
0 0

Dj D D

C C C C→Θ→ → → → →  

To recapitulate, this example clearly proves that the differential sequences ob-
tained largely depend on whether we use 2 3,R R  or 4R  but also whether we 
look for a sequence of Janet or Spencer type.  

We invite the reader to treat similarly the example 33 11 0ξ ξ− = , 23 0ξ = , 

22 11 0ξ ξ− = .  
EXAMPLE 3.3: In our opinion, the best striking use of acyclicity is the con-

struction of differential sequences for the Killing and conformal Killing opera-
tors which are both defined over the ground differential field K =   for the 
Minkowski metric in dimension 4 or the Euclidean metric in dimension 5. We 
have indeed ([9] [20]):  

31 2

1 2 1 1
0 4 10 20 20 6 0→Θ→ → → → → →

 
 

with *
0 2,E T F S T= =  and, successively, the Killing, Riemann and Bianchi op-

erators acting on the left of column vectors. The differential module counterpart 
over [ ]D K d=  is the resolution of the differential Killing module M:  

3 2 16 20 20 10 4

1 1 2 1
0 0

p
D D D D D M→ → → → → → →

   
 

with the same operators as before but acting now on the right of row vectors by 
composition.  

The conformal situation for 4n =  is quite unexpected with a second order 
Bianchi-type operator: 

31 2

1 2 2 1
0 4 9 10 9 4 0→Θ→ → → → → →

 
 

3 2 14 9 10 9 4

1 2 2 1
0 0

p
D D D D D M→ → → → → → →

   
 

The conformal situation for 5n =  is even quite different with the conformal 
differential sequence:  

31 2 4

1 2 1 2 1
0 5 14 35 35 14 5 0→Θ→ → → → → → →

  
 

Though these results and “jumps” highly depend on acyclicity, in particular 
the fact that the conformal symbol 2ĝ  is 2-acyclic for 4n =  but 3-acyclic for 

5n ≥ , and have been confirmed by computer algebra, they are still neither 
known nor acknowledged ([4] [9]). 
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4. Applications 

Considering the classical Killing operator ( ) *
2 0: S T Fξ ξ ω→ = Ω∈ =   

where ( )ξ  is the Lie derivative with respect to ξ  and *
2S Tω∈  is a non-

degenerate metric with ( ) 0det ω ≠ . Accordingly, it is a lie operator with 
[ ]0, 0 , 0ξ η ξ η= = ⇒ =    and we denote simply by TΘ ⊂  the set of so-

lutions with [ ],Θ Θ ⊂ Θ . Now, as we have explained many times, the main 
problem is to describe the CC of 0Fξ = Ω∈  in the form 1 0Ω =  by intro-
ducing the so-called Riemann operator 1 0 1: F F→ . We advise the reader to 
follow closely the next lines and to imagine why it will not be possible to repeat 
them for studying the conformal Killing operator. Introducing the well known 
Levi-Civita isomorphism ( ) ( ) ( )1 , ,xj ω ω ω ω γ= ∂   by defining the Christoffel  

symbols ( )1
2

k kr
ij i rj j ir r ijγ ω ω ω ω= ∂ + ∂ − ∂  where ( )rsω  is the inverse matrix of  

( )ijω  and the formal Lie derivative, we get the second order system ( )2 2R J T⊂ : 

( )( ) ( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( ) ( )

1

2

0

0

r r r
ij rj i ir j r ijij

kk k k r k r k r r k r k
ij ij rj i ir j ir j ij r r ijij

L x x x

L x x x x x

ξ ω ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ = + + ∂ =


Γ ≡ = + + + − + ∂ =

 

with sections ( ) ( ) ( )( )2 : , ,k k k
i ijx x x xξ ξ ξ ξ→  transforming like  

( ) ( ) ( ) ( )( )2 : , ,k k k
i ijj x x x xξ ξ ξ ξ→ ∂ ∂ . The system ( )1 1R J T⊂  has a symbol 

2 * *
1g T T T∧ ⊂ ⊗  depending only on ω  with ( ) ( )1 1 2dim g n n= −  and is 

finite type because its first prolongation is 2 0g = . It cannot be thus involutive 
and we need to use one additional prolongation. Indeed, using one of the main 
results to be found in ([1] [5] [9] [10] [14]), we know that, when 1R  is FI, then 
the CC of   are of order 1s +  where s is the number of prolongations needed 
in order to get a 2-acyclic symbol, that is 1s =  in the present situation, a result 
that should lead to CC of order 2 if 1R  were FI. However, it is known that 2R  
is FI, thus involutive, if and only if ω  has constant Riemannian curvature, a 
result first found by L.P. Eisenhart in 1926 which is only a particular example of 
the Vessiot structure equations discovered b E. Vessiot in 1903 ([27]), though in 
a quite different setting (See [1] [5] [9] [14] for an explicit modern proof and 
compare to the references ([22] [23]) of ([6]).  

We may introduce the (formal) linearization *
2S T TΓ∈ ⊗  of the Christoffel 

symbols by linearizing the relations ( )1
2

k
kr ij i rj j ir r ijω γ ω ω ω= ∂ + ∂ − ∂  in such a 

way that 0 0Ω = ⇒ Γ =  with:  

( )1
2

k k
kr ij i rj j ir r ij ij krd d dω γΓ = Ω + Ω − Ω − Ω  

We may also introduce the Riemann tensor ,
k
l ijρ  and its (formal) lineariza-

tion:  

( )( ), 1 , , , , ,,

kk s k k s k s k s r k
l ij l ij s s ij l l sj i l is j r l ijl ij

R L ξ ρ ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ = − + + + + ∂  

in order to obtain the Ricci tensor ,
r

ij i rj jiρ ρ ρ= =  and its linearization:  

,
r r r r

ij i rj rj i ir j r ij jiR R Rρ ξ ρ ξ ξ ρ= = + + ∂ =  
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allowing to introduce the Einstein tensor 1 1
2 2

rs
ij ij ij rs ij ijρ ω ω ρ ρ ω ρ= − = −  

with linearization:  

( )( )1
1 1 1
2 2 2

rs ru sv
ij ij ij rs ij ij rs uvij

E L R Rξ ω ω ρ ω ω ω ρ≡ = − − Ω + Ω  

and we must notice (care) that the linearization of rs
rsρ ω ρ=  is  

rs ru sv
rs rs uvR Rω ρ ω ω= − Ω . 

These formulas become particularly simple when ω  is a solution of Einstein 
equations in vacuum, that is when 0 0 0ij ijε ρ ρ= ⇔ = ⇒ = .  

LEMMA 4.1: When 4n =  and the fixed euclidean metric for simplicity, we 
have the useful formula:  

( )00 12,12 13,13 23,23E R R R= − + +  

Proof: We have ( ) ( )00 00 00 11 22 33 00 11 22 332 2E R R R R R R R R R= − + + + = − + +   
and ( )00 10,10 20,20 30,30R R R R= + + . However, we have also:  

11 01,01 21,21 31,31

22 02,02 12,12 32,32

33 03,03 13,13 23,23

R R R R
R R R R
R R R R

= + +

= + +

= + +

 

Summing, we obtain  
( ) ( ) ( )11 22 33 01,01 02,02 03,03 12,12 13,13 23,232R R R R R R R R R+ + = + + + + + . It follows that 

( )00 12,12 13,13 23,23E R R R= − + +  and the three other iiE  are obtained by circular 
permutations of ( )0,1,2,3 . We let the reader treat the general situation as an 
exercise.  

 
A) MINKOWSKI METRIC:  
We have considered this situation in many books or papers and refer the 

reader to our arXiv page or to the recent references ([22] [28]). All the operators 
are first order between the vector bundles E T= , * *

0 1 2F T T g S T= ⊗  , 
( )2

1 1F H g= , ( )3
2 1F H g= , ( )4

3 1F H g=  that are only depending on 1g  
with dimensions 4, 10, 20, 20, 6 when 4n =  and Euler-Poincaré characteristic 

( ) 4 10 20 20 6 0Drk M = − + − + = . The case of an arbitrary n, provided in ([20]), 
depends on various chases in commutative diagrams that will be exhibited later 
on for comparing the respective dimensions. This is not a Janet sequence be-
cause 1R  is FI but 1g  is not involutive. 

B) SCHWARZSCHILD METRIC:  
With the standard Boyer-Lindquist local coordinates  

( )0 1 2 3, , ,x t x r x xθ φ= = = =  and a constant parameter m, we may introduce 
the field of constants ( )k m=   and all the systems or differential modules 
considered in the sequel will be defined over the ground differential field  

( ) ( )( ), ,sin ,cosK k t r θ θ=  with differential structure obtained by setting  
( ) ( )2 sin cosθ θ∂ = , ( ) ( )2 cos sinθ θ∂ = −  together with ( ) ( )2 2sin cos 1θ θ+ =  

instead of using the so-called “rational coordinates” ([23]). With speed of light 
1c =  and 1 mA

r
= − , we shall introduce the diagonal Schwarzschild metric  

( ) ( ) ( )( )2 2 2, 1 , , sinA r A r r rω θ= − − −  with ( ) ( )4 2sindet rω θ= − . Following 


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closely the motivating examples already presented, our challenge is to prove that 
the purely mathematical formal study of the corresponding Killing system 

( )1 1R J T⊂  can be achieved as a simple exercise of formal integrability, with no 
extra physical technical tool, contrary to ([6] [7] [8]). As the computations will 
be explicitly done, the numbers of CC obtained will bring serious doubts about 
the validity of the results obtained in the above references, later confirmed with 
the K metric. First of all we obtain easily the following 10 first order Killing equ-
ations ( )mod Ω :  

( )

( )

( )

( )

( )

3 1 2
33 3

2 2 3
23 3 2

1 2 2 3
13 3 1

2
0 2 3

03 3 0

2 1
22 2

1 1
1 2 2

12 2 1

2
0 2

02 2 0

1 1
11 1 2

1 2 0
01 0 1

0 1
00 0 2

1 cot 0

sin 0

sin 0

sin 0

1 0

0

0

0
2

0

0
2

r

Ar

r
A

rR J T
Ar

r
A
m
Ar

A

m
Ar

ξ ξ θ ξ

ξ θ ξ

ξ θ ξ

ξ θ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

ξ ξ

Ω → + + =

Ω → + =

Ω → + =

Ω → − =


Ω → + =⊂ 
Ω → + =


Ω → − =

Ω → − =

Ω → − =

Ω → + =












 

where we have framed the leading jets.  
This is a finite type system because we get 0k k

ij ijξΓ ≡ + =  with only one 
prolongation!  

The only 9 non-zero Christoffel symbols on 40 are:  

( ) ( ) ( ) ( )

1 0 1
00 01 112 2 2

2 3 1
12 13 22

3 1 2 2
23 33 33

, ,
2 2 2
1 1, , ,

cot , sin , sin cos

mA m m
r Ar Ar

Ar
r r

Ar

γ γ γ

γ γ γ

γ θ γ θ γ θ θ

= = = −

= = = −

= = − = −

 

We obtain for example:  

( ) ( ) ( )

1 1 1
22 22

1 1 1 2 1
33 33 2

31 0,
2

3sin cos 1 sin 0
2

m
r

m
r

ξ ξ

ξ θ θ ξ θ ξ

 Γ ≡ + − = 
 

 Γ ≡ + + − = 
 

 

( ) ( ) ( ) ( )1 2 1 1 1 2 1
33 22 33 2 22sin sin cos sin 0θ ξ θ θ ξ θ ξ⇒ Γ − Γ ≡ + − =  

after only one prolongation (care).  
Then, using r as a summation index, we shall see that we have in general for 
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the linearization of the Riemann and Ricci tensors:  

, , , , , , 0r r r r r
kl ij rl ij k kr ij l kl rj i kl ir j r kl ijR ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ + + + + ∂ ≠  

0r r r
ij rj i ir j r ijR ρ ξ ρ ξ ξ ρ≡ + + ∂ ≠  

The only 6 non-zero components of the Riemann tensor are:  

( )

( ) ( )

2

01,01 02,02 03,033

2
2

12,12 13,13 23,23

sin
, ,

2 2
sin

, , sin
2 2

mAm mA
r rr

mm mr
Ar Ar

θ
ρ ρ ρ

θ
ρ ρ ρ θ

= + = − = −

= + = + = −

 

but we must not forget hat we have indeed 0ijρ =  for the 10 components of 
the Ricci tensor, in particular 0iiρ =  for the diagonal components with  

0,1,2,3i = . We have in particular:  

( )

0 1 3
22 2,02 2,12 2,32

02,02 12,12 23,232 2

1 1
sin

0
2 2

A
A r

m m m
r r r

ρ ρ ρ ρ

ρ ρ ρ
θ

= + +

= − −

= − − + =

 

We also obtain ( )mod Ω :  

( ) ( )0 1 1
01,01 01,01 0 1 01,01 1 01,01

1 1
01,01 4

2

3 0 0

r
rR

mR
r

ρ ξ ξ ξ ρ ξ ρ

ξ ξ

≡ + + ∂ = ∂

⇒ ≡ − = ⇒ =
 

and similarly:  

1 2 1 1
01,02 01,01 2 02,02 1 01,02 2 23

3 0 0
2

r
r

mR
r

ρ ξ ρ ξ ξ ρ ξ ξ≡ + + ∂ = = ⇒ =  

( )1 0 1 2 0
02,12 12,12 0 02,02 1 02,12 0 1 0

2
r

r
mR A
rA

ρ ξ ρ ξ ξ ρ ξ ξ≡ + + ∂ = − =  

( )

1 3
23,12 21,12 3 23,32 1 23,12

1 2 3
3 1

1
3

sin
2
3 0
2

r
rR

m mr
rA
m
rA

ρ ξ ρ ξ ξ ρ

ξ θ ξ

ξ

≡ + + ∂

= − +

= − =

 

1
01,03 3 23,123 2

3
2

m AR R
r r
ξ⇒ = = −  

( )0 1 2 3
01,23 01,23 01,23 0 1 2 3 01,230 0r

rRρ ρ ξ ξ ξ ξ ξ ρ= ⇒ = + + + + ∂ =  

and so on, in order to avoid using computer algebra. However, the main conse-
quence of this remark is to explain the existence of the 15 second order CC. In-
deed, denoting by “~” a linear proportional dependence ( )mod Ω , we have the 
successive three cases:  
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( )

( )
( )
( )
( )

( )

1
00 11 22 33 01,01 02,02 03,03 12,12 13,13 23,23

1
12 01,02 13,23 2

1
13 01,03 12,23 3

0
02 01,12 03,23 2

0
03 01,13 02,23 3

01 23 01,23 02,03 02,12 02,13 03,13

, , , 0

0

0

0

0

, 0, 0, 0, 0, 0

R R R R R R R R R R

R R R

R R R

R R R

R R R

R R R R R R R

ξ

ξ

ξ

ξ

ξ

→ =

→ =

→ =

→ =

→ =

→ → → → →

    









12,13, 0R →

 

as a way to obtain the 5 equalities to zero on the right and thus a total of 
20 5 15− =  second order CC obtained by elimination. However, the present 
partition 15 5 4 6= + +  is quite different from the partition 15 10 5= +  used by 
the authors quoted in the Introduction which is obtained by taking into account 
the vanishing assumption of the 10 components of the Ricci tensor. As such a 
result questions once more the mathematical foundations of general relativity, in 
particular the existence of gravitational waves, we provide a few additional tech-
nical comments. 

The main point is a tricky formula which is not evident at all. Indeed, using 
the well known properties of the Lie derivative, we have the following geometric 
objects (not necessarily tensors) and their linearizations (generally tensors):  

* *
2 2, ,k k

ij ij ij ijS T S T Tω γ→Ω ∈ →Γ ∈ ⊗  

2 * * 3 * *
, , , ,,kl ij kl ij kl ijr kl ijrR T T T B T T Tρ β→ ∈∧ ⊗ ⊗ → ∈∧ ⊗ ⊗  

Then, using r as a summation index, we shall see that we have in general:  

, , , , , , 0r r r r r
kl ij rl ij k kr ij l kl rj i kl ir j r kl ijR ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ + + + + ∂ ≠  

, , , , , , ,
r r r rs rs t

kl ij kr l ij kl ij kr l ij l ij kr ri sj ij i rj stR R R Rρ ω ρ ω ρ ω ω ρ= ⇒ = + Ω ⇒ = + Ω  

, , ,
r r rs

ij i rj ij i rj ri sjR R Rρ ρ ω= ⇒ = ≠  

We prove these results using local coordinates and the formal Lie derivative 
obtained while replacing ( )1j ξ  by 1ξ  (See [1] [5] [9] [14] for details). First of 
all, from the tensorial property of the Riemann tensor and the Killing equations 

k k r
us ku s ks u r usω ξ ω ξ ξ ωΩ = + + ∂ , we have:  

( )( ), 1 , , , , ,,

kk s k k s k s k s r k
l ij l ij s s ij l l sj i l is j r l ijl ij

R L ξ ρ ρ ξ ρ ξ ρ ξ ρ ξ ξ ρ≡ = − + + + + ∂  

( ) ( ), , , , , ,

, , ,

s k r s s k r s r k s
ku v ij s r v ij v ij ks u r us v ij ku r v ij v ij su

s r s
sv ij u r uv ij v ij su

ω ρ ξ ξ ρ ρ ω ξ ξ ω ρ ω ξ ρ ρ

ρ ξ ξ ρ ρ

− + ∂ = + ∂ + ∂ − Ω

= + ∂ − Ω
 

and thus , , ,
k s

ku v ij uv ij v ij suR Rω ρ= − Ω .  

( )
1 0 2 3
1,11 11 1,01 1,21 1,31 01,01 12,12 13,132 2 2

1 1 10 0
sinA r r

ρ ρ ρ ρ ρ ρ ρ ρ
θ

= ⇒ = + + = − − =  
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We have for example, in this particular case:  

( )( )

0
1,01 01,01 3

00 0 1 1 0 1 1
1,01 1,01 1 1 1,01 1 13 31,01

1

22

m
A Ar

m mR
Ar Ar

ρ ρ

ξ ρ ρ ξ ξ ρ ξ ξ

= =

 ⇒ = = + ∂ = + ∂  
 


 

The only use of 01,01R  is allowing to get 1 0ξ =  in the previous list, but we 
have also exactly:  

( )
11 2

1, 2 01,02 31,32 12 12 1,12 12 122 2 3

1 1 0
sin 2

rs
r s

mR R R R R
A r r

ω ω ρ
θ

= − = − Ω = + Ω ⇒ =  

The use of 01,02R  or 13,23R  is allowing to get 1
2 0ξ =  in the previous list 

with:  

0 3
1,02 1,2 12 1,32 1,2 123 3 3 3

3 3,
2 2 2

m m m mR R
r r r r
ξ ξ= − + Ω = + − Ω  

and thus also exactly: 

11 22 0 3
1, 2 12,12 12 12 12 1,02 1,32 123 3 0

2 2
rs t

r st
m mR R R
r r

ω ρ ω ω ρΩ = − Ω = − Ω ⇒ = + + Ω =  

It follows that the 4 central second order CC of the list successively amounts 
to 12 13 02 030, 0, 0, 0R R R R= = = = , a result breaking the intrinsic/coordinate- 
free interpretation of the 10 Einstein equations and the situation is even worst 
for the other components of the Ricci tensor. Indeed, 01R  and 23R  only de-
pend on the vanishing of 02,12 03,13,R R  and 02,03 12,13,R R  among the bottom CC 
of the list, while the diagonal terms 00 11 22 33, , ,R R R R  only depend, as we just 
saw, on the 6 non zero components of the Riemann tensor. We have thus ob-
tained the totally unusual partition 10 4 4 2= + +  along the successive blocks of 
the former list with:  

{ } { } { } { }00 11 22 33 12 13 02 03 01 23, , , , , , ,ijR R R R R R R R R R R= + +  

Finally, we notice that 01,23 02,31 03,120, 0 0R R R= = ⇒ =  from the identity in 
3 * *T T∧ ⊗ :  

01,23 02,31 03,12 0R R R+ + =  

and there is no way to have two identical indices in the first jets appearing 
through the (formal) Lie derivative just described. As for the third order CC,  

setting ( )1 1
1 22

A j
A

ξ ξ
′

= ∈ Ω , we have at least the first prolongations of the pre-

vious second order CC to which we have to add the three new generating ones:  

1 1 1 1 1 1
1 1 2 2 3 30, 0, 0d d dξ ξ ξ ξ ξ ξ− = − = − =  

provided by the Spencer operator, leading to the crossed terms 1 1 0i j j id dξ ξ− =  
for , 1, 2,3i j =  because the Spencer operator is not FI.  

Setting now 1 1 1 0 0
2 2 3 3 2 2 3 3, , , ,U V V W Wξ ξ ξ ξ ξ= = = = =  with ( ) ( )2, ,U V W j∈ Ω , 

we have to look for the CC of the system ( )1
1 1R R=  already presented, then the 

system ( )2
1R  with ( )( )2

1 5dim R =  and finally ( )3
1R  with ( )( )3

1 4dim R =  which 
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is formally integrable but not involutive because it is of finite type. Beside the 
only zero order equation 1 Uξ = , we have the following 15 first order ones:  

( ) ( )

( ) ( )

0 0 0 0
0 1 0 2 2 3 32

1 1 1 1
0 0 1 2 2 3 3

2 2 3 3
0 2 1 2 0 3 1 32 2 2 2 2 2

2 2 2 3 3 2
2 3 2 3

1, , , ,
2

, , , ,
2

1 1, , , ,
sin sin

1 1, sin 0, cot

A U d U W W
A A

Ad U U V V
A

A AW V W V
r Ar r Ar

U U
r r

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ ξ ξ
θ θ

ξ ξ θ ξ ξ θ ξ

′
= − = = =

′
= = = =

= = − = = −

= − + = + = −

 

Among the CC we must have 2 3 3 2 0d V d V− =  which is among the differen-
tial consequences of the Spencer operator as we saw but we must also have 

2 3 3 2 0d W d W− =  and both seem to be new third order CC, together with the CC 
obtained by eliminating 2ξ  and 3ξ  from the three last equations after two 
prolongations as in ([23]):  

( ) ( ) ( ) ( )2 2
3 3 2 2 2sin cos sin 2sin 0d V V d V Uθ θ θ θ+ + + =  

However, things are not so simple, even if we have in mind that ( ) ( )2,V W j∈ Ω , 
because the central sign in the previous formula is opposite to the sign found af-
ter one prolongation in the formula:  

( ) ( ) ( )1 1 2 1
33 2 22sin cos sin 0ξ θ θ ξ θ ξ+ − =  

and it is at this moment that we need introduce new differential geometric me-
thods! 

First of all, we have:  

,
k k k r k r k
l ij i lj j li lj ri li rjρ γ γ γ γ γ γ= ∂ − ∂ + −  

and thus, because *
2S T TΓ∈ ⊗  is a tensor::  

( ) ( )
( ) ( )

,
k k k r k r k k r k r
l ij i lj j li lj ri li rj ri lj rj li

k r k k r k r k k r
i lj li rj ri lj j li lj ri rj li

k r k r k k r k r k r k k r
i lj li rj ji lr ri lj j li lj ri ij lr rj li

k k
i lj j li

R d d

d d

d d

γ γ γ γ

γ γ γ γ

γ γ γ γ γ γ

= Γ − Γ + Γ − Γ + Γ − Γ

= Γ − Γ + Γ − Γ − Γ + Γ

= Γ − Γ − Γ + Γ − Γ − Γ − Γ + Γ

= ∇ Γ −∇ Γ

 

by introducing the covariant derivative ∇ . We recall that 0, , ,r ij r i jω∇ = ∀  or, 
equivalently, that ( ) ( ) 1, : ,k k k r

i irid T Rγ ξ ξ ξ γ ξ− ∈ → = − ∈  is a 1R -connection 
with s s

sj ir is jr r ijω γ ω γ ω+ = ∂ , a result allowing to move down the index k in the 
previous formulas (See [9] for more details).  

We may thus take into account the Bianchi identities implied by the cyclic 
sums on ( )ijr   

( ), , , , 0 0kl ijr r kl ij i kl jr j kl ri cycl
β ρ ρ ρ β ρ γρ≡ ∇ +∇ +∇ = ⇔ ≡ Σ ∂ − =  

and their respective linearizations , 0kl ijrB =  as described below. We shall see 
later on that β  and B are sections of the vector bundle 2F  defined by the 
short exact sequence:  
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3 * 4 *
2 10 0F T g T T

δ
→ → ∧ ⊗ →∧ ⊗ →  

with 
( ) ( )( )( ) ( )( ) ( )( )( )( )

( )( )
2

2 2

1 2 6 1 2 1 2 3 24

1 2 24

dim F n n n n n n n n n n

n n n

= − − − − − − −

= − −
 

because ( ) ( )1 1 2dim g n n= −  for any nondegenerate metric, that is  
24 4 20− =  when 4n = .  

Such results cannot be even imagined by somebody not aware of the δ-acy- 
clicity ([1] [9] [13]).  

We have the linearized cyclic sums of covariant derivatives both with their 
respective symbolic descriptions, not to be confused with the non-linear corres-
ponding ones:  

( )

( )

( ) ( )

, , , , 0

0

kl rij r kl ij i kl jr j kl ri

cycl

cycl cycl

B R R R mod

dR R

B R

γ ρ

ρ

≡ ∇ +∇ +∇ = Γ

⇔ Σ − − Γ =

⇔ ≡ Σ ∇ = Σ Γ

 

In order to recapitulate these new concepts obtained after one, two or three 
prolongations, we have successively ω γ ρ β→ → →  and the respective linea-
rizations R BΩ→Γ→ → .  

The 24 Bianchi identities are related by the 4 linear relations like  

01,023 02,013 03,012 0B B B− + =  when 4n =  because 00,123 0B = . These relations are 
existinging between the 24 components of the Lanczos tensor because  

( )2B F ker δ∈ ⊂  in the previous short exact sequence ([20]).  
With more details, we number the 20 linearly independent Bianchi identities 

as follows:  

01,012 01,013

02,123 02,012 02,013 02,023

03,123 03,012 03,013 03,023

12,123 12,012 12,013 12,023

13,123 13,012 13,013 13,023

23,123 23,023

1 , 2 ,

3 , 4 , 5 , 6 ,

7 , 8 , 9 , 10 ,

11 , 12 , 13 , 14 ,

15 , 16 , 14 , 18 ,

19 , 20

B B

B B B B

B B B B

B B B B

B B B B

B B

 

to which we add the 4 linearly dependent:  

01,123 01,023 23,012 23,01321 , 22 , 23 , 24B B B B  

We successively study a few situations without any, with one or with two va-
nishing linearized Riemann components, taking into account that the four Eins-
tein equations are described by:  

12 , 17 , 20  for the index 0, 4 , 9 , 19  for the index 1, 1 , 10 , 
15  for the index 2, 2 , 6 , 11  for the index 3.  

BIANCHI 1 : ( )0 1
01,012 0 01,12 1 01,20 2 01,01 02 123

3
2

mB R R R
r

≡ ∇ +∇ +∇ = − Γ + Γ . 
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First of all, we have 0
01,12 23

3
2

mR
r
ξ= − , 1

01,02 23

3
2

mR
r
ξ= , 1

01,01 4

3mR
r

ξ= −  and 

obtain:  

0 0
0 01,12 02 01 01,023

0 1
02 23 2

0
023

3
2
3
2 2
3
2

mR R
r
m m
r Ar
m
r

ξ γ

ξ ξ

∇ = − −

 = − + 
 

= − Γ

 

( )1 1 0 1 2
1 01,20 12 2 01 11 12 01,203 4

1 1 1
12 2 23 2 4

1 1
12 23 4

3 9 2
2 2

3 6
2 2
3 6
2

m mR R
r r

m m m
r Ar r
m m
r r

ξ ξ γ γ γ

ξ ξ ξ

ξ

 ∇ = − + − + + 
 

 = − − + 
 

= − Γ +

 

1 2
2 01,01 2 12 02,014

1 1
2 24 3

1
24

3 2

3 2 3
2

6

mR R
r
m m

rr r
m

r

ξ γ

ξ ξ

ξ

∇ = − −

= − −

= −

 

and we notice that ( )0 1 0 1 0 1
02 12 02 12 2 0 1 01,0120 0d Bξ ξ ξ ξΓ + Γ = + = + = ⇒ = . As a by-

product, we have 0 2 22 0
2

md W V
Ar

+ = , 1 2 2 1 2 0 22 0 0
2

md V V d V d W
Ar

− = ⇒ + = .  

BIANCHI 3 : 0
02,123 1 02,23 2 02,31 3 02,12 13

3
2
mAB R R R
r

≡ ∇ +∇ +∇ = Γ .  

First of all, we have 0
02,23 3

3
2
mAR
r
ξ= , 02,31 0R = , 02,12 0R = , 0

01,31 33

3
2

mR
r
ξ=  

and obtain:  

1 02,23 1 02,23 01 2,23 12 0 ,23 12 02, 3 13 02,2

2
0 0 0

13 3 01 02,233 2

2
0 0

13 32 3

0 0
13 32

3 3 3 3
2 2 2

3 12 27
2 2 4

3 9
2 2

r r r r
r r r rR d R R R R R

mA m mA R
r rr r

mA m m
r r r

mA mA
r r

γ γ γ γ

ξ ξ γ

ξ ξ

ξ

∇ = − − − −

   = + − − −   
  

 
= − − 

 

= Γ −

 

( )

2 02,31 02 2,31 22 0 ,31 23 02, 1 12 02,3

01,31 02,31 02,32

0 0
3 32 2

0
32

0
1cot

3 3
2 2
3

r r r r
r r r rR R R R R

ArR R R
r

mA mA
r r
mA
r

γ γ γ γ

θ

ξ ξ

ξ

∇ = − − − −

= − −

= +

=
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3 02,12 03 2,12 23 0 ,12 13 02, 2 23 02,1

3 3 3
23 03,12 13 02,32 23 02,13

0
32

0

3
2

r r r r
r r r rR R R R R

R R R
mA
r

γ γ γ γ

γ γ γ

ξ

∇ = − − − −

= − − −

=

 

and we may use the fact that  

0 0 0
13 13 3 1 3 3

1 3 1 31 0 1 0
2 2
m md W W

Ar r Ar r
ξ ξ   Γ ≡ − − = ⇒ − − =   

   
.  

BIANCHI 4 : 1
02,012 0 02,12 1 02,20 2 02,01 223

3
2

mB R R R
r

≡ ∇ +∇ +∇ = Γ .  

First of all we have 02,12 0R = , 1
02,02 2

3
2
mAR
r

ξ= , 1
02,01 23

3
2

mR
r
ξ= ,  

1
12,12 2

3
2

mR
Ar

ξ= −  and obtain:  

0 02,12 0 02,12 00 2,12 02 0 ,12 01 02, 2 02 02,1

1 0
00 12,12 01 02,02

1 1
2 2 2 2

0

3 3
2 2 2 2

0

r r r r
r r r rR d R R R R R

R R

mA m m mA
r Ar Ar r

γ γ γ γ

γ γ

ξ ξ

∇ = − − − −

= − −

     = − − −     
     

=

 

1
1 02,20 1 01 2,20 12 0 ,202

1 1 0 2
1 1 01 02,02 12 02,022 2

2
1 1 1 1

12 2 2 4 3

2 2 2
1

4 3 4 3 4

3 2 2
2

3 3 2 2
2 2
3 3 3 3
2 2 2 2

3 3 3 3 3
4

r r
r r

mAR d R R
r

mA mA R R
r r
mA m mA m mA
r Ar r r r

m m m m m
r r r r r

ξ γ γ

ξ ξ γ γ

ξ ξ ξ ξ

ξ

 ∇ = − − − 
 

 = − − ∂ + + 
 

    = − − ∂ + +    
    

 
= − + − + −

 
1

2
1 1

3 4

6 27
4

m m
r r

ξ

ξ ξ



= −

 

1
2 02,01 22 02 2,01 22 0 ,01 02 02, 1 12 02,03

1 1 2
22 22 01,01 12 02,023

1 1
223 3

2
1 1 1
223 3 4

3
2
3
2
3 9
2 2
3 6 27
2 4

r r r r
r r r r

mR R R R R
r
m R R
r
m mA
r r
m m m
r r r

ξ γ γ γ γ

ξ γ γ

ξ ξ

ξ ξ

∇ = − − − −

= − −

= −

= Γ − +

 

This delicate checking proves that  

1
02,012 22 2 23

3 30 1 0
22

m mB d V U
rr

 ≡ Γ = ⇒ + − = 
 

 is a differential consequence of 

02,12 0R = . We let the reader prove as an exercise that  

( ) ( ) ( )1 2
03,013 33 3 3 23

3 30 sin cos 1 sin 0
22

m mB d V V U
rr

θ θ θ ≡ Γ = ⇒ + + − = 
 

 in order 

to recover 19  by eliminating U.  
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BIANCHI 6 : 0
02,023 0 02,23 2 02,30 3 02,02 03

3
2
mAB R R R
r

≡ ∇ +∇ +∇ = Γ .  

First of all, we have 0
02,23 3

3
2
mAR
r
ξ= , 02,30 0R = , 1

02,02 2

3
2
mAR
r

ξ=  and obtain:  

0 02,23 0 02,23 00 2,23 02 0 ,23 02 02, 3 03 02,2

1
0 02,23 00 12,23

2
0 1
03 33

0
03

3 3
2 4

3
2

r r r r
r r r rR d R R R R R

d R R

mA m
r r

mA
r

γ γ γ γ

γ

ξ ξ

∇ = − − − −

= −

= +

= Γ

 

1
2 02,30 22 01,30

01,30

1
32

0

3
2

R R
ArR

mA
r

γ

ξ

∇ = −

=

= −

 

1
3 02,02 32

3
2
mAR
r

ξ∇ =  

where 0 0 1 0 1
03 03 3 3 02 2 0

2 2
m md
Ar Ar

ξ ξ ξ ξ Γ ≡ + = + = 
 

 and 1
12,23 3

3
2

mR
Ar

ξ= − ,  

1
01,03 33

3
2

mR
r
ξ= .  

Again, only this final result proves that  
0

02,023 03 0 3 32

3 0
2 2
mA mB d W V
r Ar

≡ Γ ⇒ + =  is a differential consequence of  

02,03 0R = .  

BIANCHI 12 : 0
12,012 0 12,12 1 12,20 2 12,01 223

3
2

mB R R R
r

≡ ∇ +∇ +∇ = − Γ .  

First of all, 0 0 1
22 22 0

r
A

ξ ξΓ ≡ + , 1
12,12 2

3
2

mR
Ar

ξ= − , 12,20 0R = , 0
12,01 23

3
2

mR
r
ξ= −  

and we obtain:  

0 12,12 0 12,12 01 2,12 02 1 ,12

0
0 12,12 01 02,12

1
02

2 2

2
3

2

r r
r rR d R R R

d R R
m

Ar

γ γ

γ

ξ

∇ = − −

= −

= −

 

( )1 2 0
1 12,20 11 12 01 12,20

2
12 12,20

0 2

2
0

R R

R

γ γ γ

γ

∇ = − + +

= −

=

 

0 2
2 12,01 22 12 12,023

0
223

0 1
22 03 2

3
2
3
2
3 3
2 2

mR R
r
m
r
m m
r Ar

ξ γ

ξ

ξ

∇ = − −

= −

= − Γ +

 

https://doi.org/10.4236/jmp.2022.134036


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134036 648 Journal of Modern Physics 
 

a result leading to 2 2 0 0rd W d U
A

+ = . Again, only the final sum has an intrinsic 

mathematical meaning with 0
12,012 223

3
2

mB
r

= − Γ .  

BIANCHI 22 : 01,023 0 01,23 2 01,30 3 01,02 0B R R R≡ ∇ +∇ +∇ =   

First of all, we have 01,23 0R = , 1
01,03 33

3
2

mR
r
ξ= , 1

01,02 23

3
2

mR
r
ξ= , 02,03 0R =  

and, as 23 0Ω = :  

( )( ) ( )
( )

1 1 1 3 1 2 3 1
23 23 33 2 22 3 23 3

1 2 2 3 1
23 3 2 3

1 1
23 3

sin cot

cot

Ar

ξ γ ξ γ ξ γ ξ

ξ ξ θ ξ θ ξ

ξ θ ξ

Γ ≡ + + −

= − + −

= −

 

( )
( ) ( )

2 2 2 2
13 13 3 1 1 3 13

2 2 3 2 3 2
13 33 1 12 13 3

2 3
13 1sin cos

r r r
r rξ γ ξ γ ξ γ

ξ γ ξ γ γ ξ

ξ θ θ ξ

Γ ≡ + + −

= + + −

= −

 

( )
( )

3 3 3 3 3
12 12 2 1 1 2 12

3 3 3 3 2 3
12 23 1 13 12 2

3 3
12 1cot

r r r
r r rξ γ ξ γ ξ γ ξ

ξ γ ξ γ γ ξ

ξ θ ξ

Γ ≡ + + −

= + + −

= +

 

0 01,23 0 01,23 00 1,23 01 0 ,23 02 01, 3 03 01,2

1 0
0 01,23 00 01,23 01 00,13

0

r r r r
r r r rR d R R R R R

d R R R

γ γ γ γ

γ γ

∇ = − − − −

= − −

=

 

( )

( )( )

2 3
2 01,30 2 01,30 12 02,30 23 01,30

1 1
23 33 3

1 1
23 33

1
233

3 3 cot
2 2
3 cot
2
3
2

R d R R R
m m
r r
m
r
m
r

γ γ

ξ θ ξ

ξ θ ξ

∇ = − −

= − +

= − −

= − Γ

 

( )

( )( )

3 3
3 01,02 3 01,02 13 03,02 23 01,03

1 1
23 33 3

1 1
23 33

1
233

3 3 cot
2 2
3 cot
2
3
2

R d R R R
m m
r r
m
r
m
r

γ γ

ξ θ ξ

ξ θ ξ

∇ = − −

= −

= −

= Γ

 

We could also say that ( )1 1
2 01,03 2 3 23 233 3

3 3
2 2

m md R d V
r r

ξ ξ= − +  and obtain there-

fore finally the formula 01,023 2 3 3 20 0B d V d V= ⇒ − =  is a differential conse-
quence of 01,23 0R = .  

We also check in particular:  

0 01,23 1,23 00 0 ,23 01 01, 3 02 01,2 03

0

r r r r
r r r rR ρ ρ ρ ρ∇ ⇒ Γ + Γ + Γ + Γ

⇒
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( )

( ) ( )

2 01,30 1,30 02 0 ,30 12 01, 0 23 01,3 02

3 1
03,30 12 01,10 23

2 3 1
12 233

2 3 1 1
12 3 233 3

sin
2

sin cot
2 2

r r r r
r r r rR

mA m
r r

mA m m
r r r

ρ ρ ρ ρ

ρ ρ

θ

θ ξ θ ξ

∇ ⇒ Γ + Γ + Γ + Γ

⇒ Γ + Γ

⇒ Γ − Γ

⇒ − − Γ

 

              

( ) ( ) ( )

( )

( )( )

1 3 1
2 3 1 33 3

1 1
3 233 3

1 1 1
23 3 233 3

1
233

sin cos cot
2

cot
2

cot
2 2
3
2

m mA md
rr r

m m
r r
m m
r r
m
r

ξ θ θ ξ θ ξ

θ ξ

ξ θ ξ

 ⇒ − − + 
 

− − Γ

⇒ − − − Γ

⇒ − Γ

 

3 01,02 1,02 03 0 ,02 13 01, 2 03 01,0 23

2 1
02,02 13 01,01 23

2 1
13 2332

r r r r
r r r rR

mA m
r r

ρ ρ ρ ρ

ρ ρ

∇ ⇒ Γ + Γ + Γ + Γ

⇒ Γ + Γ

⇒ − Γ + Γ

 

     

( ) ( )( )

( )( )

2 2 3 1
13 1 233

1 1 1
23 3 233 3

1
233

sin cot
2

cot
2
3
2

mA m
r r

m m
r r
m
r

ξ θ θ ξ

ξ θ ξ

⇒ − − + Γ

⇒ − + Γ

⇒ Γ

 

As a tricky exercise too, we advise the reader to treat similarly the case of 
13 16+  or 21  in order to obtain 01,123 2 3 3 20 0B d W d W= ⇒ − =  because  

01,23 0R =  and 03,12 0R =  (care).  
REMARK 4.B.1: Though a few conditions like 2 3 3 2 0d V d V− =  22  or  

2 3 3 2 0d W d W− =  21  look like to be third order CC for Ω , we have thus 
proved that they come indeed from the first prolongations of the second order 
CC. The same comment is also valid for a few other striking CC. Using previous 
results, we have successively 6  other relations:  

( )1 0 1 0
12 02 2 1 0 1 2 0 20 0 1d d V d Wξ ξ ξ ξ+ = + = ⇒ + =  

( )1 0 1 0
13 03 3 1 0 1 3 0 30 0 2d d V d Wξ ξ ξ ξ+ = + = ⇒ + =  

( ) ( ) ( )
( ) ( ) ( )

1 1 2 1
33 2 22

2
3 3 2 2 2

sin cos sin 0

sin cos sin 0 19d V V d V

ξ θ θ ξ θ ξ

θ θ θ

+ − =

⇒ + − =
 

( ) ( ) ( )
( ) ( ) ( )

0 0 2 0
33 2 22

2
3 3 2 2 2

sin cos sin 0

sin cos sin 0 20d W W d W

ξ θ θ ξ θ ξ

θ θ θ

+ − =

⇒ + − =
 

because 2 2 0 0rd W d U
A

+ =  12  and  
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( ) ( ) ( )2
3 3 2 0sin cos sin 0rd W W d U

A
θ θ θ+ + =  17   

( )1 2 0 1 2 0 2
02 12 2 0 1 0 2 1 20 0 24A d A d V A d Wξ ξ ξ ξ− = − = ⇒ − =  

( )1 2 0 1 2 0 2
03 13 3 0 1 0 3 1 30 0 23A d A d V A d Wξ ξ ξ ξ− = − = ⇒ − =  

From the 24 B, we have thus used 8 of them and are left with 24 8 16− =  ex-
pressions involving the 4 4 16× =  different first derivatives of the 4 functions 
( ),V W , namely B 3  to B 18 . Now, we notice that, among these 24 B, only 4 
of them do contain three components ,kl ijR  that are not vanishing for the 
S-metric, namely 1 , 2 , 19  and 20 . They are providing the terms r rrd E  
for 0,1, 2,3r =  in the divergence type condition for the linearized Einstein eq-
uations implied by the linearized Bianchi identities over the Schwarzschild me-
tric. Accordingly, it does not seem possible to obtain any other third order CC 
apart from these 4 divergence conditions.  

It remains to apply these results to the successive prolongations of the Killing 
equations, as we know from the intrinsic study achieved in ([22] [23]) that we 
have the successive Lie algebroids:  

( ) ( ) ( ) ( ) ( )4 3 2 1
1 1 1 1 1 1R R R R R J T= ⊂ ⊂ = ⊂  

with respective dimensions 4 4 5 10 10 20= < < = <  and ( )3
1R  does not depend 

any longer on the S-parameter m.  
The challenge will be to prove that… the only knowledge of these numbers is 

sufficient! 
In an equivalent way as 2 20 0, 0rg g r+= ⇒ = ∀ ≥ , we obtain successively:  

( ) ( )( ) ( )*
1 1 2 20 10 10,dim R dim J T dim S T= − = − =  

( ) ( )( ) ( )( )*
2 2 1 2 60 50 10,dim R dim J T dim J S T= − = − =  

( ) ( ) ( ) ( ) ( )3 2 4 4 35 5 1 4rdim R dim R dim R dim R dim R+= − = ⇒ = = − =  

and shall use these results from now on.  
First of all, using the introductory diagram when 1, 1q r= = , we may apply 

the Spencer δ-map to the symbol top row in order to obtain the diagram:  

* *
3 2 0 2

* * * *
2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F h

T S T T T T F

T g T T T T F

T T T T

↓ ↓

→ ⊗ → ⊗ → →

↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ →

↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓
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Using the Spencer δ-cohomology ( ) ( ) ( )1 1 1
r r rH g Z g B g=  at  

*
1

r T g→ ∧ ⊗ →  , we obtain:  
PROPOSITION 4.B.2: ( ) ( ) ( )2 2 2

2 1 21 2 ( ) 1 12h H g n n dim Q n n⇒ + ≤ ≤ −  
whenever 3n ≥ .  

Proof: As there cannot be any CC of order one and thus 1 0Q = , we have the 
long exact connecting sequence 3 2 2 20 0R R h Q→ → → → →  and counting 
the dimensions with *

0 2F S T= , we have:  

( ) ( ) ( ) ( ) ( )* * * 2 2
2 2 2 2 3 1 12dim Q dim h dim S T S T dim S T T n n≤ = ⊗ − ⊗ = −  

This result is confirmed by a circular chase proving that the left bottom δ-map 
is an epimorphism and a snake chase in the last diagram providing the short ex-
act sequence:  

2 * 3 *
2 10 0, 0 20 36 16 0h T g T T

δ
→ → ∧ ⊗ → ∧ ⊗ → → → → →  

Indeed, as ( ) 0det ω ≠  we may use the metric for providing an isomorphism 

( ) ( )* : r r
i riT T ξ ξ ω ξ→ =  in such a way that 2 *

1g T∧  is defined by  

, , 0i j j iξ ξ+ =  for both the M, S and K metrics.  
However, introducing the conformal Killing system of infinitesimal Lie equa-

tions with symbol 1ĝ  defined by the ( )( )1 2 1n n + −  linear equations  
2 0r r r

rj i ir j ij rn
ω ξ ω ξ ω ξ+ − =  that do not depend on any conformal factor, we have 
the fundamental diagram II ([1] [12]):  

( ) ( )

( ) ( )

*
2

2 2
1 1

* 2 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ ˆ0 0

0 0

0 0

S T

Z g H g

T g Z g H g

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

showing that we have the splitting sequence ( ) ( )* 2 2
2 1 1ˆ0 0S T H g H g→ → → →  

providing a totally unusual interpretation of the successive Ricci, Riemann and 
Weyl tensors and the corresponding splitting. However, it must be noticed that 
the Weyl-type operator is of order 3 when 3n =  because  

( ) ( ) ( )( )( )2 2 1 12 1 2 1 2 3 12n n n n n n n n− − + = + + −  but of order 2 for 4n ≥  
([4] [9]). Similar results could be obtained for the Bianchi-type operator as we 
shall see.  

 
Using now the same procedure for the introductory diagram with 2r = , we 

get the diagram: 


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* *
4 3 0 3

* * * * *
3 2 0 2

2 * * 2 * *
2 0

3 * 3 * * 3 *
1 0

4 * 4 *

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F h

T S T T T S T F T h

T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓

→ ⊗ → ⊗ → →
↓ ↓ ↓

→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓

→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →
↓ ↓

→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓

→ ∧ ⊗ = ∧ ⊗ →
↓ ↓



 

Using a snake chase and Theorem 3.2.3, we obtain the short exact sequence:  

( )* 3
3 2 10 0, 0 60 80 20 0h T h H g→ → ⊗ → → → → → →  

A chase around the upper south-east arrow on the right is leading to the fol-
lowing corollary where *

2 2 0g S T F′ ⊂ ⊗  is the symbol of the system ( )2 2 0R J F′ ⊂  
which is the image of ( )3J T  and 1Q′  is the cokernel of the central bottom 
map:  

COROLLARY 4.B.3: There is a long exact connecting diagram:  

( )

( )

* * * 3
4 3 0 2 1

* *
1 2 3 0 2 1

0 0

0 0

0 0

0 0 0

S T T S T F T h H g

g S T F T Q Qρ

↓ ↓

→ ⊗ → ⊗ → ⊗ → →
↓ ↓ ↓
′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓



 

allowing to use the Bianchi identities as ( )3
2 1B F H g∈   and we have  

( ) ( )( )3
1 1dim Q dim H g′ ≤ .  

Proof: Using the notations of the introductory diagram and the fact that 

1 0Q = , we have the following two commutative and exact diagrams obtained by 
choosing 1 2F Q=  for the first, then 1 3F Q=  for the second and so on, in a 
systematic manner as in the motivating examples:  

( )

( ) ( ) ( )

( )

* *
1 2 3 0 2 1

1 2 3 0 1 2 1

2 2 0 2

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T F T Q Q

R J F J Q Q

R J F Q

ρ

ρ

↓ ↓ ↓ ↓
′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓
′ ′→ → → → →

↓ ↓ ↓ ↓
′→ → → →

↓ ↓ ↓

 
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First, we have the short exact sequence ( ) ( )2 2 1 00 0R J T J F→ → → →  with 
10 60 50 0− + =  and get 0 0R F′ = , ( )1 1 0R J F′ =  and  

( )( ) ( )1 0 1 0dim R dim Rρ ′ ′− = , that is no CC of order 1.  
Now, using the long exact sequence:  

( ) ( )3 3 2 0 20 0R J T J F Q→ → → → →  

( ) ( )( ) ( )
( )( ) ( ) ( )

2 1 1 1 1 0 2 0

1 1 2 2150 135 15

R R J F J F

dim R dim R dim Q

ρ ρ

ρ

′ ′⊂ = =

′ ′⇒ − = − = =
 

because ( ) ( )( ) ( )2 3 3 140 5 135dim R dim J T dim R′ = − = − =  and there are 15 
second order CC.  

  
Then, with ( )1dim Q x′ = , we obtain by counting the dimensions:  

( )( ) ( )( ) ( )( )1 2 3 0 1 2 350 75 275,dim R dim J F x dim J Q x xρ ′ = + − = + − = +  

( ) ( )( ) ( ) ( )( ) ( )3 4 4 3 0 3 276dim R dim J T dim R dim J F dim Q′ = − = − =  

( )( ) ( )1 2 3 275 276 1y dim R dim R x xρ ′ ′⇒ = − = + − = −  

that is 3y ≥  because 4x ≥  and thus 4 3x y= ⇒ =  if we only take into ac-
count the 4 divergence condition of the Einstein equations. The situation will be 
worst for the Kerr metric with 6y = .  

After one prolongation, we get:  

( )

( ) ( ) ( )

( )

* *
1 3 4 0 3 1

1 3 4 0 1 3 1

3 3 0 3

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T F T Q Q

R J F J Q Q

R J F Q

ρ

ρ

↓ ↓ ↓ ↓
′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓
′ ′→ → → → →

↓ ↓ ↓ ↓
′→ → → →
↓ ↓ ↓



 

From this second diagram we obtain the commutative and exact diagram:  

( )

( ) ( ) ( )

4 4 0 4

1 3 4 0 1 3 1

0 0

0 0

0 0

0

R J F Q

R J F J Q Qρ

↓ ↓
′→ → → →
↓ ↓
′ ′→ → → → →

↓


 

Indeed, setting again ( )1dim Q x′ = , we obtain now similarly:  

( )( ) ( )( ) ( )( )1 3 4 0 1 3 700 370 330,dim R dim J F x dim J Q x xρ ′ = + − = + − = +  

( ) ( )( ) ( ) ( )( ) ( )4 5 5 4 0 4 500dim R dim J T dim R dim J F dim Q′ = − = − =  
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( )( ) ( )1 3 4 330 500 170y dim R dim R x xρ ′ ′⇒ = − = + − = −  

that is 0 170y x= ⇔ = . We find exactly ( )2 170dim F =  like in ([22], p. 1996) 
and the condition 0y =  just means that the CC of order 4 are generated by the 
CC of order 3, but we have only ( )4 1 3R Rρ′ ′⊆  in general.  

With one more prolongation, applying again the δ-map to the top symbol se-
quence, we get the following commutative diagram:  

* *
6 5 0 5

* * * * *
5 4 0 4

2 * * 2 * * 2 *
4 3 0 3

3 * * 3 * * 3 *
3 2 0 2

4 * * 4 * *
2 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

S T T S T F h

T S T T T S T F T h

T S T T T S T F T h

T S T T T S T F T h

T S T T T T F

δ δ

δ δ

δ δ

δ δ

↓ ↓ ↓
→ ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ ⊗ → ⊗ ⊗ → ⊗ →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓

 

where the right exact vertical column is 0 224 504 360 80 0→ → → → → . It 
just remains to replace in the two upper right epimorphisms 5h  by *

4T Q⊗  
and 4h  by 4Q  along with the following commutative diagram where we have 
chosen 1 4F Q= :  

5

* *
4 4

0 0

0

h

T h T Q

↓

↓
→ ⊗ → ⊗





 

in order to obtain the long exact sequence * * *
6 5 0 40 S T T S T F T Q→ ⊗ → ⊗ → ⊗ . 

Finally, chasing in the following commutative and exact introductory dia-
gram:  

( )

( )
( )

( ) ( )

( )
( )

( )

5

5

4

* * *
6 5 0 4 1

6 6 5 0 1 4 1

5 5 4 0 4

0 0 0 0

0 0

0 0

0 0

0 0 0 0

S T T S T F T Q Q

R J T J F J Q Q

R J T J F Q

σ

ρ

ρ

Φ

Φ

Φ

↓ ↓ ↓ ↓

′→ ⊗ → ⊗ → ⊗ → →
↓ ↓ ↓ ↓

′→ → → → → →
↓ ↓ ↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓


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we deduce that ( )5 1 4R Rρ′ ′=  is involutive with ( )5 840 4 836dim R′ = − =  and 
symbol *

5 6g S T T′ ⊗ .  
Unhappily, the reader will check at once that a similar procedure cannot be 

applied in order to prove that ( )4 1 3R Rρ′ ′= . Indeed, if we still have a mono-
morphism 4 40 h Q→ →  we do not have a monomorphism 3 3h Q→  because 
now this map has a kernel of dimension equal to ( )( )1

3 3 5 4 1dim R R = − =  ac-
cording to the corresponding long exact connecting sequence.  

IT IS THUS NOT POSSIBLE TO PROVE THAT THERE ARE ONLY 
SECOND AND THIRD ORDER GENERATING CC IN A SIMPLE INTRINSIC 
WAY.  

However, like in the first motivating example in which we should be waiting 
for third order CC but a direct computation was proving that only second order 
ones could be used, we have: 

THEOREM 4.B.4: The CC of the first order operator 0:D T F→  are gener-
ated by a third order operator 1 0 1 3:D F F Q→ =  and we have thus ( )4 1 3R Rρ′ ′= . 

Proof: With *
0 2F S T=  and 1 3F Q=  while applying the Spencer operator, 

we obtain the following commutative diagram in which the two central vertical 
columns are locally exact ([1] [5]):  

( ) ( )

( ) ( )

( )

1

0 1

4 4 3

4 4 3 0 1

* * *
3 3 2 0

2 * 2 *
2 2

0 0 0
,

0

0 0

0

0

T F F

j j j
R J T J F F

d d d

T R T J T T J F

d d
T R T J T

↓ ↓ ↓

→ Θ → → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓

→ ⊗ → ⊗ → ⊗

↓ ↓
→ ∧ ⊗ → ∧ ⊗

 



 

Chasing in this diagram by using the Snake lemma of the second section, we 
discover that the local exactness at 0F  of the top row is equivalent to the local 
exactness at *

3T R⊗  of the left column.  
Now, we have the commutative diagram:  

( )( ) ( )( )

5

4

* 2 *
5 4 3

* 2 *
4 3 2

1 1* 2 *
3 3 2 2

0 0 0

0

0

0

0 0

j d d

j d d

d

R T R T R

R T R T R

T R R T R R

↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗
↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗

↓ ↓ ↓

→ ⊗ → ∧ ⊗

↓ ↓


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The top row is known to be locally exact as it is isomorphic to a part of the 
Poincaré sequence according to the commutative diagram with 4 5 6R R R  : 

6

5

* 2 *
6 5 4

* 2 *
5 4 3

0 0 0

0

0

0 0

j d d

j d d

R T R T R

R T R T R

↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗
↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗
↓ ↓


 

The bottom row is purely algebraic as it is induced by the exact sequence ob-
tained by applying the Spencer operator to the long exact connecting sequence 
and chasing along the south west diagonal:  

* 2 * 4 *
4 3 2 10 0h T h T h T g

δ δ
→ → ⊗ → ∧ ⊗ → ∧ ⊗ →  

0 126 240 120 6 0→ → → → →  

Changing the confusing notations used in ([24]), we prove that the bottom 
Spencer operator is injective. Indeed, we have the following representative pa-
rametric jets for the various Lie equations:  

( ) { }0 1 2 3 1 0 0 1 1 2
2 0 2 3 2 3 310 , , , , , , , , ,dim R ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= ⇒  

( ) { } ( ) { }0 2 3 1 2 0 2 3 2
3 0 3 4 35 , , , , , 4 , , ,dim R dim Rξ ξ ξ ξ ξ ξ ξ ξ ξ= ⇒ = ⇒  

( )( ) { } ( )( ) { }1 11 1 1 1 0 0
3 3 0 2 2 2 3 2 31 , 5 , , , ,dim R R dim R Rξ ξ ξ ξ ξ ξ= ⇒ = ⇒  

We also recall the definition of the Spencer operator  
( ) ( )* 2 *

1: q qd T J T T J T+⊗ → ∧ ⊗ : 

( ) ( ), , , , 1 , 1 ,j i

k k k k k k
i ij i j j i i jν µ µ µ µ µξ ξ ξ ξ ξ ξ+ +→ = ∂ − ∂ + −  

Accordingly, we may choose local coordinates ( )1
0,iξ  for a representative and 

a representative of the image by d is for example ( )1 1 1
,0 0, ,0i i iξ ξ ξ= − . Now, as 

( )( )1
3 3 4 3 1dim R R = − = , we may introduce the four local coordinates 1

0,iξ  and 
0

1,iξ  such that 1 2 0
0, 1, 0i iAξ ξ− = , 0,1,2,3i∀ = . We may also use the 6 5 30× =  

local coordinates ( )1 1 1 0 0
, 2, 3, 2, 3,, , , ,ij ij ij ij ijξ ξ ξ ξ ξ  in order to describe ( )( )12 *

2 2T R R∧ ⊗ . 
In the kernel of d, we have in particular  

1 1 1 1 1
,0 0, ,0 0, ,00 0, 1,2,3i i i i i iξ ξ ξ ξ ξ= − = ⇒ = = ∀ =  because 1 1

1 22
m
Ar

ξ ξ=  in 1R  but  

also 0 0 0 0 1
,01 0,1 1,0 1,0 0,00 0 0ξ ξ ξ ξ ξ= − = ⇒ = ⇒ =  because { }0ξ  is among the pa-

rametric jets of 3R  and thus 1
0, 0, 0,1, 2,3i iξ = ∀ = . The bottom Spencer opera-

tor is thus injective and the bottom sequence is thus exact. A circular chase ends 
the proof: If *

3b T R∈ ⊗  is killed by d, then its projection ( )( )1*
3 3c T R R∈ ⊗  is 

also killed by d and is such that 0c = . Accordingly, *
4a T R∃ ∈ ⊗  with image 

b under the monomorphism * *
4 3T R T R⊗ → ⊗  and such that 0da = . We 

may thus find 5e R∈  and 4f R∈  because 5 4R R  with a de b df= ⇒ = . 
  
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Like in the second motivating example, the sequence constructed in the pre-
vious theorem may have “jumps” in the order of the successive operators and we 
have therefore (Compare to [1]):  

COROLLARY 4.B.5: The symbol of 1  is not 2-acyclic and the CC operator 

2  is thus of order 2. Accordingly, if one does want a formally exact canonical 
Janet sequence, the only possibility is to use the involutive operator 1  of order 
4 defined by ( )4 1 3R Rρ′ ′= .  

Proof: Recapitulating the results so far obtained, we have successively 
( )1 1r rR Rρ+′ ′⊆  with:  

( ) ( )( ) ( )
( ) ( ) ( )

0 0 1 2 2

1 1 0 1 1 2 0

, 60 10 50

,

R F dim R dim J T dim R

R J F R J Fρ

′ ′= = − = − =

′ ′⇒ = =
 

( ) ( )( ) ( )
( )( ) ( )

2 3 3

1 1 2

140 5 135,

150 135 = 15

dim R dim J T dim R

dim R dim Rρ

′ = − = − =

′ ′− = −
 

( ) ( )( ) ( )
( )( ) ( )

3 4 4

1 2 3

280 4 276,

3,

dim R dim J T dim R

dim R dim Rρ

′ = − = − =

′ ′− ≥
 

( ) ( )( ) ( ) ( )4 5 5 4 1 3504 4 500, ,dim R dim J T dim R R Rρ′ ′ ′= − = − = =  

( ) ( )( ) ( ) ( )5 6 6 5 1 4840 4 836, .dim R dim J T dim R R Rρ′ ′ ′= − = − = =  

the long exact sequence: ( ) ( ) ( )1 2 3 0 1 2 10 0R J F J Q Qρ ′ ′→ → → → →  with  
( )1 4dim Q x′ = ≥  because of the divergence CC condition for Einstein equations 

implied by the Bianchi identities. 
It also follows that:  

( )
( )

*
1 0 1

*
3 2 2

40,

80 135 50 85,

g T F dim g

S T T g dim g

′ ′⊗ ⇒ =

′ ′⊗ ⊂ ⇔ < = − =



 

* *
4 3 5 4140 141 276 135, , 0r rS T T g S T T g r+ +′ ′⊗ ⊂ ⇔ < = − ⊗ ∀ ≥  

and we have the basic commutative and exact “defining diagram” of the system 
( )2 2R J T⊂ :  

( ) ( )

( )

* *
2 0

2 2 1 0

1 1 0

0 0

0 0

0 0

0 0

0 0 0

S T T T F

R J T J F

R J T F

↓ ↓
→ ⊗ → ⊗ →

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓ ↓

 

allowing to obtain the central vertical short exact sequence  

1 1 90 0g R F′ ′→ → → → . 
Now, it is known that a symbol qg  of finite type is involutive if an only if it is 

vanishing ([1] [5] [10]). Using a similar proof, let us consider the commutative 
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diagram of δ-sequences:  

* * 3 * * 4 * *
6 5 4

* 3 * 4 *
5 4 3

0 0 0

0

0

0 0

T S T T T S T T T S T T

T g T g T g

↓ ↓ ↓
→ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓

′ ′ ′→ ⊗ → ∧ ⊗ → ∧ ⊗ →

↓ ↓





 

Using the fact that the upper sequence is known to be exact as a δ-sequence 
and that we have ( ) ( )*

4 3140 141dim S T T dim g ′⊗ = < = , an easy chase proves 
that the lower sequence cannot be exact and thus 3g ′  cannot be involutive after 
counting the dimensions. The corollary follows from the fact that  

( ) *
4 1 3 5g g S T Tρ′ ′= ⊗  is indeed 3-acyclic one step ahead by chasing and even 

involutive.  
Finally, with vector bundles ,A B  such that ( ) 1dim A = , ( ) 5dim B = , we 

have the commutative diagram of δ-sequences in which we recall that  
*

1 0g T F′ ⊗ : 

* * 2 * * 3 * * 4 * *
5 4 3 2

* 2 * 3 * 4 *
4 3 2 1

2 * 3 *

0 0 0 0

0

0

0 0

0 0

T S T T T S T T T S T T T S T T

T g T g T g T g

T A T B

↓ ↓ ↓ ↓
⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ ⊗ →

↓ ↓ ↓ ↓

′ ′ ′ ′⊗ → ∧ ⊗ → ∧ ⊗ → ∧ ⊗ →

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ →

↓ ↓

 

Taking into account that the top row is exact and proceeding as in the last 
theorem with similar local coordinates, we get:  

1 1 1 1
,123 1,23 2,31 3,12 0 0 0 0ξ ξ ξ ξ= + + = + + =  

always.  
1 1 1 1 1 1 1
,012 0,12 1,20 2,01 0,12 0,12 0,0 0 0 0 0, , 1, 2,3ij i jξ ξ ξ ξ ξ ξ ξ= + + = + + = ⇒ = ⇒ = ∀ =  

0 0 0 0 0 0 1
,10 1,0 0, 1 ,01 1,0 1,0 0,00 0 0 0 0, 2,3i i i i i i i iξ ξ ξ ξ ξ ξ ξ= + + = + + = ⇒ = ⇒ = ∀ = . 

We are thus only left with 1
0,01ξ  that may not vanish though  

1 1 1
0,01 0,10 1,00 0ξ ξ ξ+ + =  in any case and the bottom map δ is not injective.  
Let us prove that 3g ′  is not 2-acyclic because the central δ-sequence cannot 

be exact at 2 *
3T g ′∧ ⊗ . Indeed, if it were, let 2 *c T A∈∧ ⊗  be killed by δ. Then, 

we may lift c to 2 *
3b T g ′∈∧ ⊗  such that 3 * *

3b f T S T Tδ = ∈∧ ⊗ ⊗  and ob-
tain by commutativity 0fδ =  because the last vertical downarrow on the right 
is an isomorphism, thus a monomorphism. As the upper row is an exact se-
quence, we may thus find 2 * *

4a T S T T∈∧ ⊗ ⊗  such that f aδ= . Chasing 
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circularly, it follows from the exactness assumption at 2 *
3T g ′∧ ⊗  that we can 

find * * *
4 5e T g T S T T′∈ ⊗ ⊗ ⊗  such that 2 * *

4b a e a T S T Tδ ′= + = ∈∧ ⊗ ⊗ . 
It should follow that 0c =  and a contradiction, that is 3g ′  cannot be 2-acyclic.  

As we know from ([1] [5] [10]) that the order of the generating CC for 1  is 
equal to 1s +  if one needs s prolongations in such a way that ( )3 3s sg gρ +′ ′=  
becomes 2-acyclic. As we already know that ( ) * *

4 1 3 5g g T S T Tρ′ ′= ⊗ ⊗  is 
involutive, we get 1s =  and the generating CC 2  of 1  are of order 2. We 
have just a “jump” in the order and, for the details, refer the reader to the quite 
delicate Example 3.14 of ([9], p 119-125) in which it is already difficult to dis-
cover how many new second order CC should be introduced though the initial 
system is trivially FI with coefficients in  . Such a result could not even be 
imagined while using the methods of ([6] [7] [8]). 

 
There are “natural” reason for which we do not believe that these results could 

be useful in physics. Indeed, considering like in the previous reference the long 
exact sequence of jet bundles allowing to define 2F  when 1 3F Q= , namely:  

( ) ( ) ( )6 6 5 0 2 1 21 3 2
0 0R J T J F J F F→ → → → → →  

1 3 2
0 4 840 1260 1110 686 0→ → → → → →  

and the large values of these dimensions need no comment for any application.  
 

C) KERR METRIC:  
We now write the Kerr metric in Boyer-Lindquist coordinates:  

( )

( ) ( )

22 2
2 2 2 2 2

2 2

2 2
2 2 2 2

2

2 sin
d d d d d d

sin
sin d

amrmrs t r t

mra
r a

θρ ρ ρ θ φ
ρ ρ

θ
θ φ

ρ

−
= − − −

∆

 
− + +  
 

 

where we have set 2 2r mr a∆ = − + , ( )2 2 2 2cosr aρ θ= +  as usual and we 
check that we recover the Schwarschild metric when 0a = . We notice that t or 
φ  do not appear in the coefficients of the metric. We shall change the coordi-
nate system in order to confirm theses results by using computer algebra and the 
idea is to use the so-called “rational polynomial” coefficients as follows:  

( )( ) ( )

( ) ( )

0 1 2 3 2

22 2 2

, , cos , d sin d

d 1 d

x t x r x c x x

x c

θ φ θ θ

θ

= = = = = ⇒ = −

⇒ = −
 

We obtain over the differential field ( )( ) ( )( ), , , , ,K a m t r c a m xφ= =  :  

( ) ( )
( )

( )
( )( )

( )( ) ( )
( )( )

( )

21 2
2 1 2 22 2 22 0 1 2 0 3

2 2 22

22 1 2
2 2 22 1 2 3

2

2 1
d d d d d d

1

1
1 d

amx xmxs x x x x x
x

ma x x
x x a x

ρ ρ ρ
ρ ρ

ρ

−−
= − − −

∆ −

 − 
− − + + 

 
 

 




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with now ( )21 1 2 2 2x mx a r mr a∆ = − + = − +  and  

( ) ( )2 22 1 2 2 2 2 2x a x r a cρ = + = + . For a later use, it is also possible to set  

( ) ( ) ( )( )( ) ( )22 2 2 2 2 2 2 2 2 2
33 1 1c r a a c a mr r r a cω = − − + − − − + +  and we have 

( ) ( )22 2 2det r a cω = − + . Framing the leading derivatives, we obtain:  

( )

( )

( )

3 0
33 33 3 03 3 33

3 0 2
23 33 2 03 2 22 3

2
22 22 2 22

3 0 1
13 33 1 03 1 11 3

2 1
12 22 1 11 2

1 1 1
11 11 1 11

3 0 3 0
03 33 0 03 0 3 00 3 03

2 0
02 22 0 00 2 03 2

2 0

0

2 0

0

0

2 0

0

R J T

ω ξ ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ω ξ

ω ξ ω ξ

ω ξ ξ ω

ω ξ ω ξ ξ ω ξ ξ ω

ω ξ ω ξ ω ξ

Ω ≡ + + ∂ =

Ω ≡ + + =

Ω ≡ + ∂ =

Ω ≡ + + =

Ω ≡ + =
⊂

Ω ≡ + ∂ =

Ω ≡ + + + + ∂ =

Ω ≡ + +

( )

3

1 0 3
01 11 0 00 1 03 1

0 3
00 00 0 03 0 00

0

0

2 0

ω ξ ω ξ ω ξ

ω ξ ω ξ ξ ω

















=

Ω ≡ + + =

Ω ≡ + + ∂ =


 

Now, we know that if ( )q qR J T⊂  is a system of infinitesimal Lie equations, 
then we have the algebroid bracket and its link with the prolongation/projection 
(PP) procedure ([1] [2] [5] [10]):  

( ) ( ) ( ), , , , , 0s s s
q q q q r q r q rR R R R R R q r s+ + +

   ⊂ ⇒ ⊂ ∀ ≥     

As ( ) ( )1 2
1 1 2 1R R Rπ= = , it follows that ( ) ( )2 3

1 1 3R Rπ=  is such that  
( ) ( ) ( )2 2 2
1 1 1,R R R  ⊂   with ( )( )2

1 20 16 4dim R = − =  because we have obtained a 
total of 6 new different first order equations. Using the first general diagram of 
the Introduction, we discover that the operator defining 1R  has 10 4 14+ =  
CC of order 2, a result obtained totally independently of any specific GR tech-
nical object like the Teukolski scalars or the Killing-Yano tensors introduced in 
([6] [7] [8]).  

Like in the case of the S metric, two prolongations allow to obtain 6 additional 
equations (instead of 5) that we set on the left side in the following list obtained 

( )( )2mod j Ω :  
We have on sections (care) the 16 (linear) equations ( )( )2mod j Ω  of ( )2

1R  
as follows ([23]): 

( ) ( )
( )
( )

1 2 0 3 1 1 2
00 1 03 1 11 0 1 2

1 2
2 1

1 1 2 0 3 1
3 0 0 03 1 33 1 11 32

1 1 1
2 1 2 0 3 2
3 0 0 00 2 03 2 22 0

0 3 2
03 2 33 2 22 3

0 3 0 3
3 0 0 3

0, 0 0, 0, 0

0 0

, 0 0

, 0 0,

0

0 0, 0, 0

lin
R R J T

lin

ξ ξ ω ξ ω ξ ω ξ ξ ξ

ξ ξ

ξ ξ ξ ω ξ ω ξ ω ξ

ξ ξ ξ ω ξ ω ξ ω ξ

ω ξ ω ξ ω ξ

ξ ξ ξ ξ

 = = ⇒ + + = = =

 = ⇒ =

 + = ⇒ + + =⊂ ⊂ 

+ = ⇒ + + =

 + + =

= ⇒ = = =


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The coefficients of the linear equations lin  involved depend on the Riemann 
tensor as in ([23]). Accordingly, we may choose only the 2 parametric jets 

( )1 2
0 0,ξ ξ  among ( )1 1 2 2

0 3 0 3, , ,ξ ξ ξ ξ  to which we must add ( )0 3,ξ ξ  in any case as 
they are not appearing in the Killing equations.  

The system is not involutive because its symbol is finite type but non-zero.  
Using one more prolongation, all the sections (care again) vanish but 0ξ  and 

3ξ , a result leading to ( )( )3
1 2dim R =  in a coherent way with the only nonzero 

Killing vectors { },t φ∂ ∂ . We have indeed:  
1 2 1 2 0 0 0 3
0 0 3 3 1 1 2 20 , 0 0, 0 0, 0, 0, 0ξ ξ ξ ξ ξ ξ ξ ξ= = ⇒ = = ⇒ = = = =  

Taking therefore into account that the metric only depends on  
( )( )1 2, cosx r x θ= =  we obtain after three prolongations the first order system: 

( ) ( ) ( ) ( )

3
3
2
3
1
3
0
3
3
2
2
2
1
2
0
2
3

3 2 1 1
1 1 1 1 1 2

1
1
1
0

1
3
0
2
0
1
0
0
0
2

1

0 1 2 30
0 1 2 30
0 1 2 30
0 1 2 30
0 1 20
0 1 20
0 1 20
0 1 20
0 10
0 10
0 10
0 10
00
00
00
00

0
0

R R R R J T

ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ
ξ

 =


=
 =


=
 •=

•=
 •=
 •=
 • •=⊂ ⊂ = ⊂  • •=
 • •=


• •=
 • • •=

• • • =
 • • •=
 • • •=


•=
 =

• • •
• • • •  

Surprisingly and contrary to the situation found for the S metric, we have now 
an involutive first order system with only solutions  

( )0 1 2 3, 0, 0,cst cstξ ξ ξ ξ= = = =  and notice that ( )3
1R  does not depend any 

longer on the parameters ( ),m a K∈ . The difficulty is to know what second 
members must be used along the procedure met for all the motivating examples. 
In particular, we have again identities to zero like 1 1

0 0 0d ξ ξ− = , 2 2
0 0 0d ξ ξ− =  

and thus at least 6 third order CC coming from the 6 following components of 
the Spencer operator, namely:  

1 1 1 1 1 1
1 1 2 2 3 3

2 2 2 2 2 2
1 1 2 2 3 3

0, 0, 0,

0, 0, 0

d d d

d d d

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

− = − = − =

− = − = − =
 

a result that cannot be even imagined from ([6] [7] [8]). Of course, proceeding 
like in the motivating examples, we must substitute in the right members the  
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values obtained from ( )2j Ω  and set for example 1
1 11

11

1
2

ξ ξ ω
ω

= − ∂  while  

replacing 1ξ  and 2ξ  by the corresponding linear combinations of the Rie-
mann tensor already obtained for the right members of the two zero order equa-
tions.  

We have the fundamental diagram I no longer depending on ( ),m a  with fi-
ber dimensions:  

31 1 2 4

31 1 2 4

31 2 4

0 0 0 0 0

0 2 8 12 8 2 0

0 4 20 40 40 20 4 0

0 4 18 32 28 12 2 0

0 0 0 0 0

Dj D D D

Dj D D D

↓ ↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓ ↓

→ → → → → → →
↓ ↓ ↓ ↓ ↓

→ Θ → → → → → → →
↓ ↓ ↓ ↓ ↓



  

 

providing the Euler-Poincaré characteristic 4 18 32 28 12 2 0− + − + − = . How-
ever, the only intrinsic concepts associated with a differential sequence are the 
“extension modules” that only depend on the Kerr differential module but not 
on the differential sequence and it follows that ([23]):  

THE ONLY IMPORTANT CONCEPT IS THE GROUP INVOLVED, NOT 
THE SEQUENCE.  

In an equivalent way as 2 20 0, 0rg g r+= ⇒ = ∀ ≥ , we obtain successively:  

( ) ( )( ) ( )*
1 1 2 20 10 10,dim R dim J T dim S T= − = − =  

( ) ( )( ) ( )( )*
2 2 1 2 60 50 10,dim R dim J T dim J S T= − = − =  

( ) ( )
( ) ( ) ( )

3 2

4 4 3

6 4

2 4 2 2r

dim R dim R

dim R dim R dim R+

= − =

⇒ = = − = − =
 

and shall use these results from now on.  
According to a cut of the preliminary diagram with now 4m n= = , 1q = , 

( ),K m a=  , we obtain the following commutative and exact diagrams:  

( )

( ) ( ) ( )

( )

* *
1 2 3 0 2 1

1 2 3 0 1 2 1

2 2 0 2

0 0 0 0

0 0

0 0

0 0

0 0 0

g S T F T Q h

R J F J Q Q

R J F Q

ρ

ρ

↓ ↓ ↓ ↓
′ ′→ → ⊗ → ⊗ → →

↓ ↓ ↓ ↓
′ ′→ → → → →

↓ ↓ ↓ ↓
′→ → → →
↓ ↓ ↓
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0 0 0 0

0 144 200 56 0

0 280 350 70 0

0 136 150 14 0

0 0 0

x x

x x

↓ ↓ ↓ ↓
→ + → → → →

↓ ↓ ↓
→ + → → → →

↓ ↓ ↓ ↓
→ → → →

↓ ↓ ↓



 

Denoting as before by y the number of additional CC of strict order 3 and by x 
the number ( ) ( )1 1dim h dim Q′ ′= , we discover from the above diagram that the 
sum of the number of second order CC (that is 14) and the number of differen-
tially independent third order CC obtained by one prolongation of these second 
order CC is equal to 70 x− . As now ( )3 72dim Q = , we obtain therefore 
72 70y x− = −  and thus 2y x= + . However, as 4x ≥  because of the 4 di-
vergence conditions implied on the Einstein tensor by the 20 Bianchi identities, 
we must have 6y ≥ . As we have already found effectively only 6 CC of order 3, 
we must have indeed 4x =  effectively and, in any case, we cannot have 4y =  
as claimed in ([6] [7] [8]). 

From the short exact sequence:  

( ) ( )4 4 3 0 30 0R J T J F Q→ → → → →  

0 2 280 350 72 0→ → → → →  

we obtain the commutative and exact diagrams:  

( )

( )

4 4 3

3 3 2

0

0 0

0 0

0 0

R J T R

R J T R

↓
′→ → → →

↓ ↓ ↓
′→ → → →

↓ ↓

 

0

0 2 280 278 0

0 4 140 136 0

0 0

↓
→ → → →

↓ ↓ ↓
→ → → →

↓ ↓

 

As a byproduct, we have the commutative and exact diagrams:  

( )

( )

3 1 2

3 1 2

2 2

0 0

0

0

0 0

0 0

g g

R R

R R

ρ

ρ

↓ ↓
′ ′→ →
↓ ↓
′ ′→ →
↓ ↓
′ ′→ = →
↓ ↓

 

0 0 0

0 142 144 0

0 278 280 0

0 136 136 0

0 0

x y

x y

↓ ↓ ↓
→ → + → →

↓ ↓
→ → + → →

↓ ↓ ↓
→ = →

↓ ↓



 

leading thus to the strict inclusions ( ) ( )3 1 2 3 1 2g g R Rρ ρ′ ′ ′ ′⊂ ⇔ ⊂  and to the 
formula 2y x= + .  
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We obtain therefore the following most useful diagram with symbolic nota-
tions:  

( )

( ) ( ) ( )

( )

3 3 0 3

1 2 3 0 1 2 1

1 2 3

0

0 0

0 0

0 0

0

0 0

y

R J F Q

R J F J Q Q

R R x

ρ

ρ

↓

↓ ↓ ↓
′→ → → →
↓ ↓
′ ′→ → → → →

↓ ↓ ↓
′ ′

↓ ↓


 

finally showing that ( )1x dim Q′= ,  
( )( ) ( )( ) ( )1 2 3 1 2 3y dim R R dim R dim Rρ ρ′ ′ ′ ′= = − , a result leading to the long exact 

connecting sequence of vector bundles:  

( ) ( )3 1 2 3 1 2 10 0.R R Q J Q Qρ′ ′ ′→ → → → → →  

in agreement with the main theorem of Section 2. We have the following dimen-
sions:  

0

0 0 6

0 278 350 72 0

0 284 350 70 4 0

6 0 4

0 0

↓

↓ ↓ ↓
→ → → →

↓ ↓ ↓
→ → → → →

↓ ↓ ↓

↓ ↓

 

Prolonging once while taking into account that 5 4R R  with common di-
mension 2, namely the dimension of the Kerr algebra generated by { },t φ∂ ∂ , we 
obtain the following commutative and exact diagram in which 2Q  and 3Q  are 
replaced by 3Q  and 4Q :  

( )

( )

*
4 4 0 4

4 4 0 4

3 3 0 3

0 0 0

0 0

0 0

0 0

0 0 0.

g S T F h

R J F Q

R J F Q

↓ ↓ ↓
′→ → ⊗ → →
↓ ↓ ↓
′→ → → →
↓ ↓ ↓
′→ → → →
↓ ↓ ↓
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showing that *
4 5g S T T′ ⊗  with ( )4 504 2 502dim R′ = − =  and  

( )4 700 502 198dim Q = − = . It follows that ( )4 1 3R Rρ′ ′=  is an involutive fourth 
order system allowing to construct a formally exact Janet sequence following the 
Killing operator as in ([22]), namely (exercise!!):  

1 4 1 1 1 1
0 4 10 198 568 652 348 72 0→Θ→ → → → → → → →  

Of course, such a sequence is quite far from being minimum. However, as the 
Killing operator for the Kerr metric is not formally integrable as we saw, the 
corresponding free resolution of the Kerr differential module, namely:  

72 348 652 568 198 10 4

1 1 1 1 4 1
0 0

p
D D D D D D D M→ → → → → → → → →  

is not strictly exact though we have indeed: 

( ) 4 10 198 568 652 348 72 0Drk M = − + − + − + =  

As the maximum size of the matrices involved is ( )( ) ( )( )4 3198 568dim J dim J× , 
that is 13860 19880× , we hope to have convinced the reader that there is no 
hope for using computer algebra.  

As ( )3 1 2R Rρ′ ′⊂  with a strict inclusion, the only possibility to escape from 
the above difficulty is to use only 3R′  and third order CC. However, as we have 
the strict inclusion *

4 3S T T g ′⊗ ⊂  with a strict inclusion because 140 142< . 
As for the S metric, we have the crucial theorem:  

THEOREM 4.C.1: The operator ( )
3

1 0 3 0 1 3:
j

F J F F Q→ → =  generates the 
CC of ( )

1

1 0:
j

T J T F→ → .  
Proof: First of all, as 3R′  is strictly contained into ( )1 2Rρ ′ , we have at least 

one third order generating CC but we already know that we have the six 

( )1 1 2 20, 0i i i id dξ ξ ξ ξ− = − =  for 1,2,3i = .  
Collecting the previous results and applying the Spencer operator, we obtain 

the following commutative diagram in which the two central columns are 
known to be locally exact ([1] [5]):  

( ) ( )

( ) ( )

( ) ( )

0

4 4 3 1

4 4 3 0 3

* * * *
3 3 2 0 2

2 * 2 * 2 *
2 2 1 0

0 0 0

0

0 0

0 0

0 0

T F
j j j

R J T J F Q
d d d

T R T J T T J F T Q

d d d
T R T J T T J F

↓ ↓ ↓

→ Θ → →
↓ ↓ ↓

→ → → → →
↓ ↓ ↓ ↓

→ ⊗ → ⊗ → ⊗ → ⊗ →

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ → ∧ ⊗ →






 

Chasing around the right upper commutative triangle, it follows from Theo-
rem 2.A.3 that a section 0FΩ∈  with 1 0Ω =  is such that there exists Tξ ∈  
with ξ = Ω  if and only if the left vertical Spencer sequence is locally exact at 

*
3T R⊗ .  
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However, one has isomorphisms 4 5 6R R R   because they have the same 
dimension equal to 2 and the map 4 3R R→  is a monomorphism because 

( )3 4dim R =  with parametric jets ( )0 3 1 2
0 0, , ,ξ ξ ξ ξ  and 4 0g = . Accordingly, as 

the Spencer sequence for the Killing algebroid is locally exact as it is isomorphic 
to the tensor product of the Poincaré sequence by a Lie algebra of dimension 2, it 
is locally exact. We have therefore the commutative diagram with exact columns:  

( )( ) ( )( )

5

4

* 2 *
5 4 3

* 2 *
4 3 2

1 1* 2
3 3 2 2

0 0 0 0

0

0

0 0

0 0

j d d

j d d

d

R T R T R

R T R T R

T R R T R R

↓ ↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗
↓ ↓ ↓

→ Θ → → ⊗ → ∧ ⊗

↓ ↓ ↓ ↓

→ ⊗ → ∧ ⊗

↓ ↓



 

in which the upper row is locally exact. Chasing in this diagram, we discover that 
the central row is locally exact at *

3T R⊗  if the lower Spencer operator d is in-
jective. 

Indeed, we have the following representative parametric jets:  

( ) { }0 1 2 3 1 2 0 1 1 2
2 0 0 3 2 3 310 , , , , , , , , ,dim R ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ= ⇒  

( ) { } ( ) { }0 3 1 2 0 3
3 0 0 44 , , , , 2 ,dim R dim Rξ ξ ξ ξ ξ ξ= ⇒ = ⇒  

( )( ) { } ( )( ) { }1 11 2 1 2 0 1 1 2
3 3 0 0 2 2 3 2 3 32 , , 6 , , , , ,dim R R dim R Rξ ξ ξ ξ ξ ξ ξ ξ= ⇒ = ⇒  

Accordingly, we may choose local coordinates ( )1 2
0, 0,,i iξ ξ  for a representative 

and a representative of the image by d is for example  

( )1 1 1 2 2 2
,0 0, ,0 ,0 0, ,0,i i i i i iξ ξ ξ ξ ξ ξ= − = − . In the kernel of d, we have  

( )1 1 2 2
0, ,0 0, ,0, , 1, 2,3i i i i iξ ξ ξ ξ= = ∀ =  but the situation is more tricky than for the S 

metric.  
For 1i = , we have 1 1 2 2 1

1 2 1 2 0,0, 0, 0, 0 0iξ ξ ξ ξ ξ= = = = ⇒ =  and similarly  
2
0, 0, 1, 2i iξ = ∀ = . 
Then, as { }0 3,ξ ξ  are among the parametric jets of 3R , we have  

0 0 0 0 0
,13 1,3 3,1 1,3 3,10 0ξ ξ ξ ξ ξ= − = ⇒ = =  and similarly 3 3

1,3 3,1 0ξ ξ= = . Using the Lie 
Equations of ( )2

1R  we obtain successively:  
0 3 1 1

00 1,3 03 1,3 11 0,3 0,3

0 3 1 1
03 1,3 33 1,3 11 3,3 3,3

0 0,

0 0

ω ξ ω ξ ω ξ ξ

ω ξ ω ξ ω ξ ξ

+ + = ⇒ =

+ + = ⇒ =
 

Exchanging 1 and 2, we obtain similarly with the two other framed Lie equa-
tions the two relations 2 2

0,3 3,30, 0ξ ξ= = . Hence, when 3i = , it follows that  

( )1 1 1 2
0,3 3,0 0,0 0,0, 0linξ ξ ξ ξ= = =  and ( )2 2 1 2

0,3 3,0 0,0 0,0, 0linξ ξ ξ ξ= = = , a result leading 
to 1 2

0,0 0,00, 0ξ ξ= =  on one side and 1 2
0,3 0,30, 0ξ ξ= =  on the other side because 
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1
0ξ  and 2

0ξ  are linearly independent jet coordinates, that is finally  
1 2
0, 0,0, 0, 0,1, 2,3i i iξ ξ= = ∀ = .  

 
Like in the example of the S metric, the sequence constructed in the previous 

theorem for the K metric have the same “jumps” in the order of the successive 
operators. Indeed, using the same proof but now with  

( ) ( )*
3 4 2 142dim g dim S T T′ = ⊗ + = , ( ) 2dim A = , ( ) 6dim B = , we have:  

COROLLARY 4.C.2: The symbol of 1  is not 2-acyclic and the CC operator 

2  is of order 2.  
Following closely the procedure used for all the motivating examples, we have 

thus transformed the search for the generating CC of the Killing operator into a 
purely mathematical problem of formal integrability and diagram chasing, quite 
far away from any physical background ([28]).  

5. Conclusions 

To end this paper with a rather personal story, let me come back 60 years ago 
when I was preparing the competition for the French “Grandes Ecoles” at the 
State College Louis le Grand in Paris which is famous for one of his former stu-
dent Evariste Galois. To give a few statistics, let us say that, for the one I had in 
mind, 30,000 students were trying, 3000 were selected after the written exam and 
300 were only elected after oral exam! This college was known to have the max-
imum number of success in France and the teachers were carefully selected for 
that purpose, in particular in the best class room where I was. Once, this teacher 
was writing on the board the text of the problem we had to solve for the next day 
about what is now called “Desargues theorem”. Roughly, if you consider in a 
plane two triangles ( ) ( ),ABC A B C′ ′ ′  that are not flat and such that the 3 
straight lines , ,AA BB CC′ ′ ′  have a common origin O (Center of perspective), 
then the intersection P of BC  and B C′ ′ , Q of AC  and A C′ ′ , R of AB  
and A B′ ′  are on a straight line (Axis of perspective). Though I knew nothing 
about this result at that time, I suddenly “saw” the figure as a volume in space 
and shouted “ , ,P Q R  are on a straight line”, even before the teacher had been 
asking the question in front of the astonished students. Surprisingly, and I will 
never forget, the teacher said “Pommaret, this is true but how did you find it”. 
When I said “Well, Sir, I have seen in space that the common line is the intersec-
tion of the two planes containing the triangles” (the reader may draw the picture 
for fun), his only comment has been “Better don’t do that on the day of the 
competition”. I replied “Sir, a result is important but the way you find it may 
even be more important”. As a byproduct he never asked me any question dur-
ing the full academic year and became a “private enemy” in my scholar life dur-
ing 10 years till he retired.  

In a similar way, I point out the fact that during a visit for lecturing at the Al-
bert Einstein Institute (AEI, Berlin/Postdam) in October 23-27, 2017 ([18], ar-
Xiv: 1802.02430), I discovered that the members of the inviting research team 


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were not interested about the new tools I had developed in the many books or 
papers already quoted, in particular the link existing between the Spencer oper-
ator and the bracket of Lie algebroids. I also claim that the few references they 
quote for defining involutive systems are not the best ones as it happens that I 
have been regularly lecturing in Aachen during more than fifteen years and I 
know that the authors involved are only using Janet, Gröbner or Pommaret 
bases for computer algebra packages but are unable to deal with acyclicity in 
general. The situation met in the case of the Lie pseudogroup of conformal 
transformations is a good example (See [4] and [9]). As a byproduct, it became a 
personal challenge to clarify the CC for the Killing operators over the Schwarz-
schild and Kerr metrics without using any of their tedious computations. The 
surprise is that, if I found again the 15 second order CC for the S metric and the 
14 second order CC for the K metric, I also found explicitly 3 third order CC for 
the S metric and 6 third order CC for the K metric. All the formulas can be writ-
ten and framed within less than one line provided one uses these new methods 
from differential homological algebra that have never been introduced in GR up 
to now. The main reason is that they also prove that Einstein equations cannot 
be parametrized by a potential like Maxwell equations ([4] [19]) as such a result 
deeply questions the existence of gravitational waves… but this is surely another 
story! 
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