
Journal of Modern Physics, 2022, 13, 442-494 
https://www.scirp.org/journal/jmp 

ISSN Online: 2153-120X 
ISSN Print: 2153-1196 

 

DOI: 10.4236/jmp.2022.134031  Apr. 22, 2022 442 Journal of Modern Physics 
 

 
 
 

Nonlinear Conformal Electromagnetism 

J.-F. Pommaret  

CERMICS, Ecole des Ponts ParisTech, France  
Email: jean-francois.pommaret@wanadoo.fr 
 
 

Abstract 
In 1909 the brothers E. and F. Cosserat discovered a new nonlinear group 
theoretical approach to elasticity (EL), with the only experimental need to 
measure the EL constants. In a modern language, their idea has been to use 
the nonlinear Spencer sequence instead of the nonlinear Janet sequence for 
the Lie groupoid defining the group of rigid motions of space. Following H. 
Weyl, our purpose is to compute for the first time the nonlinear Spencer se-
quence for the Lie groupoid defining the conformal group of space-time in 
order to provide the mathematical foundations of electromagnetism (EM), 
with the only experimental need to measure the EM constant in vacuum. 
With a manifold of dimension n, the difficulty is to deal with the n nonlinear 
transformations that have been called “elations” by E. Cartan in 1922. Using 
the fact that dimension 4n =  has very specific properties for the computa-
tion of the Spencer cohomology, we prove that there is thus no conceptual 
difference between the Cosserat EL field or induction equations and the 
Maxwell EM field or induction equations. As a byproduct, the well known 
field/matter couplings (piezzoelectricity, photoelasticity, streaming birefrin-
gence, …) can be described abstractly, with the only experimental need to 
measure the corresponding coupling constants. The main consequence of this 
paper is the need to revisit the mathematical foundations of gauge theory 
(GT) because we have proved that EM was depending on the conformal 
group and not on ( )1U , with a shift by one step to the left in the physical 
interpretation of the differential sequence involved.  
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1. Introduction 

Let us start this paper with a personal but meaningful story that has oriented my 
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research during the last forty years or so, since the French “Grandes Ecoles” 
created their own research laboratories. Being a fresh permanent researcher of 
Ecole Nationale des Ponts et Chaussées in Paris, the author of this paper has 
been asked to become the scientific adviser of a young student in order to intro-
duce him to research. As General Relativity was far too much difficult for some-
body without any specific mathematical knowledge while remembering his own 
experience at the same age, he asked the student to collect about 50 books of 
Special Relativity and classify them along the way each writer was avoiding the 
use of the conformal group of space-time implied by the Michelson and Morley 
experiment, only caring about the Poincaré or Lorentz subgroups. After six 
months, the student (like any reader) arrived at the fact that most books were 
almost copying each other and could be nevertheless classified into three catego-
ries:  
 30 books, including the original 1905 paper ([1]) by Einstein, were at once, as 

a working assumption, deciding to restrict their study to a linear group re-
ducing to the Galilée group when the speed of light was going to infinity. It 
must be noticed that people did believe that Einstein had not been influenced 
in 1905 by the Michelson and Morley experiment of 1887 till the discovery of 
hand written notes taken during lectures given by Einstein in Chicago (1921) 
and Kyoto (1922).  

 15 books were trying to “prove” that the conformal factor was indeed re-
duced to a constant equal to 1 when space-time was supposed to be homoge-
neous and isotropic.  

 5 books only were claiming that the conformal factor could eventually de-
pend on the property of space-time, adding however that, if there was no 
surrounding electromagnetism or gravitation, the situation should be re-
duced to the preceding one but nothing was said otherwise.  

The student was so disgusted by such a state of affair that he decided to give 
up on research and to become a normal civil engineer. As a byproduct, if group 
theory must be used, the underlying group of transformations of space-time 
must be related to the propagation of light by itself rather than by considering 
tricky signals between observers, thus must have to do with the biggest group of 
invariance of Maxwell Equations ([2] [3]). However, at the time we got the solu-
tion of this problem with the publication of ([4]) in 1988 (See [5] for recent re-
sults), a deep confusion was going on which is still not acknowledged though it 
can be explained in a few lines ([6]). Using standard notations of differential 
geometry, if the 2-form 2 *F T∈∧  describing the EM field is satisfying the first 
set of Maxwell equations, it amounts to say that it is closed, that is killed by the 
exterior derivative 2 * 3 *:d T T∧ → ∧ . The EM field can be thus (locally) para-
metrized by the EM potential 1-form *A T∈  with dA F=  where * 2 *:d T T→∧  
is again the exterior derivative, because 2 0d d d= = . Now, if E is a vector 
bundle over a manifold X of dimension n, then we may define its adjoint vector 
bundle ( ) * *nad E T E= ∧ ⊗  where *E  is obtained from E by inverting the 
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transition rules, like *T  is obtained from ( )T T X=  and such a construction 
can be extended to linear partial differential operators between (sections of) 
vector bundles. When 4n = , it follows that the second set of Maxwell equations 
for the EM induction is just described by ( ) 4 * 2 4 *:ad d T T T T∧ ⊗∧ → ∧ ⊗ , in-
dependently of any Minkowski constitutive relation between field and induction. 
Using Hodge duality with respect to the volume form 1 4dx dx dx= ∧ ∧ , this 
operator is isomorphic to 2 * 3 *:d T T∧ → ∧ . It follows that both the first set and 
second set of Maxwell equations are invariant by any diffeomorphism and that 
the conformal group of space-time is the biggest group of transformations pre-
serving the Minkowski constitutive relations in vacuum where the speed of light 
is truly c as a universal constant. It was thus natural to believe that the mathe-
matical structure of electromagnetism and gravitation had only to do with such a 
group having:  

4 translations 6 rotations 1 dilatation 4 elations 15 parameters+ + + =  

the main difficulty being to deal with these later non-linear transformations. Of 
course, such a challenge could not be solved without the help of the non-linear 
theory of partial differential equations and Lie pseudogroups combined with 
homological algebra, that is before 1995 at least ([7]).  

From a purely physical point of view, these new nonlinear methods have been 
introduced for the first time in 1909 by the brothers E. and F. Cosserat for stud-
ying the mathematical foundations of EL ([8]-[14]). We have presented their 
link with the nonlinear Spencer differential sequences existing in the formal 
theory of Lie pseudogroups at the end of our book “Differential Galois Theory” 
published in 1983 ([15]). Similarly, the conformal methods have been intro-
duced by H. Weyl in 1918 for revisiting the mathematical foundations of EM 
([3]). We have presented their link with the above approach through a unique 
differential sequence only depending on the structure of the conformal group in 
our book “Lie Pseudogroups and Mechanics” published in 1988 ([4]). However, 
the Cosserat brothers were only dealing with translations and rotations while 
Weyl was only dealing with dilatation and elations. Also, as an additional condi-
tion not fulfilled by the classical Einstein-Fokker-Nordström theory ([16]), if the 
conformal factor has to do with gravitation, it must be defined everywhere but at 
the central attractive mass as we already said.  

From a purely mathematical point of view, the concept of a finite length dif-
ferential sequence, now called Janet sequence, has been first described as a foot-
note by M. Janet in 1920 ([17]). Then, the work of D. C. Spencer in 1970 has 
been the first attempt to use the formal theory of systems of partial differential 
equations that he developed himself in order to study the formal theory of Lie 
pseudogroups ([18] [19] [20]). However, the nonlinear Spencer sequences for 
Lie pseudogroups, though never used in physics, largely supersede the “Cartan 
structure equations” introduced by E.Cartan in 1905 ([21] [22]) and are different 
from the “Vessiot structure equations” introduced by E. Vessiot in 1903 ([23]) or 
1904 ([24]) for the same purpose but still not known today after more than a 
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century because they have never been acknowledged by Cartan himself or even 
by his successors.  

The purpose of the present difficult paper is to apply these new methods for 
studying the common nonlinear conformal origin of electromagnetism and gra-
vitation, in a purely mathematical way, by constructing explicitly the corres-
ponding nonlinear Spencer sequence. All the physical consequences will be pre-
sented in another paper.  

2. Groupoids and Algebroids 

Let us now turn to the clever way proposed by Vessiot in 1903 ([23]) and 1904 
([24]). Our purpose is only to sketch the main results that we have obtained in 
many books ([4] [7] [13] [15], we do not know other references) and to illustrate 
them by a series of specific examples, asking the reader to imagine any link with 
what has been said. We break the study into 8 successive steps.  

1) If X X= × , we shall denote by ( ),q q X XΠ = Π  the open sub-fibered 
manifold of ( )qJ X X×  defined independently of the coordinate system by 

( ) 0k
idet y ≠  with source projection ( ) ( ): : ,q q qX x y xα Π → →  and target 

projection ( ) ( ): : ,q q qX x y yβ Π → → . We shall sometimes introduce a copy Y 
of X with local coordinates (y) in order to avoid any confusion between the 
source and the target manifolds. In order to construct another nonlinear se-
quence, we need a few basic definitions on Lie groupoids and Lie algebroids that 
will become substitutes for Lie groups and Lie algebras. The first idea is to use 
the chain rule for derivatives ( ) ( ) ( )q q qj g f j g j f=   whenever  

( ),f g aut X∈  can be composed and to replace both ( )qj f  and ( )qj g  re-
spectively by qf  and qg  in order to obtain the new section q qg f . This kind 
of “composition” law can be written in a symbolic way by introducing another 
copy Z of X with local coordinates (z) as follows: 

( ) ( ) ( ): , , , :

, , , , , , , , , ,

q q Y q qY Z X Y X Z

z y z yy z x y x z
y x y x

γ Π × Π →Π

   ∂ ∂ ∂ ∂  →    ∂ ∂ ∂ ∂    
  

 

We may also define ( ) ( )1 1
q qj f j f− −=  and obtain similarly an “inversion” 

law. 
DEFINITION 2.1: A fibered submanifold q q⊂ Π  is called a system of fi-

nite Lie equations or a Lie groupoid of order q if we have an induced source 
projection :q q Xα → , target projection :q q Xβ → , composition  

:q q X q qγ × →   , inversion :q q qι →   and identity  
( ) :q q qj id id X= → . In the sequel we shall only consider transitive Lie grou-

poids such that the map ( ), :q q q X Xα β → ×  is an epimorphism and we 
shall denote by ( )0 1

q qid −=   the isotropy Lie group bundle of q . Also, 
one can prove that the new system ( )r q q rρ +=   obtained by differentiating r 
times all the defining equations of q  is a Lie groupoid of order q r+ .  

Let us start with a Lie pseudogroup ( )aut XΓ ⊂  defined by a system  
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q q⊂ Π  of order q. Roughly speaking, if 1, ,f g g f f −∈Γ⇒ ∈Γ  but such a 
definition is totally meaningless in actual practice as it cannot be checked most 
of the time. In all the sequel we shall suppose that the system is involutive ([4] 
[7] [13] [15] [25]) and that Γ  is transitive that is ( ), , ,x y X f y f x∀ ∈ ∃ ∈Γ =  
or, equivalently, the map ( ) ( ) ( ), : : , ,q q q qX X x y x yα β → × →  is surjective. 

2) The Lie algebra TΘ ⊂  of infinitesimal transformations is then obtained 
by linearization, setting ( )y x t xξ= + +  and passing to the limit 0t →  in 
order to obtain the linear involutive system ( )( ) ( )1

q q q qR id V J T−= ⊂  by re-
ciprocal image with ( ){ }| q qT j Rξ ξΘ = ∈ ∈ . We define the isotropy Lie  

algebra bundle ( )0 0
q qR J T⊂  by the short exact sequence 

0
00 0

q

q qR R T
π

→ → → → . 
3) Passing from source to target, we may prolong the vertical infinitesimal 

transformations ( )k
ky

y
η η ∂
=

∂
 to the jet coordinates up to order q in order to 

obtain: 

( )
2k k k

k r r s r
i i j ijk r k r s r k

i ij

y y y y y
y y y y y y y

η η ηη
   ∂ ∂ ∂ ∂ ∂ ∂

+ + + +   ∂ ∂ ∂ ∂ ∂ ∂ ∂   
  

where we have replaced ( )( )qj f x  by qy , each component being the “formal” 
derivative of the previous one . 

4) As [ ],Θ Θ ⊂ Θ , we may use the Frobenius theorem in order to find a ge-
nerating fundamental set of differential invariants ( ){ }qyτΦ  up to order q 
which are such that ( ) ( )q qy yτ τΦ = Φ  by using the chain rule for derivatives 
whenever ( )y g y= ∈Γ  acting now on Y. Specializing the τΦ  at ( )qid x  we 
obtain the Lie form ( ) ( )qy xτ τωΦ =  of q . 

Of course, in actual practice one must use sections of qR  instead of solutions 
and we now prove why the use of the Spencer operator becomes crucial for such 
a purpose. Indeed, using the algebraic bracket  

( ) ( ){ } [ ]( )1 1, , , ,q q qj j j Tξ η ξ η ξ η+ + = ∀ ∈ , we may obtain by bilinearity a diffe-
rential bracket on ( )qJ T  extending the bracket on T: 

{ } ( ) ( ) ( )1 1 1 1, , , ,q q q q q q q q qi D i D J Tξ η ξ η ξ η η ξ ξ η+ + + +  = + − ∀ ∈   

which does not depend on the respective lifts 1qξ +  and 1qη +  of qξ  and qη  in 
( )1qJ T+ . This bracket on sections satisfies the Jacobi identity and we set ([4] [7] 

[13] [25]): 
DEFINITION 2.2: We say that a vector subbundle ( )q qR J T⊂  is a system 

of infinitesimal Lie equations or a Lie algebroid if ,q q qR R R  ⊂  , that is to say 
, ,q q q q q qR Rξ η ξ η ∈ ⇒ ∈  . Such a definition can be tested by means of com-

puter algebra. We shall also say that qR  is transitive if we have the short exact  

sequence 
0

00 0
q

q qR R T
π

→ → → → . In that case, a splitting of this sequence,  

namely a map :q qT Rχ →  such that 0
q

q Tidπ χ =  or equivalently a section 
*

q qT Rχ ∈ ⊗  over *
Tid T T∈ ⊗ , is called a qR -connection and its curvature 

2 * 0
q qT Rκ ∈∧ ⊗  is defined by ( ) ( ) ( ) [ ]( ), , , , ,q q q q Tκ ξ η χ ξ χ η χ ξ η ξ η = − ∀ ∈  . 
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PROPOSITION 2.3: If ,q q qR R R  ⊂  , then , , 0q r q r q rR R R r+ + +  ⊂ ∀ ≥  .  
Proof: When 1r = , we have  

( ) ( ){ }*
1 1 1 1 1| ,q q q q q q q qR R J T R D T Rρ ξ ξ ξ+ + + += = ∈ ∈ ∈ ⊗  and we just need to 

use the following formulas showing how D acts on the various brackets (See [7] 
and [25] for more details):  

( ) { } ( ){ } ( ){ }1 1 1 1, , , ,q q q q q qi D i D i D Tζ ξ η ζ ξ η ξ ζ η ζ+ + + += + ∀ ∈  

( ) ( ) ( )
( )( ) ( )( )

1 1 1 1

1 1 1 1

, , ,q q q q q q

q q

i D i D i D

i L D i L D

ζ ξ η ζ ξ η ξ ζ η

η ζ ξ ξ ζ η

+ + + +

+ +

     = +     
+ −

 

because the right member of the second formula is a section of qR  whenever 

1 1 1,q q qRξ η+ + +∈ . The first formula may be used when qR  is formally integrable.  
  

EXAMPLE 2.4: With 1, 3,n q X= = =   and evident notations, the compo-
nents of [ ]3 3,ξ η  at order zero, one, two and three are defined by the totally un-
usual successive formulas: 

[ ], x xξ η ξ η η ξ= ∂ − ∂  

[ ]( )1 1, x x x xx
ξ η ξ η η ξ= ∂ − ∂  

[ ]( )2 2, x xx x xx x xx x xxxx
ξ η ξ η η ξ ξ η η ξ= − + ∂ − ∂  

[ ]( )3 3, 2 2x xxx x xxx x xxx x xxxxxx
ξ η ξ η η ξ ξ η η ξ= − + ∂ − ∂  

For affine transformations, [ ]( )2 20, 0 , 0xx xx xx
ξ η ξ η= = ⇒ =  and thus  

[ ]2 2 2,R R R⊂ . 
For projective transformations, [ ]( )3 30, 0 , 0xxx xxx xxx

ξ η ξ η= = ⇒ =  and thus 
[ ]3 3 3,R R R⊂ .  

THEOREM 2.5: (prolongation/projection (PP) procedure) If an arbitrary 
system ( )q qR J E⊆  is given, one can effectively find two integers , 0r s ≥  such 
that the system ( )s

q rR +  is formally integrable or even involutive.  
COROLLARY 2.6: The bracket is compatible with the PP procedure:  

( ) ( ) ( ), , , , 0s s s
q q q q r q r q rR R R R R R r s+ + +

   ⊂ ⇒ ⊂ ∀ ≥     

EXAMPLE 2.7: With 2n m= =  and 1q = , let us consider the Lie pseudo-
dogroup ( )aut XΓ ⊂  of finite transformations ( )y f x=  such that  

( )2 1 2 1 2 *,0y dy x dx x Tω= = = ∈ . Setting ( )y x t xξ= + +  and linearizing, we 
get the Lie operator ( )ξ ξ ω=   where   is the Lie derivative because it is 
well known that ( ) ( ) ( ) ( ) ( ) ( ) [ ]( ), ,ξ η ξ η η ξ ξ η= − =            in the 
operator sense. The system ( )1 1R J T⊂  of linear infinitesimal Lie equations is: 

2 1 2 1
1 20, 0x ξ ξ ξ∂ + = ∂ =  

Replacing ( )1j ξ  by a section ( )1 1J Tξ ∈ , we have:  

1 2 1
1 22

1 , 0
x

ξ ξ ξ= − =  

Let us choose the two sections:  
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{ }1 2 2 1 1 2 2
1 1 2 1 2 10, , 1, 0, 0, 0x Rξ ξ ξ ξ ξ ξ ξ= = = − = = = = ∈  

{ }1 2 2 1 1 2 2 2
1 1 2 1 2 1, 0, 0, , 0, 1x x Rη η η η η η η= = = = = − = = ∈  

We let the reader check that [ ]1 1 1, Rξ η ∈ . However, we have the strict inclu-
sion ( )1

1 1R R⊂  defined by the additional equation 1 2
1 2 0ξ ξ+ =  and thus 

( )1
1 1 1, Rξ η ∉  though we have indeed ( ) ( ) ( )1 1 1

1 1 1,R R R  ⊂  , a result not evident at all 
because the sections 1ξ  and 1η  have nothing to do with solutions. The reader 
may proceed in the same way with 2 1 1 2x dx x dx−  and compare.  

5) The main discovery of Vessiot, as early as in 1903 and thus fifty years in 
advance, has been to notice that the prolongation at order q of any horizontal  

vector field ( )i
ix

x
ξ ξ ∂
=

∂
 commutes with the prolongation at order q of any 

vertical vector field ( )k
ky

y
η η ∂
=

∂
, exchanging therefore the differential inva-

riants. Keeping in mind the well known property of the Jacobian determinant  
while passing to the finite point of view, any (local) transformation ( )y f x=  
can be lifted to a (local) transformation of the differential invariants between 
themselves of the form ( )( )( ), qu u j f xλ→  allowing to introduce a natural 
bundle   over X by patching changes of coordinates  

( ) ( )( )( ), , qx x u u j xϕ λ ϕ= = . A section ω  of   is called a geometric object 
or structure on X and transforms like ( )( ) ( ) ( )( )( ), qf x x j f xω λ ω=  or 
simply ( )( )qj fω ω= . This is a way to generalize vectors and tensors ( 1q = ) or 
even connections ( 2q = ). As a byproduct we have  

( ) ( )( ) ( ) ( ){ }1| q qf aut X j f j fω ω ω−Γ = ∈ Φ = =  as a new way to write out the 
Lie form and we may say that Γ  preserves ω . We also obtain  

( ){ }1|q q q qf f ω ω−= ∈Π = . Coming back to the infinitesimal point of view 
and setting ( ) ( ) ,tf exp t aut X Tξ ξ= ∈ ∀ ∈ , we may define the ordinary Lie de-
rivative with value in ( )( )1F Vω−=   by introducing the vertical bundle of 
  as a vector bundle over   and the formula: 

( ) ( ) ( ) ( ){ }1

0

| 0q t
t

d j f T
dt

ξ ξ ω ω ξ ξ ω−

=

= = ⇒ Θ = ∈ =    

while we have ( ) ( )k
kx x t x u u t L uτ τ τµ

µξ ξ→ + + ⇒ → + ∂ +   where  
( )1, , nµ µ µ=   is a multi-index as a way to write down the system ( )q qR J T⊂  

of infinitesimal Lie equations in the Medolaghi form: 

( )( ) ( )( ) ( ) 0k r
k rL x x

ττ τµ τ
µξ ω ω ξ ξ ωΩ ≡ ≡ − ∂ + ∂ =  

EXAMPLE 2.8: With 1n = , let us consider the Lie group of projective trans-
formations ( ) ( )y ax b cx d= + +  as a lie pseudogroup. Differentiating three 
times in order to eliminate the parameters, we obtain the third order Schwarzian 
OD equation and its linearization over y x= :  

2

3 3
3, 0
2

xxx xx

x x

y y
y y

 
⊂ Π Ψ ≡ − = 

 
  
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( )3 3 , 0xxxR J T ξ⊂ =  

Accordingly, the prolongation ( )3# η  of any ( )( )3 3J T Yη ∈  over Y such 
that 0yyyη =  becomes:  

( ) ( )

( ) ( )2 3

y x xx xxx
x xx xxx

yy x x xx
xx xxx

y y y y y
y y y y

y y y y
y y

η η

η

 ∂ ∂ ∂ ∂
+ + + ∂ ∂ ∂ ∂ 
 ∂ ∂

+ + ∂ ∂ 

 

It follows that Ψ  is a generating third order differential invariant and 3R  is 
in Lie form.  

Now, we have:  

( ) ( )
( )

2

3

, ,

3

x x x xx xx x x xx

xxx xxx x xx x xx x xxx

x x y y y y y

y y y y

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= ⇒ = ∂ = ∂ + ∂

= ∂ + ∂ ∂ + ∂
 

and the natural bundle   is thus defined by the transition rules:  

( ) ( )
2

2 3,
2

xxx xx
x

x x

x x u u
ϕ ϕ

ϕ ϕ
ϕ ϕ

  ∂ ∂ = = ∂ + −   ∂ ∂  
 

The general Lie form of 3  is:  

( )( ) ( )
2

23
2

xxx xx
x

x x

y y
y y x

y y
ω ω

 
− + = 

 
 

We obtain ( )3 3R J T⊂  in Medolaghi form as follows:  

( ) ( ) ( )2 0xxx x xx xξ ω ξ ω ξ ξ ωΩ ≡ ≡ ∂ + ∂ + ∂ =  

Using a section ( )3 3J Tξ ∈ , we finally get the formal Lie derivative:  

( ) ( ) ( )3 2 0xxx x xL x xξ ω ξ ω ξ ξ ωΩ ≡ ≡ + + ∂ =  

and let the reader ckeck directly that ( ) ( ) [ ]( )3 3 3 3, ,L L Lξ η ξ η  =  ,  
( )3 3 3, J Tξ η∀ ∈ , a result absolutely not evident at first sight.  

6) By analogy with “special” and “general” relativity, we shall call the given 
section special and any other arbitrary section general. The problem is now to 
study the formal properties of the linear system just obtained with coefficients 
only depending on ( )1j ω , exactly like L.P. Eisenhart did for *

2S T=  when 
finding the constant Riemann curvature condition for a metric ω  with  

( ) 0det ω ≠  ([7], Example 10, p 246 to 256, [26]). Indeed, if any expression in-
volving ω  and its derivatives is a scalar object, it must reduce to a constant be-
cause Γ  is assumed to be transitive and thus cannot be defined by any zero 
order equation. Now one can prove that the CC for ω , thus for ω  too, only 
depend on the Φ  and take the quasi-linear symbolic form  

( ) ( ) ( )1 0xv I u A u u B u≡ ≡ + = , allowing to define an affine subfibered manifold 
( )1 1J⊂   over  . Now, if one has two sections ω  and ω  of  , the 

equivalence problem is to look for ( )f aut X∈  such that ( ) ( )1
qj f ω ω− = . 

When the two sections satisfy the same CC, the problem is sometimes locally 
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possible (Lie groups of transformations, Darboux problem in analytical mechan-
ics, …) but sometimes not ([25], p. 333). 

7) Instead of the CC for the equivalence problem, let us look for the integra-
bility conditions (IC) for the system of infinitesimal Lie equations and suppose 
that, for the given section, all the equations of order q r+  are obtained by dif-
ferentiating r times only the equations of order q, then it was claimed by Vessiot 
([23] with no proof, see [7], pp. 207-211) that such a property is held if and only 
if there is an equivariant section ( ) ( )( )1: : , , ,c x u x u v c u→ → =   where  

( )1 1 1J=    is a natural vector bundle over   with local coordinates 
( ), ,x u v . Moreover, any such equivariant section depends on a finite number of 
constants c called structure constants and the IC for the Vessiot structure equa-
tions ( ) ( )1I u c u=  are of a polynomial form ( ) 0J c = . 

EXAMPLE 2.9: Comig back to Example 2.7 first considered by Vessiot as 
early as in 1903 ([23]), the geometric object ( ) * 2 *, XT Tω α β= ∈ ⊗ ∧  must sa-
tisfy the Vessiot structure equation d cα β=  with a single Vessiot structure 
constant 1c = −  in the situation considered where 2 1x dxα =  and 1 2dx dxβ = ∧  
(See ([27]) for other examples and applications). As a byproduct, there is no 
conceptual difference between such a constant and the constant appearing in the 
constant Riemannian curvature condition of Eisenhart ([26]).  

8) Finally, when Y is no longer a copy of X, a system ( )q qJ X Y⊂ ×  is said 
to be an automorphic system for a Lie pseudogroup ( )aut YΓ ⊂  if, whenever 

( )y f x=  and ( )y f x=  are two solutions, then there exists one and only one 
transformation ( )y g y= ∈Γ  such that f g f=  . Explicit tests for checking 
such a property formally have been given in ([15]) and can be implemented on 
computer in the differential algebraic framework. 

3. Nonlinear Sequences 

Contrary to what happens in the study of Lie pseudogroups and in particular in 
the study of the algebraic ones that can be found in mathematical physics, non-
linear operators do not in general admit CC, unless they are defined by differen-
tial polynomials, as can be seen by considering the two following examples with 

1, 2, 2m n q= = = . With standard notations from differential algebra, if we are 
dealing with a ground differential field K, like   in the next examples, we de-
note by { }K y  the ring (which is even an integral domain) of differential poly-
nomials in y with coefficients in K and by { }( )K y Q K y=  the corresponding 
quotient field of differential rational functions in y. Then, if ,u v K y∈ , we 
have the two towers K K u K y⊂ ⊂  and K K v K y⊂ ⊂  of extensions, 
thus the tower ,K K u v K y⊂ ⊂ . Accordingly, the differential extension  

,K u v K  is a finitely generated differential extension. If we consider u and v 
as new indeterminates, then K u  and K v  are both differential transcen-
dental extensions of K and the kernel of the canonical differential morphism 
{ } { }KK u K v K y⊗ →  is a prime differential ideal in the differential integral 

domain KK y K v⊗ , a way to describe by residue the smallest differential 
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field containing K u  and K v  in K y . Of course, the true difficulty is to 
find out such a prime differential ideal.  

EXAMPLE 3.1: First of all, let us consider the following nonlinear system in y 
with second member ( ),u v :  

( ) ( )3 2 1 2
22 11 12 11 11

1

1 1,
3 2

u vP y y u Q y y v y
v
−

≡ − = ≡ − = ⇒ =  

The differential ideal a  generated by P and Q in { }y  is prime because 

2 1 11 1 0d Q d P y d Q+ − =  and thus { } { } [ ]1 2 11 111, , , , , ,y P Q y y y y y    is an 
integral domain.  

We may consider the following nonlinear involutive system with two equa-
tions:  

( )

( )

3
22 11

2
12 11

1 1 20
3
1 0 1
2

y y

y y

 − =

 − = •

 

We have also the linear inhomogeneous finite type second order system with 
three equations:  

3
1 2

22
1

2
1 2

12
1

1 2
11

1

1
1 23

1 1
2

1

u vy u
v

u vy v
v

u vy
v

  −
 = +  
  


 −
= + •  

 
 −

• =



 

Though we have a priori two CC, we let the reader prove, as a delicate exercise, 
that there is only the single nonlinear second order CC obtained from the bot-
tom dot:  

2
1 2 1 2

2 1
1 1

1 0
2

u v u vd d v
v v

    − − − + =        
 

EXAMPLE 3.2: On the contrary, if we consider the following new nonlinear 
system:  

( ) ( )2
22 11 12 11 11 111 2 1 1

1 , 1
2

P y y u Q y y v y y v v u w≡ − = ≡ − = ⇒ − = + − =  

we obtain successively:  

( )2 1 1 11 1111d Q d Q d P y y+ − ≡ −  

( ) ( ) ( )3
111 12 11 11 1111 2 1 1 111y d Q d Q d P y d Q d Q d P y+ − − + − =  

The symbol at order 3 is thus not a vector bundle and no direct study as above 
can be used because the differential ideal generated by ( ),P Q  is not perfect as 
it contains ( )3

111y  without containing 111y  (See [15] and [28] for more de-
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tails). The following nonlinear system is not involutive:  

( )2
22 11

12 11

1 1 20
2

0 1

y y

y y

 − =

 − = •

 

We have the following four generic nonlinear additional finite type third or-
der equations:  

222 11 1 2
11

122 11 1
11

112 1
11

111
11

1 2
1

1
1

1
1

0 1
1

wy y v u
y

wy y u
y

wy v
y

wy
y

  
− + =  − 


• − =

−

 •− = −

 − = • −

 

Though we have now a priori three CC and thus three additional equations 
because the system is not involutive, setting 11 112 2 111 11 ,y z y z y z− = ⇒ = = , 
there is only the single additional nonlinear second order equation:  

( )2
11 1 2 1 0v z w w z v w+ − + =  

Differentiating once and using the relation 1zz w= , we get:  

( ) ( ) ( )3 2
111 11 12 1 1 11 1 23 0v z w w z v w v w z w w w+ − + + + − =  

a result leading to a tricky resultant providing a third order differential poly-
nomial in ( ),u v .  

However, the kernel of a linear operator : E F→  is always taken with re-
spect to the zero section of F, while it must be taken with respect to a prescribed 
section by a double arrow for a nonlinear operator. Keeping in mind the linear 
Janet sequence and the examples of Vessiot structure equations already pre-
sented, one obtains:  

THEOREM 3.3: There exists a nonlinear Janet sequence associated with the 
Lie form of an involutive system of finite Lie equations:  

( )
1

10
0

qj I j
aut X

ω α

Φ
→ Γ→

 



     

where the kernel of the first operator ( ) ( )( ) ( ) ( )1
q q qf j f j f j f ω−→Φ = Φ =  

is taken with respect to the section ω  of   while the kernel of the second 
operator ( )( ) ( ) ( )1 xI j A Bω ω ω ω ω→ ≡ ∂ +  is taken with respect to the zero 
section of the vector bundle 1  over  . 

COROLLARY 3.4: By linearization at the identity, one obtains the involutive 
Lie operator ( )0: :T F ξ ξ ω→ →   with kernel ( ){ }| 0T Tξ ξ ωΘ = ∈ = ⊂  
satisfying [ ],Θ Θ ⊂ Θ  and the corresponding linear Janet sequence:  
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1

0 10 T F F→Θ→ → →


 

where ( )( )1
0F F Vω−= =   and ( )1

1 1F ω−=  . 
Now we notice that T is a natural vector bundle of order 1 and ( )qJ T  is 

thus a natural vector bundle of order 1q + . Looking at the way a vector field and 
its derivatives are transformed under any ( )f aut X∈  while replacing ( )qj f  
by qf , we obtain: 

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )k k r k u k r k r
r u i r i rif x f x x f x f x f x x f x xη ξ η ξ ξ= ⇒ = +  

and so on, a result leading to: 
LEMMA 3.5: ( )qJ T  is associated with ( )1 1 ,q q X X+ +Π = Π  that is we can 

obtain a new section ( )1q q qfη ξ+=  from any section ( )q qJ Tξ ∈  and any sec-
tion 1 1q qf + +∈Π  by the formula: 

1= , 0
r

k k r k r k r
r rd f f f qµ µ µ µη η ξ ξ µ+≡ + + + ∀ ≤ ≤   

where the left member belongs to ( )qV Π . Similarly ( )q qR J T⊂  is associated 
with 1 1q q+ +⊂ Π . 

More generally, looking now for transformations “close” to the identity, that 
is setting ( )y x t xξ= + +  when 1t   is a small constant parameter and 
passing to the limit 0t → , we may linearize any (nonlinear) system of finite Lie 
equations in order to obtain a (linear) system of infinitesimal Lie equations 

( )q qR J T⊂  for vector fields. Such a system has the property that, if ,ξ η  are 
two solutions, then [ ],ξ η  is also a solution. Accordingly, the set TΘ ⊂  of its 
solutions satisfies [ ],Θ Θ ⊂ Θ  and can therefore be considered as the Lie alge-
bra of Γ .  

More generally, the next definition will extend the classical Lie derivative:  

( ) ( ) ( )( ) ( ) ( )1

0

.q
t

di d di j exp t
dt

ξ ω ξ ξ ω ξ ω−

=

= + =  

DEFINITION 3.6: We say that a vector bundle F is associated with qR  if 
there exists a first order differential operator ( ) :qL F Fξ →  called formal Lie 
derivative and such that:  

1) ( ) ( ) ( ) ,q q q q q q qL L L Rξ η ξ η ξ η+ = + ∀ ∈ .  
2) ( ) ( ) ( ),q q q qL f fL R f C Xξ ξ ξ ∞= ∀ ∈ ∀ ∈ .  
3) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), , ,q q q q q q q q q q qL L L L L L L Rξ η ξ η η ξ ξ η ξ η   = − = ∀ ∈    
. 

4) ( )( ) ( ) ( ) ( ), ,q q q qL f fL f R f C X Fξ η ξ η ξ η ξ η∞= + ∀ ∈ ∀ ∈ ∀ ∈ .  
LEMMA 3.7: If E and F are associated with qR , we may set on E F⊗ : 

( )( ) ( ) ( ) , ,q q q q qL L L R E Fξ η ζ ξ η ζ η ξ ζ ξ η ζ⊗ = ⊗ + ⊗ ∀ ∈ ∀ ∈ ∀ ∈  

If TΘ ⊂  denotes the solutions of qR , then we may set  
( ) ( )( ) ,qL jξ ξ ξ= ∀ ∈Θ  but no explicit computation can be done when Θ  

is infinite dimensional. However, we have:  
PROPOSITION 3.8: ( )qJ T  is associated with ( )1qJ T+  if we define:  

( ) { } ( ) ( )1 1 1 1 1, ,q q q q q q q qL i D i Dξ η ξ η ξ η ξ η η ξ+ + + + + = + = +   
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and thus qR  is associated with 1qR + .  
Proof: It is easy to check the properties 1, 2, 4 and it only remains to prove 

property 3 as follows. 

( ) ( )
( ) { } ( )( ) ( ) { } ( )( )

{ }{ } { }{ } ( ){ }
( ){ } ( ) { } ( ) { }

( ) ( )( ) ( ) ( )( )

1 1

1 1 1 1 1 1 1 1

1 2 2 1 2 2 1 2

1 2 2 2 2 2

2 2

,

, ,

, , , , ,

, , ,

q q q

q q q q q q q q

q q q q q q q q

q q q q q q

q q

L L

L i D L i D

i D

i D i D i D

i D i D i D i D

ξ η ζ

ξ η ζ η ζ η ξ ζ ξ ζ

ξ η ζ η ξ ζ ξ η ζ

η ξ ζ ξ η ζ η ξ ζ

ξ η ζ η ξ ζ

+ +

+ + + + + + + +

+ + + + + + + +

+ + + + + +

+ +

  

= + − +

= − +

− + −

+ −

 

{ }{ } ( ){ } ( ){ } [ ]( )
{ } [ ]( )

2 2 1 2 1 2 1 1

1 1 1 1

, , , , ,

, , ,

q q q q q q q q

q q q q

i D i D i D

i D

ξ η ζ ξ η ζ η ξ ζ ξ η ζ

ξ η ζ ξ η ζ

+ + + + + + + +

+ + + +

= + − +

 = + 
 

by using successively the Jacobi identity for the algebraic bracket and the last 
proposition.  

  
EXAMPLE 3.9: T and *T  both with any tensor bundle are associated with 
( )1J T . For T we may define ( ) [ ] ( ) ( ){ }1 1 1 1, ,L i D jξ η ξ η η ξ ξ η= + = . We have 

( )r k s k s k k s k r k
r s s s s rξ η η ξ η ξ ξ η ξ ξ η∂ − ∂ + ∂ − = − + ∂  and the four properties of 

the formal Lie derivative can be checked directly. Of course, we find back 
( ) [ ], , , Tξ η ξ η ξ η= ∀ ∈ . We let the reader treat similarly the case of *T .  
PROPOSITION 3.10: There is a first nonlinear Spencer sequence:  

( ) ( ) ( ) ( )
1

* 2 *
1 10 ,

qj D D

q q qaut X X X T J T T J T
+ ′

+ −→ →Π → ⊗ →∧ ⊗  

with ( )1
1 1 1 1q q q q qDf f j f id χ−
+ + +≡ − =   
( ) ( ) ( ) ( ){ }, , , 0q q q qD Dχ ξ η χ ξ η χ ξ χ η′⇒ ≡ − = . Moreover, setting  

*
0 A id T Tχ = − ∈ ⊗ , this sequence is locally exact if ( ) 0det A ≠ . 
Proof: There is a canonical inclusion ( )1 1q qJ+Π ⊂ Π  defined by , 1

k k
i i

y yµ µ+=  
and the composition ( )1

1 1q qf j f−
+   is a well defined section of ( )1 qJ Π  over 

the section 1
q q qf f id− =  of qΠ  like 1qid + . The difference  

( )1
1 1 1q q q qf j f idχ −
+ += −  is thus a section of ( )*

qT V⊗ Π  over qid  and we 
have already noticed that ( )( ) ( )1

q q qid V J T− Π = . For 1q =  we get with  
1

1 1g f −= : 

( ), ,,k k l k k k k k l r l
i l i i i i j i l i j i rjg f A g f A fχ δ δ χ= ∂ − = − = ∂ −  

We also obtain from Lemma 3.5 the useful formula  

, 1 , 1
k r k r k k

r i i ir i
f f f fµ µ µ µχ χ+ ++ + = ∂ −  allowing to determine qχ  inductively. 

We refer to ([7], p 215-216) for the inductive proof of the local exactness, pro-
viding the only formulas that will be used later on and can be checked directly by 
the reader:  

( ), , , , , , , , 0k k k k r k r k
i j j i i j j i i r j j r iχ χ χ χ χ χ χ χ∂ − ∂ − + − − =          (1) 

( ), , , , , , , , , , , , 0k k k k r k r k r k r k
i l j j l i li j lj i i lr j l i r j l j r i j lr iχ χ χ χ χ χ χ χ χ χ χ χ∂ − ∂ − + − + − − =    (2) 
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(
)

, , , , , , , , , ,

, , , , , , , , , , 0

k k k k s k s k s k
i lr j j lr i lri j lrj i i lrs j r i ls j l i rs j

s k s k s k s k s k
lr i s j j lrs i r j ls i l j rs i lr j s i

χ χ χ χ χ χ χ χ χ χ

χ χ χ χ χ χ χ χ χ χ

∂ − ∂ − + − + +

+ − − − − =
       (3) 

There is no need for double-arrows in this framework as the kernels are taken 
with respect to the zero section of the vector bundles involved. We finally notice 
that the main difference with the gauge sequence is that all the indices range 
from 1 to n and that the condition ( ) 0det A ≠  amounts to ( ) 0k

idet f∆ = ∂ ≠  
because ( ) 0k

idet f ≠  by assumption.  
  

COROLLARY 3.11: There is a restricted first nonlinear Spencer sequence: 

( )
1

* 2 *
1 10

qj D D

q q qT R T J T
+ ′

+ −→ Γ→ → ⊗ →∧ ⊗  

DEFINITION 3.12: A splitting of the short exact sequence  
0

00 0
q

q qR R T
π

→ → → →  is a map :q qT Rχ′ →  such that 0
q

q Tidπ χ′ =  or  

equivalently a section of *
qT R⊗  over *

Tid T T∈ ⊗  and is called a qR -con- 
nection. Its curvature 2 * 0

q qT Rκ ′ ∈∧ ⊗  is defined by  
( ) ( ) ( ) [ ]( ), , ,q q q qκ ξ η χ ξ χ η χ ξ η′ ′ ′ ′ = −  . We notice that q qχ χ′ = −  is a connec-

tion with q qD χ κ′ ′ ′=  if and only if 0A = . In particular ( ),k k
i ijδ γ−  is the only 

existing symmetric connection for the Killing system.  
REMARK 3.13: Rewriting the previous local formulas with A instead of 0χ  

we get:  

, , 0k k r k r k
i j j i i r j j r iA A A Aχ χ∂ − ∂ − + =                (1*) 

, , , , , , , , 0k k r k r k r k r k
i l j j l i i lr j j lr i l i r j l j r iA Aχ χ χ χ χ χ χ χ∂ − ∂ − + − + =        (2*) 

( )
, , , ,

, , , , , , , , , , , , 0

k k s k s k
i lr j j lr i i lrs j j lrs i

s k s k s k s k s k s k
r i ls j l i rs j lr i s j r j ls i l j rs i lr j s i

A Aχ χ χ χ

χ χ χ χ χ χ χ χ χ χ χ χ

∂ − ∂ − +

− + + − − − =
    (3*) 

When 21, 0q g= =  and though surprising it may look like, we find back ex-
actly all the formulas presented by E. and F. Cosserat in ([10], p 123). Even more 
strikingly, in the case of a Riemann structure, the last two terms disappear but 
the quadratic terms are left while, in the case of screw and complex structures, 
the quadratic terms disappear but the last two terms are left. We finally notice 
that q qχ χ′ = −  is a qR -connection if and only if 0A = , a result contradicting 
the use of connections in physics. However, when 0A = , we have ( )0χ ξ ξ′ =  
and thus:  

( )( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )( )
( ) ( ) [ ]( )
( ) ( ) [ ]( )( )

( )

1 1 1 1, ,

, ,

, ,

,

q q q q q q

q q q

q q q

q

D D i D i Dχ χ ξ η χ ξ χ η ξ χ η η χ ξ

χ ξ χ η χ ξ η

χ ξ χ η χ ξ η

κ ξ η

+ + + +′  = − + − 

 = − − 

′ ′ ′ = − − 
′= −

 

does not depend on the lift of qχ .  
COROLLARY 3.14: When ( ) 0det A ≠  there is a second nonlinear Spencer 

sequence stabilized at order q: 
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( ) ( ) ( )
1 2

1 20
qj D D

qaut X C T C T→ →Π → →  

where 1D  and 2D  are involutive and a restricted second nonlinear Spencer 
sequence: 

1 2

1 20
qj D D

q C C→Γ→ → →  

such that 1D  and 2D  are involutive whenever q  is involutive. 
Proof: With qµ =  we have ( ), 1r

k k r l
i l ig A f terms order qµ µχ += − + ≤ . Setting 

, ,
k r k

i i rAµ µχ τ= , we obtain ( ), 1r

k k l
r lg f terms order qµ µτ += − + ≤  and  

( )*
1: q qD T J T+Π → ⊗  restricts to ( )1 1: qD C TΠ → .  

Finally, setting 1
0A B id τ− = = − , we obtain successively: 

( ) ( ), , 1 , 1 , 0
r r

k k r k r k
i j j i q i j j iterms A Aµ µ µ µχ χ χ χ χ+ +∂ − ∂ + − − =  

( ) ( ) ( ), , 1 , 1 , 0
r s

i j k k k k
r s i j j i q s rB B termsµ µ µ µχ χ χ τ τ+ +∂ − ∂ + − − =  

We obtain therefore ( )1 0q qD termsτ τ+ + =  and  
( ) ( )* 2 *

1: q qD T J T T J T−′ ⊗ → ∧ ⊗  restricts to ( ) ( )2 1 2:D C T C T→ .  
In the case of Lie groups of transformations, the symbol of the involutive sys-

tem qR  must be 0qg =  providing an isomorphism 1 1q q q qR R+ +⇒    
and we have therefore *r

r qC T R= ∧ ⊗  for 1, ,r n=   like in the linear Spencer 
sequence.  

  
REMARK 3.15: In the case of the (local) action of a Lie group G on X, we may 

consider the graph of this action, that is the morphism  
( ) ( )( ): , , ,X G X X x a x y f x a× → × → = . If q is large enough, then there is an 

isomorphism ( ) ( )( ): , ,q q qX G x a j f x a× → ⊂ Π →  obtained by eliminating 
the parameters and *r

r qC T R= ∧ ⊗ . If { }τθ  with ( )1 dim Gτ≤ ≤  is a basis of 
infinitesimal generators of this action, there is a morphism of Lie algebroids over 
X, namely ( ) ( ) ( ):q qX R x x jτ τ

τλ λ θ× → →  when q is large enough and the  

linear Spencer sequence 
31 2* 2 *

DD D

q q qR T R T R→ ⊗ →∧ ⊗ →  is locally exact because  

it is locally isomoprphic to the tensor product by   of the Poincaré sequence 
0 * 1 * 2 *

d d d
T T T∧ →∧ →∧ →  where d is the exterior derivative ([7]).  
We may also consider similarly 1dy dax daa y−= =  and  

1 1dx dbb dx a dax− −= = − , depending on the choice of the independent variable 
among the source x or the target y.  

Surprisingly, in the case of Lie pseudogroups or Lie groupoids, the situation is 
quite different. We recall the way to introduce a groupoid structure on  

( ),1 1q qJΠ ⊂ Π  from the groupoid structure on qΠ  when ( )( ) 0k
idet f x∆ = ∂ ≠ , 

that is how to define ( ) ( ) ( ) ( )1 1 1 1q q q q qj h j g f j g j f= =  . We get successively 
with ( )y f x= :  

( ) ( )( ) ( )( ) ( ) ( )( ) ( )
r r k

r r k
i k ii k i

h g fh x g f x g f x h x g f x f x
x y x

∂ ∂ ∂
= = ⇒ = ⇒ =

∂ ∂ ∂
  
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( ) ( )( ) ( ) ( ) ( )( ) ( )

r r kl
k ri k i

i kj l j j

r r k l r k
ij kl i j k ij

h g fff g
x y x x

h x g f x f x f x g f x f x

∂ ∂ ∂∂
= +

∂ ∂ ∂ ∂

⇒ = +

 

r l kr k ru u
ij j ijk l r l k k rki i k

i j kl j i ij ks u s s s u s s

h f fg f gf ff f g f f f g
x y x x x y x x

 ∂ ∂ ∂∂ ∂ ∂∂ ∂
= + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

( )r r k l u r k l k l r u k r k
ijs klu i j s kl is j i js ku s ij k ijsh g f f f g f f f f g f f g f⇒ = + + + +  

and so on with more and more involved formulas.  
Now, if we want to obtain objects over the source x according to the non- 

linear Spencer sequence, we have only two possibilities in actual practice, name-
ly:  

( ) ( )

( ) ( )

1 *
1 1 1

1 *
1 1 1

q q q q q

q q q q q

f j f id T J T

j f f id T J T

χ

χ

−
+ +

−

+ +

= − ∈ ⊗

↔ = − ∈ ⊗





 

As we have already considered the first, we have now only to study the second. 
In ( )1 qJ Π , we have:  

( ) ( )
( )

1 , , 1 , ,, , , and , , ,

over , , ,0,

k k k k k k
q q r i r ij r q q r i r ij rid A id A

x x

χ χ χ χ χ χ

δ
+ ++ = + = 



 

LEMMA 3.16: qχ  is a quasi-linear rational function of qχ , 0q∀ ≥ . With 
more details, when 0q = , we have 0 A idχ = −  and 0 A idχ = −  with  

1A A B−= =  and when 1q ≥ , we have q qAχ χ= − , that is to say q qχ τ= − . 
Proof: In the groupoid framework, we have:  

( ) ( ) ( )1 1 1 1q q q q q qid id id Jχ χ+ + ++ + = ∈ Π  

Doing the substitutions:  

, ,, ,
r rr

r r rk kl
k k l kl uk l u

g gg A
y y y

χ χ
∂ ∂∂

→ → →
∂ ∂ ∂

 

, ,, ,
kkk

ijk k ki
i i j ij si j s

fff A
x x x

χ χ
∂∂∂

→ → →
∂ ∂ ∂

 

while using the fact that , 0,k k k
i i ijf fδ= =   and , 0,r r r

k k klg gδ= =  , we obtain 
at once:  

, , , ,, 0, 0,r k r r l k r u r
k i i k l j i j ij u s ij sA A A Aδ χ χ χ χ= + = + =   

Proceeding by induction, we finally obtain:  

, , 0k r k
r s iAµ µχ χ+ =  

that is to say , , 0k k
i iµ µχ τ+ =  because ( )0 0det A∆ ≠ ⇒ ≠ , thus q qAχ χ= −  

or, equivalently, q qχ τ= − .  
  

REMARK 3.17: The passage from qχ  to qτ  is exactly the one done by E. 
and F. Cosserat in ([10], p 190), even though it is based on a subtle misunders-
tanding that we shall correct later on. 

REMARK 3.18: According to the previous results, the “field” must be a sec-
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tion of the natural bundle   of geometric objects if we use the nonlinear Janet 
sequence or a section of the first Spencer bundle 1C  if we use the nonlinear 
Spencer sequence. The aim of this paper is to prove that the second choice is by 
far more convenient for mathematical physics.  

4. Variational Calculus 

It remains to graft a variational procedure adapted to the previous results. Con-
trary to what happens in analytical mechanics or elasticity for example, the main 
idea is to vary sections but not points. Hence, we may introduce the variation 

( ) ( )( )k kf x f xδ η=  and set ( )( ) ( )( )k i k
if x f x xη ξ= ∂  along the “vertical 

machinery” but notations like i ixδ ξ=  or k kyδ η=  have no meaning at all.  
As a major result first discovered in specific cases by the brothers Cosserat in 

1909 and by Weyl in 1916, we shall prove and apply the following key result:  
THE PROCEDURE ONLY DEPENDS ON THE LINEAR SPENCER OPER- 

ATOR AND ITS FORMAL ADJOINT.  
In order to prove this result, if 1 1 1 1, ,q q q qf g h+ + + +∈Π  can be composed in 

such a way that 1 1 1 1 1q q q q qg g f f h+ + + + +′ = =  , we get: 

( ) ( )
( ) ( ) ( )

1 1 1
1 1 1 1 1 1 1 1 1 1

1 1 1
1 1 1 1 1 1 1 1 1

( )q q q q q q q q q q

q q q q q q q q q

Dg f g j g j f id f Dg j f Df

h f j f j h id h Df j h Dh

− − −
+ + + + + + +

− − −
+ + + + + +

′ = − = +

= − = +

    

    

 

Using the local exactness of the first nonlinear Spencer sequence or ([25], p 
219), we may state:  

LEMMA 4.1: For any section 1 1q qf + +∈ , the finite gauge transformation: 

( )* 1 *
1 1 1q q q q q q q qT R f j f Df T Rχ χ χ−
+ +′∈ ⊗ → = + ∈ ⊗   

exchanges the solutions of the field equations 0qD χ′ = . 
Introducing the formal Lie derivative on ( )qJ T  by the formulas: 

( ) { } ( ) ( )1 1 1 1 1, ,q q q q q q q qL i D i Dξ η ξ η ξ η ξ η η ξ+ + + + + = + = +   

( )( )( )( ) ( ) ( )( ) [ ]( )1 1 1 ,q q q q qL j Lξ χ ζ ξ χ ζ χ ξ ζ+ += −  

LEMMA 4.2: Passing to the limit over the source with 1 1 1q q qh id tξ+ + += + +  
for 0t → , we get an infinitesimal gauge transformation leading to the infinite-
simal variation:  

( )( )1 1 1q q q qD L jδχ ξ ξ χ+ += +                    (3) 

which does not depend on the parametrization of qχ . Setting  
( )1 1 1q q qξ ξ χ ξ+ + += + , we get: 

{ }1 1 1,q q q qDδχ ξ χ ξ+ + += −                    (3*) 

LEMMA 4.3: Passing to the limit over the target with 1q qDfχ +=  and 

1 1 1q q qg id tη+ + += + + , we get the other infinitesimal variation where 1qDη +  is 
over the target: 

( )1
1 1 1q q q qf D j fδχ η−
+ +=                       (4) 

which depends on the parametrization of qχ . 
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EXAMPLE 4.4: We obtain for 1q = :  

( ) ( )
( ) ( )

, , , ,

, ,

k k k r k k r r k
i i i r i r i i r

k k k r r k
i i r i i r

δχ ξ ξ ξ χ χ ξ χ ξ

ξ ξ χ ξ χ ξ

= ∂ − + ∂ + ∂ −

= ∂ − + −
 

( ) ( )
( ) ( )

, , , , , ,

, , , ,

k k k r k k r k r r k r k
j i i j ij r j i j r i r i j j i r i jr

k k k r k r r k r k
i j ij rj i r i j j i r i jr

δχ ξ ξ ξ χ χ ξ χ ξ χ ξ χ ξ

ξ ξ χ ξ χ ξ χ ξ χ ξ

= ∂ − + ∂ + ∂ + − −

= ∂ − + + − −
 

Introducing the inverse matrix 1B A−= , we obtain therefore equivalently:  
k r k k r r k i r i r i i r
i r i r i i r k r k k r r kA A A A B B B Bδ ξ ξ ξ δ ξ ξ ξ= ∂ + ∂ − ⇔ = ∂ − ∂ +  

both with:  

( ) ( ), , , , ,
k k r k r k k r k r r k
j i i j i jr r j i j r i r i j j i rAδχ ξ ξ ξ χ χ ξ χ ξ χ ξ= ∂ − + ∂ + ∂ + −  

For the Killing system ( )1 1R J T⊂  with 2 0g = , these variations are exactly 
the ones that can be found in ([10], (50) + (49), p 124 with a printing mistake 
corrected on p 128) when replacing a 3 × 3 skew-symmetric matrix by the cor-
responding vector. The last unavoidable Proposition is thus essential in order to 
bring back the nonlinear framework of finite elasticity to the linear framework of 
infinitesimal elasticity that only depends on the linear Spencer operator. 

For the conformal Killing system ( )1 1R̂ J T⊂  (see next section) we obtain:  

( ) ( ), , , ,
r r r r s s r s r
r i i r ri r s i s r i i rsδχ ξ ξ ξ χ χ ξ χ ξ= ∂ − + ∂ + ∂ −  

but ( ),
r i
r i x dxχ  is far from being a 1-form. However, ( ) * *

, ,
k k s
j i js i T T Tχ γ χ+ ∈ ⊗ ⊗  

and thus ( ) *
, ,

r r s
i r i rs i Tα χ γ χ= + ∈  is a pure 1-form if we replace ( ), ,,r r

r i iχ χ  by 
( ),0iα . Hence, ( )α ζ  is a scalar for any Tζ ∈  and we have  
( ) ( )( ) [ ]( ) ( )1 , r r i

r i r iL ξ α ζ α ξ ζ α ξ ξ α ζ− = ∂ + ∂ . As we shall see in section V.A, 
we have ( )( )2

k k
ijij

L ξ γ ξ=  for any section ( )2 2J Tξ ∈  and we obtain therefore 
successively:  

( ) ( )r r r r
i i r ri r i r iδα ξ ξ α ξ ξ α= ∂ − + ∂ + ∂  

( ) ( )r r r r r
ij i j j i ij j ri i rj rj i ir j r ijϕ α α δϕ ξ ξ ϕ ξ ϕ ξ ξ ϕ= ∂ − ∂ ⇒ = ∂ − ∂ + ∂ + ∂ + ∂  

These are exactly the variations obtained by Weyl ([3], (76), p. 289) who was 
assuming implicitly 0A =  when setting 0r r i

r r iξ ξ α ξ= ⇔ = −  by introducing 
a connection. Accordingly, r

riξ  is the variation of the EM potential itself, that is 
the iAδ  of engineers used in order to exhibit the Maxwell equations from a 
variational principle ([3], p. 26) but the introduction of the Spencer operator is 
new in this framework. 

The explicit general formulas of the two lemma cannot be found somewhere 
else (The reader may compare them to the ones obtained in [19] by means of the 
so-called “diagonal” method that cannot be applied to the study of explicit ex-
amples). The following unusual difficult proposition generalizes well known 
variational techniques used in continuum mechanics and will be crucially used 
for applications:  

PROPOSITION 4.5: The same variation is obtained whenever  
( )( )1q q q qfη ξ χ ξ+= +  with 1q qDfχ += , a transformation only depending on  
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( )1 qj f  and invertible if and only if ( ) 0det A ≠ . 
Proof: First of all, setting ( )q q qξ ξ χ ξ= + , we get ( )Aξ ξ=  for 0q = , a 

transformation which is invertible if and only if ( ) 0det A ≠ . In the nonlinear 
framework, we have to keep in mind that there is no need to vary the object ω  
which is given but only the need to vary the section 1qf +  as we already saw, us-
ing ( )q qR Yη ∈  over the target or q qRξ ∈  over the source. With ( )1q q qfη ξ+= , 
we obtain for example:  

k k k r
r

k k u k r k r
i u i r i ri
k k u v k u k r k r k r k r

ij uv i j u ij r ij ri j rj i rij

f f

f f f f

f f f f f f f f

δ η ξ

δ η ξ ξ

δ η η ξ ξ ξ ξ

= =

= = +

= + = + + +

 

and so on. Introducing the formal derivatives id  for 1, ,i n=  , we have:  

( ) 1,
r

k k k k u k r k r
q q u rf f d f f fµ µ µ µ µ µδ ζ η η η ξ ξ+= = = + = + +   

We shall denote by ( ) ( ) ( )# ,k
q q q qky V

yµ
µ

η ζ η ∂
= ∈

∂
  with k kζ η=  the cor-

responding vertical vector field, namely:  

( ) ( ) ( )( )

( ) ( )( )

# 0 k k u
q u ii k k

i

k u v k u
uv i j u ij k

ij

y y y
x y y

y y y y y
y

η η η

η η

∂ ∂ ∂
= + +

∂ ∂ ∂

∂
+ + +

∂


 

However, the standard prolongation of an infinitesimal change of source coor-
dinates described by the horizontal vector field ξ , obtained by replacing all the 
derivatives of ξ  by a section q qRξ ∈  over Tξ ∈ , is the vector field:  

( ) ( ) ( )( )

( ) ( ) ( )( )

0i k r
q r ii k k

i

k r k r k r
r ij rj i ri j k

ij

x y x
x y y

y x y x y x
y

ξ ξ ξ

ξ ξ ξ

∂ ∂ ∂
= + −

∂ ∂ ∂

∂
− + + +

∂




 

It can be proved that ( ) ( ) ( ), , , ,q q q q q q qRξ ξ ξ ξ ξ ξ ′ ′ ′ = ∀ ∈      over the source, 
with a similar property for ( )# .  over the target ([25]). However, ( )qξ  is not 
a vertical vector field and cannot therefore be compared to ( )# qη . The solu-
tion of this problem explains a strange comment made by Weyl in ([3], p 289 + 
(78), p 290) and which became a founding stone of classical gauge theory. In-
deed, r

rξ  is not a scalar because k
iξ  is not a 2-tensor. However, when 0A = , 

then qχ−  is a qR -connection and ,
r r r i

r r r iξ ξ χ ξ= +  is a true scalar that may be 
set equal to zero in order to obtain ,

r r i
r r iξ χ ξ= − , a fact explaining why the 

EM-potential is considered as a connection in quantum mechanics instead of 
using the second order jets r

riξ  of the conformal system, with a shift by one step 
in the physical interpretation of the Spencer sequence (See [4] for more histori-
cal details). 

The main idea is to consider the vertical vector field ( )( ) ( ) ( )q q qT f Vξ ξ− ∈   
whenever ( )q qy f x= . Passing to the limit 0t →  in the formula q q q qg f f h=  , 
we first get ( ) ( )( ) ( )( )g f f h f x t f x f x t xη ξ= ⇒ + + = + +    . Using the 
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chain rule for derivatives and substituting jets, we get successively:  

( ) , ,k r k k r k k r
r i r i r i

k r k k r k r k r
ij r ij rj i ri j r ij

f x f f f f

f f f f f

δ ξ δ ξ ξ

δ ξ ξ ξ ξ

= ∂ = ∂ +

= ∂ + + +
 

and so on, replacing 1r

r kfµξ +  by r k
r fµξ ∂  in ( )1q q qfη ξ+=  in order to obtain:  

( )1 1i r

k k r i k k k r k r
r i rf f f f f fµ µ µ µ µ µδ η ξ ξ ξ+ += + = ∂ − + + + 

 

where the right member only depends on ( )1 qj f  when qµ = .  
Finally, we may write the symbolic formula  

( ) ( ) ( )*
1 1 1 1q q q q q qf j f f Df T Vχ+ + += − = ∈ ⊗   in the explicit form: 

, 1 , 1r i

k r k r k k
r i i if f f fµ µ µ µχ χ+ ++ + = ∂ −  

Substituting in the previous formula provides ( )( )1q q q qfη ξ χ ξ+= +  and we 
just need to replace q by 1q +  in order to achieve the proof.  

Checking directly the proposition is not evident even when 0q =  as we 
have:  

( ) ( ), ,

k
k u k r r s r r s
u i r i i i s s iu f f

y
η η ξ ξ χ ξ χ ξ

 ∂  − ∂ = ∂ − − −   ∂ 
 

but cannot be done by hand when 1q ≥ .  
  

For an arbitrary vector bundle E and involutive system ( )q qR J E⊆ , we may 
define the r-prolongations ( ) ( ) ( ) ( )( )r q q r r q q r r qR R J R J E J J Eρ + += = ∩ ⊂  and 
their respective symbols ( )q r r qg gρ+ =  defined from *

q qg S T E⊆ ⊗  where 
*

qS T  is the vector bundle of q-symmetric covariant tensors. Using the Spencer 
δ-map, we now recall the definition of the Spencer bundles:  

( )
( ) ( ) ( )

* 1 *
1

* 1 * *
1

r r
r q q

r r
q q r

C T R T g

T J E T S T E C E

δ

δ

−
+

−
+

= ∧ ⊗ ∧ ⊗

⊆ ∧ ⊗ ∧ ⊗ ⊗ =
 

and of the Janet bundles:  

( ) ( )* * 1 * *
1

r r r
r q q qF T J E T R T S T Eδ −

+= ∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗  

When qD j= Φ  , we may obtain by induction on r the following fundamen-
tal diagram I relating the second linear Spencer sequence to the linear Janet se-
quence with epimorphisms 0 , , nΦ = Φ Φ :  

( ) ( ) ( ) ( )

31 2

31 2

31 2

0 1 2

0 1 2

0 1 2

0 1 2

0 0 0 0

0 0

0 0

0 0

0 0 0 0

q n

q n

n

j D DD D

n

j D DD D

n

n

n

C C C C

E C E C E C E C E

E F F F F

↓ ↓ ↓ ↓

→ Θ → → → → → →
↓ ↓ ↓ ↓

→ → → → → → →
↓Φ ↓ Φ ↓ Φ ↓ Φ

→ Θ → → → → → → →
↓ ↓ ↓ ↓









  
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Chasing in the above diagram, the Spencer sequence is locally exact at 1C  if 
and only if the Janet sequence is locally exact at 0F  because the central se-
quence is locally exact (See [7] [13] [25] for more details). In the present situa-
tion, we shall always have E T= . The situation is much more complicate in the 
nonlinear framework and we provide details for a later use. 

Let ω  be a section of   satisfying the same CC as ω , namely ( )( )1 0I j ω = . 
As   is a quotient of qΠ , we may find a section q qf ∈Π  such that:  

( )
( ) ( ) ( ) ( )( ) ( )( ) ( )

1

1 1
1 1 1 1 1 1

q q

q q q

f f

j f j f j j f j

ω ω

ρ ω ω ω

−

− −

Φ ≡ =

⇒ Φ ≡ = =





 

Similarly, as   is a natural bundle of order q, then ( )1J   is a natural 
bundle of order 1q +  and we can find a section 1 1q qf + +∈Π  such that:  

( ) ( )( ) ( )1
1 1 1 1 1q qf f j jρ ω ω−

+ +Φ ≡ =  

and we are facing two possible but quite different situations:  
 Eliminating ω , we obtain:  

( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( )

1 1
1 1 1 1

11
1 1 1 1 0

q q

q q q

j f j f j

f j f j j L

ω ω

ω ω σ ω

− −
+

−
−

+

=

⇒ − = =

 

and thus ( ) 11 *
1 1 1q q q q qDf T R f j fσ χ −−
+ += ∈ ⊗ = −    over the target if we set 

( )1
1 1 1 1q q q q qDf f j f idχ −
+ + += = −  over the source, even if 1qf +  may not be a sec-

tion of 1q+ . As qσ  is killed by D′ , we have related cocycles at   in the 
Janet sequence over the source with cocycles at *

qT R⊗  or 1C  over the target. 
 Eliminating ω , we obtain successively:  

( )( ) ( )( ) ( )

( )( ) ( )( ) ( )( ) ( )

( )( ) ( )

1
1 1 1 1

11 1
1 1 1 1 1 1

1
1 1

q q

q q q q

q q q

f j f j j

f j f f j f j j

f j f L

ω ω

ω ω

χ ω

−
+

−− −
+ +

−
+

−

 = − −  

= −



 



 

where we have over the source:  

( ) ( )( ) ( )( ) *
, , 0

k r
q i k i i rL L x x T Fτ τµ τ

µχ ω ω χ χ ω= Ω ≡ − + ∂ ∈ ⊗  

However, we know that 0F  is associated with qR  and is thus not affected by 

( )1
1 1q qf j f−
+   which projects onto 1

q q qf f id− = . Hence, only *T  is affected by 
( )1

1 1f j f A− =  in a covariant way and we obtain therefore over the source:  

( )( ) ( )( ) ( ) ( ) ( )1
1 1 1 1 0q q q qf j f j j BL Lω ω χ ω τ ω−
+ − = − = − =

 

where 1B A−= . It follows that ( )*
q qT Rχ ω∈ ⊗  with 0qD χ′ =  in the first 

non-linear Spencer sequence for ( ) ( )q qR J Tω ⊂ .  
We invite the reader to follow all the formulas involved in these technical re-

sults on the next examples. Of course, whenever q  is formally integrable and 

1 1q qf + +∈  is a lift of q qf ∈ , then we have ω ω=  and *
q qT Rξ ∈ ⊗  be-
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cause ( )q qR Rω = . 
EXAMPLE 4.6: In the case of Riemannian structures, we have *

2S T∈  be-
cause we deal with a non-degenerate metric ( ) *

2ij S Tω ω= ∈  with ( ) 0det ω ≠  
and may introduce ( )1

2
ij S Tω ω− = ∈ . We have by definition  

( )( ) ( ) ( ) ( )k l
kl i j ijf x f x f x xω ω=  that we shall simply write  
( ) ( )k l

kl i j ijf f f xω ω=  and obtain therefore:  

( ) ( ) ( ) ( ) 0l k k l k l ukl
kl j r i kl i r j i j r r ijuf f f f f f f f f f x

y
ω

ω ω ω
∂

∂ + ∂ + ∂ − ∂ =
∂

 

Our purpose is now to compute the expression:  

( ) ( ) ( ) ( ) 0l k k l k l ukl
kl j ir kl i jr i j r r ijuf f f f f f f f f f x

y
ω

ω ω ω
∂

+ + − ∂ ≠
∂

 

In order to eliminate the derivatives of ω  over te target we may multiply 
the first equation by B and substract from the second while using the fact that 

( ) ( ) i j
kl ij k lf x g gω ω=  with 0 0 0T TA id B id Bχ τ χ= − ⇒ = = −  in order to get:  

( ) ( )( ), , , 1 ,
s s s

sj i r is j r r s ij ij r
Lω τ ω τ τ ω τ ω− + + ∂ = −  

These results can be extended at once to any tensorial geometric object but the 
conformal case needs more work and we let the reader treat it as an exercise. He 
will discover that the standard elimination of a conformal factor is not the best 
way to use in order to understand the conformal structure which has to do with 
a tensor density and no longer with a tensor.  

In the non-linear case, the non-linear CC of the system q  defined by 

( ) ( )qy xωΦ =  only depend on the differential invariants and are exactly the 
ones satisfied by ω  in the sense that they have the same Vessiot structure con-
stants whenever q  is formally integrable, in particular involutive as shown in 
Example 2.7. Accordingly, we can always find 1qf +  over qf . In the linear case, 
the procedure is similar but slightly simpler. Indeed, if 0:T F→  is an invo-
lutive Lie operator, we may consider only the initial part of the fundamental di-
agram I:  

( ) ( ) ( )

1 2

1 2

1

0 1 2

0 1 2

0 1

0 1

0 0 0

0

0

0

0 0

q

q

j D D

j D D

C C C

T C T C T C T

T F F

↓ ↓ ↓

→ Θ → → →

↓ ↓ ↓

→ → → →

↓Φ ↓ Φ

→ Θ → → →

↓ ↓




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( )

1

1

1 1

*
1

1

0 0

0 0

0

0

0 0

q

q

q q

j D

q q

j D

q

g g

R T R

R C

δ
δ

+

−

+ +

+

↓ ↓

→ → →

↓ ↓

→ Θ → → ⊗
↓ ↓

→ Θ → →
↓ ↓



 

and study the linear inhomogeneous involutive system ξ = Ω  with 0FΩ∈  
and 1 0Ω = . If we pick up any lift ( ) ( )0q qC T J Tξ ∈ =  of Ω  and chase, we 
notice that ( )1 1 1 1qX D C C Tξ= ∈ ⊂  is such that 2 1 0D X = .  

EXAMPLE 4.7: In the Example 2.7, using the involutive system  
( ) ( )1

1 1 1 1R R R J T′ = ⊂ ⊂ , we have 2, 1m n q= = =  and the fundamental diagram 
I:  

1 1 2

1 1 2

1

0 1

0 0 0

0 3 5 2 0

0 2 6 6 2 0

0 2 3 1 0

0 0

j D D

j D D

↓ ↓ ↓

→ Θ → → → →
↓ ↓

→ → → → →
↓Φ ↓ Φ ↓

→ Θ → → → →
↓ ↓







 

with fiber dimensions:  

2

1 1

0 0

0 1 1 0

0 4 6

0 3 5

0 0

j D

j D

δ−

↓ ↓

→ → →
↓ ↓

→ Θ → →
↓ ↓

→ Θ → →
↓ ↓



 

It is important to point out the importance of formal integrability and involu-
tion in this case. For this, let us start with a 1-form ( )1 2,α α α= , denote its var-
iation by ( )1 2,A A A=  and consider only the linear inhomogeneous system 
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( ) Aξ ξ α= =   with no CC for A. If the ground differential field is  

( )1 2,K x x=   with commuting derivations ( )1 2,d d , let us choose  

( )2 1 2 ,0x dx xα = = , ( )2 1,A x x= . As a lift ( )1 1J Tξ ∈  of A, we let the reader 
check that we may choose in K:  

1
1 2 1 1 2 2

1 2 1 220, 0, 1, , 0, 0x
x

ξ ξ ξ ξ ξ ξ= = = = = =  

Using one prolongation, we have:  
2 1 2 2 1 1 2

1 1 11 1 2 1 12 1 2
2 1 2 1 1

1 2 12 2 2 22 2

0, 1,

1, 0

d A x d A x

d A x d A x

ξ ξ ξ ξ ξ

ξ ξ ξ

≡ + = ≡ + + =

≡ = ≡ + =
 

If 1 2d dx dxβ α= − = ∧ , we may denote its variation by B and get at once 
1 2

2 1 1 2 1 2 0B d A d A ξ ξ= − ≡ + = . Such a result is contradicting our initial choice 
1 0 1+ =  and we cannot therefore find a lift 2ξ  of ( )1j A . Hence, we have to 
introduce the new geometric object ( ),ω α β=  with ( ),A BΩ =  and CC 

0dα β+ =  leading to 1 2 2 1 0d A d A B− + =  while using the previous diagrams. 
We can therefore lift ( ),A BΩ =  to ( )1 1J Tξ ∈  by choosing in K:  

1
1 2 1 1 2 2

1 2 1 220, 0, 1, , 0, 1x
x

ξ ξ ξ ξ ξ ξ= = = = = = −  

However, we have now to add:  
1 2 1 2

1 11 12 2 12 220, 0d B d Bξ ξ ξ ξ≡ + = ≡ + =  

and lift ( )1j Ω  to ( )2 2J Tξ ∈  over ( )1 1J Tξ ∈  by choosing in K:  

( )
1

1 1 1 2 2 2
11 12 22 11 12 222 2 22

1 10, , , 0, 0,x
x xx

ξ ξ ξ ξ ξ ξ= = = − = = = −  

The image of the Spencer operator is ( )1 2 1 1 2X D jξ ξ ξ= = −  that is to say:  
1

1 1 2 2
,1 ,2 ,1 ,221, , 0, 1,xX X X X

x
= − = − = =  

1 1 1 1 2 2 2 2
1,1 2,1 1,2 2,2 1,1 2,1 1,2 2,22 2

1 10, 0, , 0, 0, 0, 0,X X X X X X X X
x x

= = = − = = = = =  

and we check that *
1 1X T R∈ ⊗ , namely:  

2 1 2 1 1 2
1, , 2, 1, 2,0, 0, 0, 1, 2i i i i ix X X X X X i+ = = + = ∀ =  

a result which is not evident at first sight and has no meaning in any classical 
approach because we use sections and not solutions.  

Now, if 1 1 1,q q qf f+ + +′ ∈Π  are such that ( )( ) ( )( ) ( )1 1
1 1 1 1 1q qf j f j jω ω ω− −
+ +′= = , it 

follows that ( ) ( )( ) ( )1
1 1 1 1 1 1q q q qf f j j gω ω−
+ + + +′ = ⇒ ∃ ∈   such that  

1 1 1q q qf g f+ + +′ =   and the new 1
1q qDfσ −
+′ ′=  differs from the initial 1

1q qDfσ −
+=  

by a gauge transformation. 
Conversely, let 1 1 1,q q qf f+ + +′ ∈Π  be such that 1 1

1 1q q q qDf Dfσ σ− −
+ +′ ′= = = . It fol-

lows that ( )1
1 1 0q qD f f−
+ +′ =  and one can find ( )g aut X∈  such that  
( )1 1 1q q qf f j g+ + +′ =   providing  

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )1 1 11 1
q q q q q qf f j g j g f j gω ω ω ω ω

− − −− −′ ′= = = = . 
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PROPOSITION 4.8: Natural transformations of   over the source in the 
nonlinear Janet sequence correspond to gauge transformations of *

qT R⊗  or 

1C  over the target in the nonlinear Spencer sequence. Similarly, the Lie deriva-
tive ( ) 0Fξ ξ ω= ∈   in the linear Janet sequence corresponds to the Spencer 
operator *

1q qD T Rξ + ∈ ⊗  or 1 1qD Cξ ∈  in the linear Spencer sequence. 
With a slight abuse of language 1 1f f f f f fδ η δ η δ ξ− −= ⇔ = ⇔ =    

when ( )( )T fη ξ=  and we get ( ) ( ) ( ) ( )1 1
q qj f j f fω ω δ ω ω δω− −= ⇒ + = +  

that is ( )( ) ( ) ( )
11

qj f f fδ ω ω δω δω ξ ω
−− + = + ⇒ =   and  

( )( ) ( ) ( ) ( )( ) ( )( )1 111 1
q q qj f f f f j f j f f fδ ω δ ω

− −−− −+ = +  
  

( ) ( )( )1
qj fδω η ω−⇒ =  . 

Passing to the infinitesimal point of view, we obtain the following generaliza-
tion of Remark 3.12 which is important for applications.  

COROLLARY 4.9:  
( ) ( )( ) ( ) ( ) ( )( )11

q q q qL f L j fδω ξ ω η ω δω ξ ω η ω−−Ω = = = ⇒ = =  . 
Recapitulating the results so far obtained concerning the links existing be-

tween the source and the target points of view, we may set in a symbolic way:  
( ) ( ) ( )1q q qf f

q q q qf
χ

δ η ξ ξ
+

↔ ↔ ↔  

In order to help the reader maturing the corresponding nontrivial formulas, 
we compute explicitly the case 1, 1, 2n q= =  and let the case n arbitrary left to 
the reader as a difficult exercise that cannot be achieved by hand when 3q ≥ :  

EXAMPLE 4.10: Using the previous formulas, we have ( ) ( )( )f x f xδ η= , 
( ) ( )( ) ( )x y xf x f x f xδ η=  and:  

( ) ( )( ) ( ) ( )(
( )( ) ( ) ( ) ( ) ( ) ( ))

1 2 1 ,x

y x x x xx

f f x f x x

f x f x f x x f x x

η ξ η ξ

η ξ ξ

= ⇒ =

= +
 

The delicate point is that we have successively:  

, ,
11 1,x x

x x x x x xx
x x x

f f
A f f

f f f
χ χ

 ∂ ∂
= − = − = ∂ − 

 
 

( ), ,,

,

x
x x x x x

x

x x
x y x

x

f
A

f
f

f
f

ξ ξ χ ξ ξ ξ ξ ξ χ ξ

η ξ η ξ ξ

∂
= + = = = +

∂
⇒ = ∂ = +

 

( )2
xx x xx xx

x yy xx x x x
x x x

f f f
f f

f f f
η ξ ξ ξ

 ∂ = + + − ∂
 
 

 

When ( ) ( ) ( )( ) ( ),z g y y f x z g f x h x= = ⇒ = = , we obtain therefore the 
simple groupoid composition formulas ( ) ( )( ) ( )x y xh x g f x f x=  and thus:  

,x y y x

y y y y x x x x
z y x x x

y y x x

h g g f

g g f h
f

g g f h

ζ ξ η ξ

ζ η η ξ ξ ξ ξ

= ∂ = ∂ = ∂ ∂

 ∂ ∂ ∂ ∂
= + = + ∂ + = +  

 
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Using indices in arbitrary dimension, we get successively:  

( )( )
,

,

k k r k u k r k r k
r u i r i ri

k r k k u k s s u t u r k t r
r u i s i u r i r ti ti r

f f f f

f f f g f A f f A

η ξ η ξ ξ η

η ξ η ξ ξ ξ

= = +

⇒ = ∂ = + ∂ − +
 

k i k s r i k k r r i u
u u s i u r i k r u r ig f g f g fη ξ ξ η ξ ξ= + ∂ ⇒ = + ∂  

As a very useful application, we obtain successively: 

( ) ( )( ) ( )=
k

k r r r
i r r rkx det f x

y
ηδ ξ ξ ξ∂

∆ = ∂ ⇒ ∆ ∆ = ∆∂ + ∂ ∆ = ∂ ∆
∂

 

( ) ( ) ( )( ) ( )
k

k r r r
k r r rkdet A det A det A det A

y
ηδ η ξ ξ ξ

 ∂
= − = ∂ − + ∂ 

∂ 
 

where sections of jet bundles are used in an essential way, and the important 
lemma:  

LEMMA 4.11: When the transformation ( )y f x=  is invertible with inverse 
( )x g y= , we have the fundamental identity over the source or over the target:  

( ) ( )( )

( )( ) ( )( )

0,

1 0,

i

i k

k

k i

gx f x x X
x y

f g y y Y
y xg y

 ∂ ∂
∆ ≡ ∀ ∈ ∂ ∂ 
 ∂ ∂

⇔ ≡ ∀ ∈  ∂ ∂∆ 

 

EXAMPLE 4.12: We proceed the same way for studying the links existing 
between 1q qDfχ +=  over the source, 1 1

1q q qDfχ σ− −
+= =  over the target and the 

nonlinear Spencer operator. First of all, we notice that:  

( ) ( )( ) ( )
( )

11 1
1 1 1 1 1 1 1 1

1
1 1

q q q q q q q q q

q q q

f j f id f id f j f j f

f j f

σ

χ

−− −
+ + + + +

−

+

= − = −

= −

  

 

 

and the components of qσ  thus factor through linear combinations of the 
components of qχ . After tedious computations, we get successively when  

1m n= = :  

( ),
11 1x

x x x
x x

f
A f f

f f
χ

∂
= − = − = ∂ −  

( )
( )

( ), 2

1 1x xx
x x x x xx x x xx x x

x x x x

f f
f f f f f f

f f f f
χ

 ∂
= ∂ − = ∂ − − ∂ − 

 
 

( )

( )
( )

( ) ( )
( ) ( )

( )

, 2

2

2 3 2

1 2

1 2 2

x xx x
xx x x xx xxx x x xx

x x xx

xxxx xxx
x xx xxx x x xx x x

x x x x

f f f
f f f f

f f ff

ff f
f f f f f f

f f f f

χ
   ∂ ∂

= ∂ − − ∂ −   
   

 
 = ∂ − − ∂ − + − ∂ −
 
 

 

These formulas agree with the successive constructive/inductive identities:  

,

, ,

, , ,2

x x x x

x x x x xx x x xx

xx x x x x xx x xxx x xx xxx

f f f
f f f f
f f f f f

χ

χ χ

χ χ χ

 = ∂ −


+ = ∂ −
 + + = ∂ −
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showing that qχ  is linearly depending on 1qDf +  and we finally get:  

( )

( )

( )
( )

( )
( )

( ) ( )
( )
( )

, ,

, , ,

, 2 3

2

, , ,2 2 3

1 11

1 1 1

1 1

1 1

x
y x x x x

x x x

xx
y y x x xx x x x

x x x x

xx
yy y x xx xxx x x xx

xx x

xxxx xxx
xx x x x x

x xx x x

f
f f f

f f f

f
f f

f f f f

f
f f f f

ff f

ff f
f ff f f

σ χ

σ χ χ

σ

χ χ χ

 = − ∂ − = − = − ∂ ∂ ∂
  

= − ∂ − = − +  ∂ ∂  

  

  = − ∂ − − ∂ −
  ∂  
  
  = − + + −

   ∂  





 

while using successively the relations 1y xg f = , 1y xg f∂ ∂ = ,  
( )2 0yy x y xxg f g f+ =  and so on when ( )x g y=  is the inverse of ( )y f x= , in 

a coherent way with the action of 3f  on ( )2J T  which is described as follows:  

( ) ( )
( )
( )

2

2 2 3

1

x

xx
y x

x

xxxx xxx
yy xx x

x x x x

f
f
f

ff f
f f f f

η ξ

η ξ ξ

η ξ ξ ξ

=

 = +

  
  = + + −

   

 

Restricting these formulas to the affine case defined by 0 0xx xxy ξ= ⇒ = , we 
have thus 0, 0 0, 0xx xxx xx xxxy y f f= = ⇒ = = . It follows that  

1, , 0x y x yy xx
x

f
f

η ξ η ξ η ξ= = = =  on one side and , ,0 0xx x yy yχ σ= ⇔ =  in a  

coherent way. It is finally important to notice that these results are not evident, 
even when 1m n= = , as soon as second order jets are involved.  

We shall use all the preceding formulas in the next example showing that, 
contrary to what happens in elasticity theory where the source is usually iden-
tified with the Lagrange variables, in both the Vessiot/Janet and the Cartan/ 
Spencer approaches, the source must be identified with the Euler variables without 
any possible doubt.  

EXAMPLE 4.13: With *1, 1,n q T= = =  and the finite OD Lie equation 
( ) ( )xy y xω ω=  with *Tω∈  and corresponding Lie operator  

( ) ( ) ( )x xx xξ ξ ω ω ξ ξ ω≡ = ∂ + ∂   over the source, we have:  

( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )2,x xx y x xf x f x x f x f x f x f x xω ω ω ω ω= + ∂ = ∂  

Differentiating once the first equation and substracting the second, we obtain 
therefore:  

( )( )( ) ( )( ), , 1 1 1 0y y y y x x x xx x x x yf f f f f fωσ σ ω ω ω+ ∂ ≡ − ∂ − ∂ + ∂ − ∂ =  

whenever ( )y f x= . Finally, setting ( )( ) ( ) ( )xf x f x xω ω∂ = , we get over the 
target:  

( )( ) ( ) ( ) ( )( ) ( )x x xf x f x f x f x f
y y
η ωδω ω η η ω∂ ∂

= ∂ + ∂ = ∂
∂ ∂

  
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Differentiating x fη ξ= ∂  in order to obtain ( )x xx xf f
y
η ξ ξ∂
= ∂ + ∂ ∂

∂
, we 

get over the source:  

( )x xδω ω ξ ξ ω ξ ω= ∂ + ∂ =   

We may summarize these results as follows:  

( )
( )( )

( )
1j f

x fδω ξ ω δω η ω= → = ∂   

We invite the reader to extend this result to an arbitrary dimension 2n ≥ .  
EXAMPLE 4.14: The case of an affine stucture needs more work with  

1, 2n m q= = = . Indeed, let us consider the action of the affine Lie group of 
transformations y ay b= +  with ,a b cst=  acting on the target y Y∈  consi-
dered as a copy of the real line X. We obtain the prolongations up to order 2 of 
the 2 infinitesimal generators of the action:  

, 0 0x xx
x xx x xx

a y y y b
y y y y y y
∂ ∂ ∂ ∂ ∂ ∂

→ + + → + +
∂ ∂ ∂ ∂ ∂ ∂

 

There cannot be any differential invariant of order 1 and the only generating 
one of order 2 can be xx xy yΦ ≡ . When ( )x xϕ=  we get successively  

x x xy y ϕ= ∂ , ( )2
xx xx x x xxy y yϕ ϕ= ∂ + ∂  and Φ  transforms like  

xx
x

x

u u
ϕ

ϕ
ϕ

∂
= ∂ +

∂
 a result providing the bundle of geometric objects   with  

local coordinates ( ),x u  and corresponding transition rules. For any section γ , 
we get the Vessiot general system 2 2⊂ Π  of second order finite Lie equations  

( ) ( )xx
x

x

y
y y x

y
γ γ+ =  which is already in Lie form and relates the jet coordi-

nates ( ), , ,x xxx y y y  of order 2. The special section is 0γ =  and we may con-

sider the automorphic system ( )xx

x

y
x

y
γΦ ≡ =  obtained by introducing any  

second order section ( ) ( ) ( ) ( )( )2 , ,x xxf x f x f x f x= , for example ( )2 2f j f=  
providing ( ) ( ) ( )( ), ,x xxf x f x f x∂ ∂ . It is not at all evident, even on such an 
elementary example, to compute the variation δγΓ =  induced by the previous 
formulas and to prove that, like any field quantity, it only depends on γ  on the  

condition to use only source quantities. For this, setting ( )
( ) ( )xx

x

f x
x

f x
γ= , varying 

and substituting, we obtain:  

( )2
xx xx

x x yy xx x x
x x

f f
f f

f f
δ

δγ δ η ξ γξ ξ γΓ = = − = = + + ∂  

Now, linearizing the preceding Lie equation over the identity transformation 
y x= , we get the Medolaghi equation:  

( ) ( ) ( ) ( )2 2 2 20,xx x xL x x R J Tξ γ ξ γ ξ ξ γ ξ≡ + + ∂ = ∀ ∈ ⊂  

and the striking formula ( )2Lδγ ξ γΓ = =  over the source for an arbitrary 
( )2 2J Tξ ∈ . We finally point out the fact that, as we have just shown above and 
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contrary to what the brothers Cosserat had in mind, the first order operators 
involved in the nonlinear Spencer sequence have strictly nothing to do with the  
operators involved in the nonlinear Janet sequence whenever 2q ≥ . For exam-

ple, in the present situation, , 1x
x

x

f
f

χ
∂

= −  has nothing to do with xx

x

f
f

Φ ≡ .  

Similarly, using the comment before example 4.7 in the linear framework, we 
have the first order Spencer operator ( ) ( )1 : , ,x x x x xD ξ ξ ξ ξ ξ→ ∂ − ∂  on one side 
and the second order Lie operator : xxξ ξ→ ∂  on the other side.  

The next delicate example proves nevertheless that target quantities may also 
be used.  

EXAMPLE 4.15: In the last example, depending on the way we use ( )xγ  on 
the source or ( )yγ  on the target, we may consider the two (very different) 
Medolaghi equations:  

( ) ( ) ( ) ( )0 0xx x x yy y yx x y yξ γ ξ ξ γ η γ η η γ+ + ∂ = ↔ + + ∂ =  

Now, starting from the single OD equation ( )xx

x

f
x

f
γ=  in sectional nota-

tions, we may successively differentiate and prolongate once in order to get:  

( )
( ) ( )

2

2
x xx xx xxx xx

x x x x
x x xx

f f f f
f x x

f f ff
γ γ

 ∂
− ∂ = ∂ ↔ − = ∂ 

 
 

Substracting the second from the first as a way to eliminate γ , we obtain a 
linear relation involving only the components of the nonlinear Spencer operator 
in a coherent way with the theory of nonlinear systems, namely:  

( )
( )

( )2

1 0xx
x xx xxx x x xx

x x

f
f f f f

f f
∂ − − ∂ − =  

At first sight it does not seem possible to know whether we have a linear com-
bination of the components of 2χ  or of the components of 2σ . However, if we 
come back to the original situation ( )1

qf ω ω− = , we have eliminated ( )1j γ  
over the source and we are thus only left with ( )1j γ  over the target. Hence it 
can only depend on 2σ  and we find indeed the striking relation:  

( )
( )

( ) ,2

1 1 1 0xx
x xx xxx x x xx yy y

x x xx

f
f f f f

f f ff
σ

 
 − ∂ − − ∂ − = =

∂  
 

provided by the simple second order Medolaghi equation 0 0yyγ η= ⇒ =  over 
the target. It is essential to notice that no classical technique can provide these 
results which are essentially depending on the nonlinear Spencer operator and 
are thus not known today.  

EXAMPLE 4.16: The above methods can be applied to any explicit example. 
The reader may treat as an exercise the case of the pseudogroup of isometries of 
a non degenerate metric which can be found in any textbook of continuum me-
chanics or elasticity theory, though in a very different framework with methods 
only valid for tensors. With the previous notations, let *

2S Tω∈  with ( ) 0det ω ≠  
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and consider the following nonlinear system  
( )( ) ( ) ( ) ( )k l

kl i j ijf x f x f x xω ω∂ ∂ =  with 1 , , ,i j k l n≤ ≤ . One obtains there-
fore: 

u u
r u r k l u kl

ij rj i ir i r ij i j ul kuk l uf f
y y y

ωη ηδω ω ξ ω ξ ξ ω ω ω η
 ∂∂ ∂

= ∂ + ∂ + ∂ = ∂ ∂ + + ∂ ∂ ∂ 
 

and thus the same recapitulating formulas linking the source and target varia-
tions:  

( )
( )( )

( )( )
1j f

k l
i j kl
f fδω ξ ω δω η ω= → = ∂ ∂   

It is also difficult to compute or compare the variational formulas over the 
source and target in the nonlinear Spencer sequence, even when 1m n= =  and 

0,1q =  ([29]).  
EXAMPLE 4.17: Let us prove that the explicit computation of the gauge 

transformation is at the limit of what can be done with the hand, even when 
1, 1m n q= = = . We have successively:  

, ,
11,x x

x x x x x xx
x x x

f f
f f

f f f
χ χ

 ∂ ∂
= − = ∂ − 

 
 

( ) ( )( ) ( )2,x y x xx yy x y xxf x g f x f g f f g f g f′ ′ ′= ⇒ = = +  

and thus:  

( ), , ,1 1 1 1 1y xx x x x
x y y

x y x x x x

g ff f f f
f g f f f f

χ χ χ
∂ ∂′  ∂ ∂ ∂ ∂′ = − = − = + − = + − ′  

 

( )( ) ( )( )

( ) ( )

( )

,

2

2 2

, ,2

1

1

1

1

x
x x x x xx

x x

y x
y y x x y x x yy x y xx

y x y x

y x yy y x xxx x
y y x

y x y xy

x xx x
x y y y x x xx

x xx

f
f f

f f
g f

g f f g f g f g f
g f g f

g fg g fff
g f

g f g fg

ff f
f f f

f ff

χ

χ χ

′ ∂′ ′ ′= ∂ − ′ ′ 
∂ ∂

= ∂ ∂ + ∂ − +

∂ ∂ ∂ ∂∂
= ∂ ∂ + − −

   ∂ ∂ = ∂ − + ∂ −     

 

Setting 2 2 2f id tξ= + +  and passing to the limit when 0t → , we finally 
obtain:  

( ) ( )
( ) ( )

, , , ,

, , , ,

x x x x x x x x x

x x x x xx x x x x x x x xx

δχ ξ ξ ξ χ χ ξ χ ξ

δχ ξ ξ ξ χ χ ξ χ ξ

= ∂ − + ∂ + ∂ −

= ∂ − + ∂ + ∂ −
 

If we use the standard euclidean metric 1 0ω γ= ⇒ = , we may thus intro-
duce the pure 1-form , ,x x xα χ γχ= + . We should consider the defining formula 

( )1
1 2 1 1 1 2f j f Dfχ χ−′ = +   and have to introduce the additional term ( )1

2 ,xf γ χ−  
which is only leading to the additional infinitesimal term ( )( )2 , ,x xx xL ξ γ χ ξ χ=  
because 0γ = . We finally obtain:  
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( ) ( ), , ,x x xx x x x x xx x xδα δχ ξ χ γδχ ξ ξ ξ α α ξ= + + = ∂ − + ∂ + ∂  

and this result can be easily extended to an arbitrary dimension with the formu-
la:  

( ) ( ) ( ), ,
r s r r r r r

i r i sr i i r ri r i r iiα χ γ χ δα ξ ξ ξ α α ξ= + ⇒ = ∂ − + ∂ + ∂  

Comparing this procedure with the one we have adopted in the previous ex-
ampes, we have:  

( ), , 2

11 1x x x
x x x y x

x x xx

f f f
A f f

f f f yf
δ ηχ δχ δ η

∂ ∂ ∂  ∂
= − = − ⇒ = − = − ∂ ∂ 

 

However, taking into account the formulas x fη ξ= ∂  and x x
y x

x

f
f

η ξ ξ
∂

= + , 

we also get:  

( )
( )

( )

( )
( ) ( )

, 2

,

, , ,

1 x
x x x xx x x x x

x x

x x x x

x x x x x x x x

f
f f f f

f f

A

δχ ξ ξ ξ ξ

ξ ξ ξ χ

ξ ξ ξ χ χ ξ χ ξ

∂
= ∂ ∂ + ∂ − + ∂

= ∂ − + ∂

= ∂ − + ∂ + ∂ −

 

Working over the target is more difficult. Indeed, we have successively ( care 
to the first step):  

( ) ( )
,

, , 2 21 yx x x x
y y x y

x x x x

f f f f
f

f y f yf f

σ δ ησ δσ η δ η
∂  ∂

= − ⇒ + = − ∂ = − − ∂ ∂ ∂ ∂∂ ∂  
 

,
,

,
, ,

yx
y y

x

y
y y y y

f
f y y

y y y

σηδσ η η

ση ηη η σ σ η

∂  ∂
= − − +  ∂ ∂ ∂  

 ∂   ∂ ∂
= − − + + −   ∂ ∂ ∂     

 

More generaly, we let the reader prove that the variation of qσ  over the tar-
get (respectively the source) is described by “minus” the same formula as the 
variation of qχ  over the source (respectively the target). In any case, the reader 
must not forget that the word “variation” just means that the section 1qf +  is 
changed, not that the source is moved. Accordingly, getting in mind this exam-
ple and for simplicity, we shall always prefer to work with vertical bundles over 
the source, closely following the purely mathematical definitions, contrary to 
Weyl ([3], §28, formulas (17) to (27), p 233-236). The reader must be now ready 
for comparing the variations of ,x xχ  and ,y yσ .  

In order to conclude this section, we provide without any proof two results 
and refer the reader to ([7]) for details.  

PROPOSITION 4.18: Changing slightly the notation while setting 1q qDσ χ− ′= , 
we have:  

( ) ( )1 1
1 1 1 1 1 1q q q q q q qf j f Df f j fχ χ σ σ− −
+ + − −′ ′= + ⇒ =     

where 1
qf
−  acts on ( )1qJ T−  and ( )1j f  acts on 2 *T∧ . It follows that gauge 

transformations exchange the solutions of D′  among themselves. 
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COROLLARY 4.19: Denoting by ( )  the cyclic sum, we have the so-called 
Bianchi identity:  

( ) ( ) ( ) ( ){ }1 1 1, , , , , , 0q q qDσ ξ η ζ ξ η ζ σ ξ η χ ζ− − −+ =  

5. Applications 

Before studying in a specific way electromagnetism and gravitation, we shall 
come back to Example 4.10 and provide a technical result which, though looking 
like evident at first sight, is at the origin of a deep misunderstanding done by the 
brothers Cosserat and Weyl on the variational procedure used in the study of 
physical problems (Compare to [14]).  

Setting 1 ndx dx dx= ∧ ∧  for simplicity while using Lemma 4.11 and the 
fact that the standard Lie derivative is commuting with any diffeomorphism, we 
obtain at once:  

( ) ( )( ) ( )k
iy f x dy det f x dx x dx= ⇒ = ∂ = ∆  

( ) ( ) ( ) ( )( )
( ) ( ) r

y x r

T f dy x dx

div div

η ξ η ξ

δ η ξ ξ

= ⇒ = ∆

⇒ ∆ = ∆ = ∆ + ∂ ∆

 
 

The interest of such a presentation is to provide the right correspondence be-
tween the source/target and the Euler/Lagrange choices. Indeed, if we use the 
way followed by most authors up to now in continuum mechanics, we should 
have source = Lagrange, target = Euler, a result leading to the conservation of 
mass 0dm dy dx dxρ ρ= = =  when 0ρ  is the original initial mass per unit vo-
lume. We may set 0 1ρ =  and obtain therefore ( )( ) ( )1f x xρ = ∆ , a choice 
leading to:  

( )
2

1
kk r

k k
k k k r ky y y x y

ρηρ η ρ ξδρ η δ δρ ρ η ρ δρ
∂∂ ∂ ∂ ∂

+ = − ∆ ⇒ = − − = − ⇒ = −
∂ ∆ ∂ ∂ ∂ ∂

 

but the concept of “variation” is not mathematically well defined, though this 
result is coherent with the classical formulas that can be found for example in 
([4] [9]) or ([3], (17) and (18) p 233, (20) to (21) p 234, (76) p 289, (78) p 290) 
where “points are moved”. 

On the contrary, if we adopt the unusual choice source = Euler, target = La-
grange, we should get ( ) ( )x xρ = ∆ , a choice leading to δρ δ= ∆  and thus:  

( )
k r

r r
r rk ry x

η ξδρ ρ ρ ξ ρ ρξ∂ ∂
= = + ∂ = ∂

∂ ∂
 

which is the right choice agreeing, up to the sign, with classical formulas but 
with the important improvement that this result becomes a purely mathematical 
one, obtained from a well defined variational procedure involving only the 
so-called “vertical” machinery. This result fully explains why we had doubts 
about the sign involved in the variational formulas of ([4], p. 383) but without 
being able to correct them at that time. We may finally revisit Lemma 4.11 in 
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order to obtain the fundamental identity over the source: 

( ) ( )( ) 0,
i

i k

gx f x x X
x y
 ∂ ∂
∆ ≡ ∀ ∈ ∂ ∂ 

 

which becomes the conservation of mass when 4n =  and 4k = .  
In addition, as many chases will be used through many diagrams in the sequel, 

we invite the reader not familiar with these technical tools to consult the books 
([30] [31]) that we consider as the best references for learning about homological 
algebra. A more elementary approach can be found in ([32]) that has been used 
during many intensive courses on the applications of homological algebra to 
control theory. As for differential homological algebra, one of the most difficult 
tools existing in mathematics today, and its link with applications, we refer the 
reader to the various references provided in ([33]). 

Finally, for the reader interested by a survey on more explicit applications, we 
particularly refer to ([2] [34] [35] [36]) for analytical mechanics and hydrody-
namics, ([5] [37] [38]) for coupling phenomenas, ([36] [39] [40]) for the foun-
dations of Gauge Theory, ([36] [41]) for the foundations of General Relativity.  

A) POINCARE, WEYL AND CONFORMAL GROUPS  
When constructing inductively the Janet and Spencer sequences for an invo-

lutive system ( )q qR J E⊂ , we have to use the following commutative and exact 
diagrams where we have set ( )0 q qF J E R=  and used a diagonal chase:  

( )

( ) ( ) ( )

( )

1 * *
1

1 * * *
1

* 1 * * *
1 0

0 0 0

0 0

0 0

0 0

0 0 0

r r
q q r

r r
q q r

r r r
q q r

T g T R C

T S T T T J E C E

T R T S T E T F F

δ

δ

δ

−
+

−
+

−
+

↓ ↓ ↓

→ ∧ ⊗ → ∧ ⊗ → →

↓ ↓ ↓

→ ∧ ⊗ ⊗ → ∧ ⊗ → →

↓ ↓ ↓

→ ∧ ⊗ + ∧ ⊗ ⊗ → ∧ ⊗ → →

↓ ↓ ↓



 

It follows that the short exact sequences ( )0 0
r

r r rC C E F
Φ

→ → → →  are al-
lowing to define the Janet and Spencer bundles inductively. If we consider two 
involutive systems ( )ˆ0 q q qR R J E⊂ ⊂ ⊂ , it follows that the kernels of the in-
duced canonical epimorphisms ˆ 0r rF F→ →  are isomorphic to the cokernels 
of the canonical monomorphisms ( )ˆ0 r r rC C C E→ → ⊂  and we may say that 
Janet and Spencer play at see-saw because we have the formula  

( ) ( ) ( )( )r r rdim C dim F dim C E+ = . 
When dealing with applications, we have set E T=  and considered systems 

of finite type Lie equations determined by Lie groups of transformations. Accor-
dingly, we have obtained in particular ( )* *

2 2
ˆˆr r

r r rC T R T R C C T= ∧ ⊗ ⊂ ∧ ⊗ = ⊂  
when comparing the classical and conformal Killing systems, but these bundles 
have never been used in physics. However, instead of the classical Killing sys-
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tem ( )1 1R J T⊂  defined by the infinitesimal first order PD Lie equations 
( ) 0ξ ωΩ ≡ =  and its first prolongations ( )2 2R J T⊂  defined by the infini-

tesimal additional second order PD Lie equations ( ) 0ξ γΓ ≡ =  or the con-
formal Killing system ( )2 2R̂ J T⊂  defined by ( ) ( )2A xξ ω ωΩ ≡ =  and 

( ) ( ) ( ) ( )( ) *
2

k k ks
i j j i ij sA x A x A x S T Tξ γ δ δ ω ωΓ ≡ = + − ∈ ⊗  but we may also 

consider the formal Lie derivatives for geometric objects:  

( )( )1 0r r r
ij rj i ir j r ijij

L ξ ω ω ξ ω ξ ξ ωΩ ≡ ≡ + + ∂ =  

( )( )2 0
kk k k r k r r r r k

ij ij rj j ir j ij k r ijij
L ξ γ ξ γ ξ γ ξ γ ξ ξ γΓ ≡ ≡ + + − + ∂ =  

We may now introduce the intermediate differential system ( )2 2R J T⊂  de-
fined by ( ) ( )2A xξ ω ω=  and ( ) 0ξ γΓ ≡ = , for the Weyl group obtained 
by adding the only dilatation with infinitesimal generator i

ix ∂  to the Poincaré 
group. We have the relations 1 1 1

ˆR R R⊂ =  and the strict inclusions 2 2 2
ˆR R R⊂ ⊂  

when ( )2 1 1R Rρ= , ( )2 1 1R Rρ=  , ( )2 1 1
ˆ ˆR Rρ=  but we have to notice that we 

must have 0i iA A∂ − =  for the conformal system and thus 0iA A cst= ⇒ =  
if we do want to deal again with an involutive second order system ( )2 2R J T⊂ . 
However, we must not forget that the comparison between the Spencer and the 
Janet sequences can only be done for involutive operators, that is we can indeed 
use the involutive systems 2 2R R⊂   but we have to use 3R̂  even if it is iso-
morphic to 2R̂ . Finally, as *

2ĝ T  and 3ˆ 0, 3g n= ∀ ≥ , the first Spencer oper-
ator 

1 *
2 2

ˆ ˆ
D

R T R→ ⊗  is induced by the usual Spencer operator  

( ) ( )*
3 2

ˆ ˆ : 0,0, , 0 0, 0 , 0
D

r r r r
rj rij i ri i rjR T R ξ ξ ξ ξ→ ⊗ = → ∂ − ∂ −  and thus projects by co-

kernel onto the induced operator * * *T T T→ ⊗ . Composing with δ , it projects 
therefore onto * 2 * :

d
T T A dA F→∧ → =  as in EM and so on by using the fact 

that 1D  and d are both involutive or the composite epimorphisms  

( )* * * * 1 *
2 2 2

ˆ ˆ ˆ ˆr r r r
r r rC C C T R R T g T T T

δ
+→ ∧ ⊗ ∧ ⊗ ∧ ⊗ →∧ 

   . The main  

result we have obtained is thus to be able to increase the order and dimension of 
the underlying jet bundles and groups as we have ([29]):  

POINCARE GROUP WEYL GROUP CONFORMAL GROUP⊂ ⊂  

that is 10 11 15< <  when 4n =  and our aim is now to prove that the mathe-
matical structures of electromagnetism and gravitation only depend on the 
second order jets.  

With more details, the Killing system ( )2 2R J T⊂  is defined by the infinite-
simal Lie equations in Medolaghi form with the well known Levi-Civita iso-
morphism ( ) ( )1, jω γ ω

 for geometric objects:  

0

0

r r r
ij rj i ir j r ij

k k r k r r k r k
ij rj i ir j ij r r ij

ω ξ ω ξ ξ ω

γ ξ γ ξ γ ξ ξ γ

Ω ≡ + + ∂ =

Γ ≡ + − + ∂ =

 

We notice that ( ) ( )2 2 , ,R R a a cstω ω ω ω γ γ= ⇔ = = =  and refer the reader 
to ([27]) for more details about the link between this result and the deformation 
theory of algebraic structures. We also notice that 1R  is formally integrable and 
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thus 2R  is involutive if and only if ω  has constant Riemannian curvature 
along the results of L. P. Eisenhart ([26]). The only structure constant c appear-
ing in the corresponding Vessiot structure equations is such that c c a=  and 
the normalizer of 1R  is 1R  if and only if 0c ≠ . Otherwise 1R  is of codimen-
sion 1 in its normalizer 1R  as we shall see below by adding the only dilatation. 
In all what follows, ω  is assumed to be flat with 0c =  and vanishing Weyl 
tensor.  

The Weyl system ( )2 2R J T⊂  is defined by the infinitesimal Lie equations:  

( )2

0

r r r
rj i ir j r ij ij

k k r k r r k r k
ij rj i ri j ij r r ij

A xω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ ξ γ

 + + ∂ =


+ + − + ∂ =
 

and is involutive if and only if 0i A A cst∂ = ⇒ = . Introducing for convenience 

the metric density ( )( )
1

ˆ n
ij ij detω ω ω= , we obtain the Medolaghi form for 

( )ˆ ,ω γ  with ( )ˆ 1det ω = : 

2ˆ ˆ ˆ ˆ ˆ 0

0

r r r r
ij rj i ir j ij r r ij

k k k r k r r k r k
ij ij rj i ri j ij r r ij

n
ω ξ ω ξ ω ξ ξ ω

ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ + − + ∂ =

Γ ≡ + + − + ∂ =

 

Finally, the conformal system ( )2 2R̂ J T⊂  is defined by the following infi-
nitesimal Lie equations:  

( )
( ) ( ) ( )

2r r r
rj i ir j r ij ij

k k r k r r k r k k k kr
ij rj i ri j ij r r ij i j j i ij r

A x

A x A x A x

ω ξ ω ξ ξ ω ω

ξ γ ξ γ ξ γ ξ ξ γ δ δ ω ω

 + + ∂ =


+ + − + ∂ = + −
 

and is involutive if and only if 0i iA A∂ − =  or, equivalently, if ω  has vanish-
ing Weyl tensor. 

However, introducing again the metric density ω̂  while substituting, we ob-

tain after prolongation and division by ( )( )
1
ndet ω  the second order system  

( )2 2R̂ J T⊂  in Medolaghi form and the Levi-Civita isomorphim  
( ) ( )1, jω γ ω

 restricts to an isomorphism ( ) ( )1ˆ ˆ ˆ, jω γ ω
 if we set:  

( ) ( )( )1ˆ ˆ ˆ0 0k k k r k r ks r r
ij ij i rj j ri ij rs ri tr

n
γ γ δ γ δ γ ω ω γ γ γ= − + − ⇒ = =  

( )

2ˆ ˆ ˆ ˆ ˆ 0 0

1ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ 0 0

r r r r ij ij
ij rj i ir j ij r r ij

k k k r k r kr s k r k r r k r k r
ij ij i rj j ri ij rs rj i ri j ij r r ij ri

n

n

ω ξ ω ξ ω ξ ξ ω ω

ξ δ ξ δ ξ ω ω ξ γ ξ γ ξ γ ξ ξ γ

Ω ≡ + − + ∂ = ⇒ Ω =

Γ ≡ − + − + + − + ∂ = ⇒ Γ =


 

Contracting the first equations by ˆ ijω  we notice that r
rξ  is no longer va-

nishing while, contracting in k and j the second equations, we now notice that 
r
riξ  is no longer vanishing. It is also essential to notice that the symbols 1ĝ  and 

2ĝ  only depend on ω  and not on any conformal factor.  
The following Proposition does not seem to be known:  
PROPOSITION 5.A.1: ( )ˆ,id γ−  is the only symmetric 1R̂ -connection with 

vanishing trace. 
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Proof: Using a direct substitution, we have to study:  
2ˆ ˆ ˆ ˆ ˆ ˆ ˆr r r

ir jt rj it ij rt t ijn
ω γ ω γ ω γ ω− − + + ∂  

Multiplying by ( )( )
1
ndet ω , we have to study:  

( )( )
12ˆ ˆ ˆ ˆr r r n

ir jt rj it ij rt t ijdet
n

ω γ ω γ ω γ ω ω− − + + ∂  

or equivalently: 

( )( ) ( )( )12 1ˆ ˆ ˆr r r
ir jt rj it ij rt t ij ij tdet det

n n
ω γ ω γ ω γ ω ω ω ω

−
− − + + ∂ − ∂  

that is to say:  
2ˆ ˆr r s

ir jt rj it t ij ij stn
ω γ ω γ ω ω γ− − + ∂ −  

Now, we have:  

( )1 1 1 1r r s r s ru s r s s s
ir jt j st t sj jt su ir jt ij st it sj jt sin n n n

ω γ δ γ δ γ ω ω γ ω γ ω γ ω γ ω γ − − + − = − + + − 
 

 

Finally, taking into account that ( ),id γ−  is a 1R -connection, we have:  

0r r
ir jt rj it t ijω γ ω γ ω− − + ∂ =  

Hence, collecting all the remaining terms, we are left with 2 2 0s s
ij st ij stn n

ω γ ω γ− = . 

As for the unicity, it comes from a chase in the commutative and exact dia-
gram:  

* 2 *
2 1

* * * 2 *
2

0 0 0

ˆ ˆ0 0

0 0

0

g T g T T

S T T T T T T T

δ δ

δ δ

↓ ↓ ↓

→ → ⊗ → ∧ ⊗ →
↓ ↓

→ ⊗ → ⊗ ⊗ → ∧ ⊗ →
↓

  

obtained by counting the respective dimensions with  
( ) ( )( ) ( )2

1ˆ 1 2 1 2 2dim g n n n n= − + = − +  and ( )2ˆdim g n=  while checking 
that ( ) ( )2 22 1 2 0n n n n n n− + − + − − = . The lower sequence splits because the 
short exact δ-sequence * * * 2 *

20 0S T T T T
δ δ

→ → ⊗ →∧ →  splits and the upper 
sequence also splits because we have a composite monomorphism  

2 * * *
1 1ˆT T T g T g∧ ⊗ ⊗ → ⊗

.  
  

COROLLARY 5.A.2: The 1R -connection ( ),id γ−  is also a 1R̂ -connection.  
Proof: This result first follows from the fact that ( ) *

1,id T Rγ− ∈ ⊗  is over 
*id T T∈ ⊗  and 1 1

ˆR R⊂ . However, we may also check such a property directly.  

Indeed, mutiplying 2ˆ ˆ ˆ ˆr r r
rj it ir rt ij rt t ijn

ω γ ω γ ω γ ω− − + + ∂  by ( )( )
1
ndet ω  as in the 
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last Proposition, we obtain:  

2 ˆ 0r r r r r
rj it ir jt ij rt t ij rj it rj jt t ijn

ω γ ω γ ω γ ω ω γ ω γ ω− − + + ∂ = − − + ∂ =  

because ( ),id γ−  is a 1R -connection.  
  

REMARK 5.A.3: If one is using ( ),id γ− , then ( )( )2
k k

ijij
L ξ γ ξ  when 0γ =  

locally and we have ( ) ( ) ( )r r r r
i r ri r i ri iδα ξ ξ α ξ ξ α= ∂ − + ∂ + ∂ −  as the simplest  

variation. However, we have ( )1
2f γ γ γ− = ≠  and we cannot thus split the 

Spencer operator over the target by means of a pull-back. Nevertheless, if one is 
using ( )ˆ,id γ− , then ( )2 ˆ 0L ξ γ =  when 2 2R̂ξ ∈  and the variation ( )iδα  con-
tains an additional term ,

s r
sr iξ χ  but ( )1

2 ˆ ˆf γ γ− =  and one can split the Spencer 
operator over the source and over the target with the help of γ̂  but we have to 
point out that ˆ0 0γ γ= ⇒ =  locally.  

  
We let the reader exhibit similarly the finite Lie forms of the previous equa-

tions that will be presented when needed. We have to distinguish the strict in-
clusions ( )ˆ aut XΓ ⊂ Γ ⊂ Γ ⊂  with:  
 The Lie pseudogroup ( )aut XΓ ⊂  of isometries which is preserving the me-

tric *
2S Tω∈  with ( ) 0det ω ≠  and thus also γ .  

 The Lie pseudogroup Γ  which is preserving ω̂  and γ .  
 The Lie pseudogroup Γ̂  of conformal isometries which is preserving ω̂  

and thus also γ̂  with:  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

k l l r s
l ij rs i j

k k k k kr
ij ij i j i j ij r

g x f x f x f x f x

x x a x a x x x a x

γ

γ γ δ δ ω ω

+

= = + + −
 

where ( ) *i
ia x dx T∈  and thus * *

2 2ĝ S T T Tγ γ− ∈ ⊂ ⊗ ⊗ .  
B) ELECTROMAGNETISM  
The key idea, still never acknowledged, is that, even if we shall prove that 

electromagnetism only depends on the elations of the conformal group which 
are clearly non-linear transformations, we shall see that electromagnetism has 
“by chance” a purely linear behaviour. 

Indeed, setting as we already did 0 A idχ = −  and defining , ,
k s k
lr j j lr sAχ τ= , we 

may rewrite the defining equation of the second non-linear Spencer operator 
D′  in the form:  

( )
( )

, , , ,

, , , , , , , , , ,

k k r k r k r s k k
i j j i i r j j r i i j r s s r

k k r k r k r k r k r s k k
i l j j l i l i r j l j r i i lr j j lr i i j lr s ls r

A A A A A A

A A A A

χ χ τ τ

χ χ χ χ χ χ χ χ τ τ

∂ − ∂ = − = −

∂ − ∂ − + = − = −

 

Hence, contracting in k and l, the quadratic terms in χ  disappear and we 
get:  

( ), , , ,
r r r s k k

i r j j r i i j kr s ks rA Aχ χ τ τ∂ − ∂ = −  

By analogy with EM it should be tempting to introduce ,
r

i r iα χ=  and denote 
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by ijϕ  the right member of the last formula but the relation i j j i ijα α ϕ∂ − ∂ =  
thus obtained has no intrinsic meaning because α  is far from being a 1-form 
while ϕ  is far from being a 2-form.  

REMARK 5.B.1: The target “y” could be called “hidden variable” as it is just 
used in order to construct objects over the source “x”. As a byproduct, the 
changes of local coordinates are of the form ( ) ( ),x x y yϕ ψ= =  but the second 
one does not appear through the implicit summations over the target because 
the first order transition rules are:  

( ) ( ) ( )( ) ( ) ( )( ) ( )
j l j l

l k l k
j i j ii k i ky x y y f x x f x f x

x y x y
ϕ ψ ϕ ψϕ∂ ∂ ∂ ∂

= ⇒ =
∂ ∂ ∂ ∂

 

It follows therefore that *A T T∈ ⊗  indeed and is thus a well defined object 
over the source.  

LEMMA 5.B.2: The short exact δ-sequence * * * 2 *
20 0S T T T T

δ δ
→ → ⊗ →∧ →  

admits a canonical splitting, that is a splitting coherent with the tensor nature of 
the vector bundles involved.  

Proof: The splitting of the above sequence is obtained by setting  

( ) ( )* * *
, , , 2

1
2i j i j j iT T S Tτ τ τ ∈ ⊗ → + ∈ 

 
 in such a way that  

( ) ( )*
, , 2

1
2i j j i ij ij ji ijS Tτ τ τ τ τ τ= = ∈ ⇒ + = . 

Similarly, ( ) 2 * * *1
2ij ji ijT T Tϕ ϕ ϕ = − ∈∧ → ∈ ⊗ 

 
 and  

( ) 2 *1 1
2 2ij ji ij Tϕ ϕ ϕ − = ∈∧ 

 
.  

  
We shall revisit the previous results by showing that, in fact, all the maps and 

splittings existing for the Killing operator are coming from maps and splittings 
existing for the conformal Killing operator, though surprising it may look like. 
As these results are based on a systematic use of the Spencer δ-map, they are 
neither known nor acknowledged.  

We now recall the commutative diagrams allowing to define the (analogue) of 
the first Janet bundle and their dimensions when 4n = :  

* *
3 3 2 0 1

* * * * *
2 2 0

2 * 2 * * 2 *
1 0

3 * 3 *

0 0 0

0 0

0 0

0 0

0 0

0 0

g S T T S T F F

T g T S T T T T F

T g T T T T F

T T T T

↓ ↓ ↓
→ → ⊗ → ⊗ → →

↓ ↓ ↓
→ ⊗ → ⊗ ⊗ → ⊗ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊗ → ∧ ⊗ →

↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ →

↓ ↓

 

https://doi.org/10.4236/jmp.2022.134031


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134031 480 Journal of Modern Physics 
 

0 0

0 80 100 20 0

0 160 160 0

0 36 96 60 0

0 16 = 16 0

0 0

↓ ↓
→ → → →

↓ ↓
→ → →

↓ ↓
→ → → →

↓ ↓ ↓
→ →

↓ ↓

 

PROPOSITION 5.B.3: Recalling that we have ( ) ( )2 2
1 1 1F H g Z g= =  in the 

Killing case and ( ) ( )2 2
1 1 1
ˆ ˆ ˆF H g Z g= ≠  in the conformal Killing case, we have 

the unusual commutative diagram:  

( ) ( ) ( )2 2 2 * *
1 1 2

2 * 2 * 2 * * * *
1 1

3 * 3 * 3 * 2 *

0 0 0 0

ˆ0

ˆ0

0

0 0 0 0

Z g Z g Z T T S T

T g T g T T T T T

T T T T T T T

δ

δ δ δ δ

↓ ↓ ↓ ↓

→ → ⊂ ⊗ →

↓ ↓ ↓ ↓
→ ∧ ⊗ → ∧ ⊗ ⊂ ∧ ⊗ ⊗ → ⊗

↓ ↓ ↓ ↓
→ ∧ ⊗ = ∧ ⊗ = ∧ ⊗ → ∧

↓ ↓ ↓ ↓

 

Proof: First of all, we must point out that the surjectivity of the bottom δ in 
the central column is well known from the exactness of the δ-sequence for *

3S T  
and thus also after tensoring by T. However, the surjectivity of the bottom δ in 
the left column is not evident at all as it comes from a delicate circular chase in 
the preceding diagram, using the fact that the Riemann and Weyl operators are 
second order operators. Then, setting ,

r
ij r ij jiϕ ρ ϕ= = −  and ,

r
ij i rj jiρ ρ ρ= ≠ , we  

may define the right central horizontal map by ,
1
2

k
l ij ij ijρ ρ ϕ→ −  and the right  

bottom horizontal map by ( )iω ξ ξ ω⊗ → −  by introducing the interior prod-
uct ( )i . We obtain at once:  

( ), , ,
1 1
2 2

r r r
r ij i jr j ri ij ij ji ij ij ji jiρ ρ ρ ϕ ρ ρ ρ ϕ ρ ϕ   − + + = − + − = − − −   

   
 

and the right bottom diagram is commutative, clearly inducing the upper map. If 
we restrict to the Killing symbol, then 0ijϕ =  and we obtain  

( ) *
20ij ji ij ji S Tρ ρ ρ ρ− = ⇒ = ∈ , that is the classical contraction allowing to 

obtain the Ricci tensor from the Riemann tensor but there is no way to go back-
wards with a canonical lift. A similar comment may be done for the conformal  

Killing symbol and the 1
2

 coefficient.  

  
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Using the previous diagram allowing to define both ( ) ( )2 2
1 1 1F H g Z g= =  if 

we use ω  or ( ) ( ) ( )2 2 *
1 1 1 2
ˆ ˆ ˆ ˆF H g Z g T gδ= = ⊗  if we use ω̂  while taking 

into account that ( )1 1ˆ 1dim g g =  and *
2ĝ T , we obtain the crucial theorem 

which is in fact only depending on ω :  
THEOREM 5.B.4: We have the commutative and exact “fundamental dia-

gram II”: 

( ) ( )

( ) ( )

*
2

2 2
1 1

* 2 2
2 1 1

* * * 2 *
2

0

0

0 0

ˆ ˆ ˆ0 0

0 0

0 0

S T

Z g H g

T g Z g H g

S T T T T

δ

δ δ

↓

↓ ↓
→ → →

↓ ↓ ↓

→ ⊗ → → →
↓ ↓ ↓

→ → ⊗ → ∧ →
↓ ↓

 

The following theorem will provide all the classical formulas of both Rieman-
nian and conformal geometry in a totally unusual framework not depending on 
any conformal factor:  

THEOREM 5.B.5: All the short exact sequences of the preceding diagram 
split in a canonical way, that is in a way compatible with the underlying tensorial 
properties of the vector bundles involved. With more details:  

( ) ( ) ( ) ( )
( ) ( )

* * * 2 * 2 2 * 2 2 *
2 1 1 2 1

2 2 *
1 1 2

*
1 1 2

ˆ ˆ

ˆ
ˆ

T T S T T Z g Z g T g Z g T

H g H g S T

F F S T

δ⊗ ⊕∧ ⇒ + ⊗ ⊕∧

⇒ ⊕

⇒ ⊕

  





 

Proof: First of all, we recall that:  

{ }*
1

*
1

| 0

2ˆ | 0

k r r
i rj i ir j

k r r r
i rj i ir j ij r

g T T

g T T
n

ξ ω ξ ω ξ

ξ ω ξ ω ξ ω ξ

= ∈ ⊗ + =

 ⊂ = ∈ ⊗ + − = 
 

 

{ }*
2 2 2ˆ0 |k k k r k r ks r

ij ij i rj j ri ij rsg g S T T nξ ξ δ ξ δ ξ ω ω ξ⇒ = ⊂ = ∈ ⊗ = + −  

Now, if ( ) *
, 2ˆk

li j T gτ ∈ ⊗ , then we have:  

, , , ,
k k r k r ks r
li j l ri j i rl j li rs jnτ δ τ δ τ ω ω τ= + −  

and we may set , , ,
r
ri j i j j iτ τ τ= ≠  with ( ) *

,i j T Tτ ∈ ⊗  and such a formula does 
not depend on any conformal factor. Taking into account Proposition 4.B.5, we 
have:  

( ) ( ) ( ) ( ) ( )2 2
, , , , 1 1ˆ ˆk k k k

li j li j lj i l ij B g Z gδ τ τ τ ρ= − = ∈ ⊂  

with:  
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( ) ( ) ( ){ }2 2 *
1 , 1 , ,ˆ ˆ | 0 0k k r

l ij l ij ij r ijZ g T gρ δ ρ ϕ ρ= ∈∧ ⊗ = ⇒ = ≠  

( ) ( )( ) 3 *
, , , , ,, ,
k k k k k
l ji l ij l ij i jl j lil i j T Tδ ρ ρ ρ ρ ρ= = + + ∈∧ ⊗  

 The splitting of the central vertical column is obtained from a lift of the epi-
morphism ( )2 2 *

1ˆ 0Z g T→∧ →  which is obtained by lifting ( ) 2 *
ij Tϕ ∈∧  to 

* *1
2 ij T Tϕ ∈ ⊗ 

 
, setting ,

1
2

r
ri j ijτ ϕ=  and applying δ to obtain  

( ) ( )2 2
, , 1 1

1 1 ˆ ˆ
2 2

r r
ri j rj i ij ji ij B g Z gτ τ ϕ ϕ ϕ − = − = ∈ ⊂ 

 
. 

 Now, let us define ( ) * *
, , ,

r
i j i rj j i T Tρ ρ ρ= ≠ ∈ ⊗ . Hence, elements of ( )2

1Z g  
are such that:  

( ) *
, , , , , 20, 0r

ij r ij ij i j j i ij i j j i ji S Tϕ ρ ϕ ρ ρ ρ ρ ρ ρ= = − + = ⇒ = = = ∈  

while elements of ( )2
1ˆZ g  are such that:  

( ) 2 *
, , , , , 0r

r ij ij i j j i i j j i Tρ ϕ ρ ρ τ τ= = − = − ≠ ∈∧  

Accordingly, *
, , 2

1 1
2 2i j ij j i ji S Tρ ϕ ρ ϕ − = − ∈ 

 
. More generally, we may con-

sider ( ), , ,
k k k
l ij li j lj iρ τ τ− −  with ,

1
2

r
ri j ijτ ϕ= . Such an element is killed by δ  and  

thus belongs to ( )2
1ˆZ g  because each member of the difference is killed by δ. 

However, we have ( ), , , 0r r r
r ij ri j rj i ij ijρ τ τ ϕ ϕ− − = − =  and the element does belong 

indeed to ( )2
1Z g , providing a lift ( ) ( )2 2

1 1ˆ 0Z g Z g→ → .  
 Of course, the most important result is to split the right column. As this will 

be the hard step, we first need to describe the monomorphism  
( )* 2

2 10 S T H g→ →  which is in fact produced by a north-east diagonal 
snake type chase. Let us choose ( ) * * *

, , 2ij i j j i ji S T T Tτ τ τ τ= = = ∈ ⊂ ⊗ . Then, 
we may find ( ) *

, 2ˆk
li j T gτ ∈ ⊗  by deciding that , , , ,

r r
ri j i j j i rj iτ τ τ τ= = =  in 

( )2
1ˆZ g  and apply δ in order to get , , , ,

k k k
l ij li j k lj iρ τ τ= −  such that , 0r

r ij ijρ ϕ= =  
and thus ( ) ( ) ( )2 2

, 1 1
k
l ij Z g H gρ ∈ = . We obtain:  

( )
( ) ( )

, , , , , ,
k k r k r k r k r ks r r
l ij l ri j l rj i i rl j j rli li rs j lj rs i

k k ks
i lj j li li sj lj si

nρ δ τ δ τ δ τ δ τ ω ω τ ω τ

δ τ δ τ ω ω τ ω τ

= − + − − −

= − − −
 

Contracting in k and i while setting simply ( ) ( ),ij ij
ij ijtr trτ ω τ ρ ω ρ= = , we 

get:  

( ) ( ) ( )
( ) ( ) ( )

2

2 1
ij ij ij ij ij ij ij jin n tr n tr n

ntr n tr

ρ τ τ τ ω τ τ ω τ ρ

ρ τ

= − − + = − + =

⇒ = −
 

Substituting, we finally obtain 
( )( ) ( )

2 2 1 2ij ij ij
n n tr

n n n
τ ρ ω ρ= −

− − −
 and thus 

the tricky formula:  

( ) ( )( )

( )( ) ( ) ( )

,
1

2
1

1 2

k k k ks
l ij i lj j li li sj lj si

k k
i lj j li

n

tr
n n

ρ δ ρ δ ρ ω ω ρ ω ρ

δ ω δ ω ρ

= − − −
−

− −
− −
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Contracting in k and i, we check that ij ijρ ρ=  indeed, obtaining therefore 
the desired canonical lift ( )2 *

1 2 , ,0 : k r
i lj i rj ijH g S T ρ ρ ρ→ → → = . Finally, using 

again Proposition 3.4, the epimorphism ( ) ( )2 2
1 1ˆ 0H g H g→ →  is just de-

scribed by the formula:  

( ) ( )( )

( )( ) ( ) ( )

, ,
1

2
1

1 2

k k k k ks
l ij l ij i lj j li li sj lj si

k k
i lj j li

n

tr
n n

σ ρ δ ρ δ ρ ω ω ρ ω ρ

δ ω δ ω ρ

= − − − −
−

+ −
− −

 

which is just the way to define the Weyl tensor. We notice that , , 0r r
r ij r ijσ ρ= =  

and , 0r
i rjσ =  by using indices or a circular chase showing that  

( ) ( ) ( )2 2 *
1 1 2ˆ ˆZ g Z g T gδ= + ⊗ . This purely algebraic result only depends on the 

metric ω  and does not depend on any conformal factor. In actual practice, the 
lift ( )2 *

1 2H g S T→  is described by , ,
k r
l ij i rj ij jiρ ρ ρ ρ→ = =  but it is not evident 

at all that the lift ( ) ( )2 2
1 1ˆH g H g→  is described by the strict inclusion 

, , ,
k k k
l ij l ij l ijσ ρ σ→ =  providing a short exact sequence as in Proposition 3.4 be-

cause , , 0r r
ij i rj i rjρ ρ σ= = =  by composition. 

  
PROPOSITION 5.B.6: We have the following commutative and exact dia-

gram made by splitting sequences according to a circular chase in the right up-
per commutative square:  

*
2

*
2 2

1 1

0 0

ˆ0 0

ˆ0 0

ˆ0 0

0 0

g T

R R T

R R

↓ ↓
→ → →

↓ ↓

→ → → →
↓ ↓ ↓

→ = →
↓ ↓







 

This diagram is thus leading to the short exact sequence:  
* * * *

2 2
ˆ0 0T R T R T T→ ⊗ → ⊗ → ⊗ →  

with a canonical splitting * * * 2 *
2T T S T T⊗ ⊕∧

.  
Proof: According to the definition of the Christoffel symbols γ  for the me-

tric ω , we have:  

2 0k k k
rk ij i rj j ri r ij kj ir ik jr r ijω γ ω ω ω ω γ ω γ ω= ∂ + ∂ − ∂ ⇔ + −∂ =  

It follows that γ−  ( care) is the unique symmetric 1R -connection, that is a 
map 1T R→  considered as an element of *

1T R⊗  projecting onto *
Tid T T∈ ⊗ . 

Accordingly, any ( )*
1 1T J Tχ ∈ ⊗  provides ( ) * *

, ,
k k r
j i jr i T T Tχ γ χ+ ∈ ⊗ ⊗  and 

thus a true 1-form ( ) *
, , ,

r r s
i r i r s i Tα χ γ χ= + ∈ . However, such an approach cannot  

be extended to higher orders and we prefer to consider half of the morphism de-

fining the Killing operator, namely the morphism ( ) ( )*
1 2 1 1

1:
2

J T S T Lξ ξ ω→ → , 
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tensor it by *T  and contract it by 1ω−  in order to get:  

( ), , , , ,
1 1
2 2

st r r r r r st
rt s i sr t i i r st r i i r st iω ω χ ω χ χ ω χ χ ω ω α+ + ∂ = + ∂ =  

where we notice that: 

( )( ) ( ) ,2 1 0r st r r
ri r st i i rj j r idet detγ ω ω ω ω γ γ= ∂ = ∂ ⇒ ∂ −∂ =  

Similarly, there is a well defined map ( ) ( )*
2 2 2 2:J T S T T Lξ ξ γ→ ⊗ →  that 

can be tensored by *T  and restricted to *
2

ˆT R⊗  in order to obtain a well de-
fined map * * *

2 2
ˆT R T S T T⊗ → ⊗ ⊗  that can be contracted to * *T T⊗  ac-

cording to the following local formulas:  

, , , , , ,

, , , ,

k k k u k u u k u k
lr s lr s ur l s lu r s lr u s s u lr

k k k u u k
kr s kr s ku r s s u kr

β τ γ τ γ τ γ τ τ γ

β τ γ τ τ γ

= + + − + ∂

= + + ∂
 

We can “twist” by A and apply * * 2 * *
2:T S T T T T Tδ ⊗ ⊗ → ∧ ⊗ ⊗  that can 

be contracted to 2 *T∧  according to the following local formulas:  

( ) ( ), , , , , ,
k r s k k r r s k k
l ij i j lr s ls r ij r ij i j kr s ks rA A A Aϕ β β ϕ ϕ β β= − ⇒ = = −  

  
As 2 *Tϕ ∈∧  though *

2 2
ˆT Rχ ∈ ⊗ , we obtain the following crucial theorem 

([4] [8]):  
THEOREM 5.B.7: The non-linear Spencer sequence for the conformal group 

of transformations projects onto a part of the Poincaré sequence for the exterior 
derivative according to the following commutative and locally exact diagram:  

2 1 2* 2 *
2 2 2

* 2 * 3 *

ˆ ˆ ˆˆ0

0

j D D

d d

T R T R

T T T
d dα α ϕ ϕ

→ Γ → → ⊗ → ∧ ⊗
↓ ↓ ↓

→ ∧ → ∧
= =





 

Accordingly, this purely mathematical result contradicts classical gauge 
theory.  

Proof: Substituting the previous results in the last formula, we obtain succes-
sively:  

( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

, , , , , ,

, , , , , ,

, , , , , ,

r s k k k r s u u r s u k u k
ij i j kr s ks r ku i j r s s r i j s u kr r u ks

r r r u u r r s k s s r k
i r j j r i ru i j j i i i j r ks j j i s kr

r r r s s s r s r
i r j j r i rs i j j i j i rs i j rs

A A A A A A

A A

ϕ τ τ γ τ τ τ γ τ γ

χ χ γ δ χ χ γ δ χ χ γ

χ χ γ χ χ χ γ χ γ

= − + − + ∂ − ∂

= ∂ − ∂ + ∂ − ∂ + + ∂ − + ∂

= ∂ − ∂ + ∂ − ∂ + ∂ − ∂

= i j j iα α∂ − ∂

 

because 0r r
i rj j riγ γ∂ − ∂ = . It follows that 2 *d Tα ϕ= ∈∧  and thus 0dϕ = , that 

is 0i jk j ki k ijϕ ϕ ϕ∂ + ∂ + ∂ = , has an intrinsic meaning in 3 *T∧ . It is important to 
notice that the corresponding EM Lagrangian is defined on sections of 1Ĉ  
killed by 2D  but not on 2Ĉ , contrary to gauge theory. Finally, the south west 
arrow in the left square is the composition:  
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( )2
1 1* * *

2 2 2 2 1 1
ˆ ˆ ˆ

D

f T R T R T
γπ

χ χ α∈ → ∈ ⊗ → ∈ ⊗ → ∈  

Accordingly, though α  is a potential for ϕ , it can also be considered as a 
part of the field but the important fact is that the first set of (linear) Maxwell eq-
uations 0dϕ =  is induced by the (nonlinear) operator 2D . The linearized 
framework will explain this point.  

One of the most important but difficult result of this paper will be the follow-
ing direct proof of the existence of the right square in the previous diagram. 

Supposing for simplicity that ω  is a (locally) constant metric (in fact the 
Minkowski metric!) and thus 0γ = . When we are considering the conformal 
group of space-time, it first follows that the jets of order three vanish and the 
Formula (3*) can be now written:  

( ), , , , , , , , , , , , , , 0k k s k s k s k s k s k s k
i lr j j lr i r i ls j l i rs j lr i s j r j ls i l j rs i lr j s iχ χ χ χ χ χ χ χ χ χ χ χ χ χ∂ − ∂ − + + − − − =  

Contracting in k l u= =  and replacing r by t, we obtain the simple formula:  

, , , , , , 0u u s u s u
i ut j j ut i t i us j t j us iχ χ χ χ χ χ∂ − ∂ − + =  

Multiplyig by t
kA  the two last terms and replacing χ  by τ , we get for 

these terms only:  

( ), , , ,
r s t v u v u
i j k t s uv r t r uv sA A A τ τ τ τ−  

Now, denoting by ( ), ,i j k  the cyclic sum on the permutation  
( ) ( ) ( ), , , , , ,i j k j k i k i j→ →  and proceeding in this way on the last formula, we 
obtain easily:  

( ) ( ), , ,, , r s t v v u
i j k t s s t uv ri j k A A A τ τ τ−  

or, equivalently:  

( )( ) ( )( ), , , , , ,, , , ,r s t v v u r s t v v u
i j k t s s t uv r i j k s r r s uv tA A A r s t A A A r s tτ τ τ τ τ τ− = −   

Let us now similarly consider only the two first terms. After multiplication by 
t
kA  and integration by part, we get for the first:  

( )( ) ( ), , ,
t s u s t u s u t
k i j ut s i j k ut s j ut s i kA A A A A Aτ τ τ∂ = ∂ − ∂  

Applying the same procedure to the second term and considering the sum 
( ), ,i j k  while rearranging the six terms of the summation two by two, we ob-

tain:  

( ) ( )( ), , , ,, , t s u t r u t u r t u r
k j i ut s i j ut r k ur t j i k ut r i ji j k A A A A A A A Aτ τ τ τ∂ − + ∂ − ∂  

Exchanging the dumb indices between themselves, we finally obtain:  

( ) ( )( ) ( )( ), , ,, , r s u u t u r r
k i j us r ur s k ur t i j j ii j k A A A A Aτ τ τ∂ − + ∂ − ∂  

that is to say, taking into account the Equations (1*) and changing the signs:  

( )( ) ( ) ( )( ), , ,, , , , r s t v v u
k ij i j k r s s r uv ti j k i j k A A Aϕ τ τ τ∂ − −   

or, equivalently:  
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( )( ) ( )( ), , ,, , , ,r s t v v u
k ij i j k r s s r uv ti j k A A A r s tϕ τ τ τ∂ − −   

Collecting all the results, we are only left with ( )( ), , 0k iji j k ϕ∂ =  as we 
wished.  

  
COROLLARY 5.B.8: The linear Spencer sequence for the conformal group of 

transformations projects onto a part of the Poincaré sequence for the exterior 
derivative according to the following commutative and locally exact diagram:  

2 1 2* 2 *
2 2 2

* 2 * 3 *

ˆ ˆ ˆ ˆ0

0

j D D

d d

R T R T R

T T T
A dA F dF

→ Θ → → ⊗ → ∧ ⊗
↓ ↓ ↓

→ ∧ → ∧
= =



 

Accordingly, this purely mathematical result also contradicts classical gauge 
theory because it proves that EM only depends on the structure of the conformal 
group of space-time but not on ( )1U .  

Proof: Considering ω  and γ  as geometric objects, we obtain at once the 
formulas: 

( )2e a x r r
ij ij ri ri iaω ω γ γ= ⇒ = + ∂  

Though looking like the key Formula (69) in ([3], p 286), this transformation 
is quite different because the sign is not coherent and the second object has 
nothing to do with a 1-form. Moreover, if we use 2n =  and set ( ) 2Aξ ω ω=  
for the standard euclidean metric, we should have ( )11 22 0A∂ + ∂ = , contrary to 
the assumption that A is arbitrary which is only agreeing with the following jet 
formulas improving the ones already provided in ([29] [36] [40]) in order to 
point out the systematic use of the Spencer operator:  

( ) ( ) ( )( )1 2 2 2
ˆ2 , ,

rr r i
r ri iri

L A nA L nA Rξ ω ω ξ γ ξ ξ γ ξ= ⇒ + = = ∀ ∈  

Now, if we make a change of coordinates ( )x xϕ=  on a function 0 *a T∈∧ , 
we get: 

( )( ) ( )
j

j i i

a aa x a x
x x x

ϕϕ ∂ ∂ ∂
= ⇒ =

∂ ∂ ∂
 

We obtain therefore an isomorphism ( )0 * 0 * *
1 XJ T T T∧ ∧ ×

, a result lead-
ing to the following commutative diagram:  

( )0 *
2 2 1

* * *
1 1

ˆ0 0

ˆ0 0

R R J T

D D D

T R T R T

→ → → ∧ →

↓ ↓ ↓

→ ⊗ → ⊗ → →

 

where the rows are exact by counting the dimensions. The operator  
( ) ( ): , i i iD A A A A→ ∂ −  on the right is induced by the central Spencer operator, 

a result that could not have been even imagined by Weyl and followers. This re-
sult provides a good transition towards the conformal origin of electromagnet-
ism.  
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As the nonlinear aspect has been already presented, we restrict our study to 
the linear framework. A first problem to solve is to construct vector bundles 
from the components of the image of 1D . Using the corresponding capital letter 
for denoting the linearization, let us introduce:  

( ) ( )* * *
, , , ,
k k k s r
l i l i ls i r i iB X X T T T B B Tγ= + ∈ ⊗ ⊗ ⇒ = ∈  

( )
( )

* *
, , , , , , 2

2 *
, ,

k k k s k s s k r k
lj i lj i sj l i ls j i lj s i i r lj

r r
ri j rj i ij

B X X X X X T S T T

B B F T

γ γ γ γ= + + − + ∂ ∈ ⊗ ⊗

⇒ − = ∈∧
 

We obtain from the relations r r
i rj j riγ γ∂ = ∂  and the previous results:  

( )
( ) ( )

, , , , , , , ,

, , , , , ,

, , , ,

r r r r r s r s r s r s
ij ri j rj i ri j rj i rs i j rs j i j r si i r sj

r r r s s r s r s
i r j j r i rs i j j i j i sr i j sr

r r s r r s
i r j rs j j r i rs s i

i j j i

F B B X X X X X X

X X X X X X

X X X X

B B

γ γ γ γ

γ γ γ

γ γ

= − = − + − + ∂ − ∂

= ∂ − ∂ + − + ∂ − ∂

= ∂ + − ∂ +

= ∂ − ∂

 

Now, using the contracted formula r r s s r
ri rs i s ri inAξ γ ξ ξ γ+ + ∂ =  from section A, 

we obtain:  

( ) ( )

( )
( )

r r r s s
i i r ri rs i i

r r s s r
i r rs i s ri i

r r s
i r rs i

i i

B

nA

nA

n A A

ξ ξ γ ξ ξ

ξ γ ξ ξ γ

ξ γ ξ

= ∂ − + ∂ −

= ∂ + ∂ + ∂ −

= ∂ + −

= ∂ −

 

and we finally get ( )ij j i i jF n A A= ∂ − ∂  which is no longer depending on A, a 
result fully solving the dream of Weyl. Of course, when 4n =  and ω  is the 
Minkowski metric, then we have 0γ =  in actual practice and the previous 
formulas become particularly simple.  

It follows that dB F ndA F= ⇔ − =  in 2 *T∧  and thus 0dF = , that is 
0i jk j ki k ijF F F∂ + ∂ + ∂ = , has an intrinsic meaning in 3 *T∧ . It is finally impor-

tant to notice that the usual EM Lagrangian is defined on sections of 1Ĉ  killed 
by 2D  but not on 2Ĉ . Finally, the south west arrow in the left square is the 
composition:  

( )
( ) ( )

2
1 1* * * *

2 2 2 2 1 1 2 2
ˆ ˆ ˆ ˆ

D

i iR X T R X T R B T R nA T
γπ

ξ ξ∈ → ∈ ⊗ → ∈ ⊗ → ∈ ⇔ ∈ → ∈  

Accordingly, though A and B are potentials for F, then B can also be consi-
dered as a part of the field but the important fact is that the first set of (linear) 
Maxwell equations 0dF =  is induced by the ( linear) operator 2D  because we 
are only dealing with involutive and thus formally integrable operators, a fact 
justifying the commutativity of the square on the left of the diagram.  

  
REMARK 5.B.9: Taking the determinant of each term of the non-linear 

second order PD equations defining Γ̂ , we obtain successively:  

( ) ( )( )( ) ( ) ( ) ( )( ) ( )2 2e ena x na xk k
i idet det f x det det f xω ω= ⇒ =  
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in such a way that we may define ( )( ) ( ) ( ) ( )( )b f x a x b y a g y= ⇔ =  and set 
( ) ( )e 0b yy −Θ = >  over the target when caring only about the connected com-

ponent 0 1→ →∞  of the dilatation group. The problem is thus to change at 
the same time the numerical value of the section and /or the nature of the geo-
metric object cosifered, passing therefore from a (metric) tensor to a (metric) 
tensor density, exactly what also happens with the contact structure when it was 
necessary to pass from a 1-form to a 1-form density ([4] [7]). In a more specific 
way, the idea has been to consider successively the two non-linear systems of fi-
nite defining Lie equations:  

( ) ( ) ( )( ) ( )
2

ˆ ˆk l k l k n
kl i j ij kl i j i ijy y y x y y det y xω ω ω ω

−

= → =  

Now, with 0γ =  we have ( ),
r s k r k
r i k i s i rsg f A fχ = ∂ −  and:  

( )( ) ( ) ( )1 ,s k k k s k
k i s i i i i k rs rg f det f det f n a g f na x∂ = ∂ = ∂ =  

Finally, we have the jet compositions and contractions:  

( ) ( ) ( )( )

r k r r k r k l
k i i k ij kl i j

s k k l r k
i k is i r kl i k

g f g f g f f

na x g f f f g n f x b f x

δ= ⇒ = −

⇒ = = − = −
 

It follows that ( ) ( )( )r
i i i rn a x A a xα = ∂ −  but we may also set  

( ) ( ) ( )( )k
i i ka x f x b f x=  in order to obtain k

i k ik

bn b f
y

α
 ∂

= − ∂ ∂ 
 as a way to 

pass from source to target. We have:  
PROPOSITION 5.B.10: EM does not depend on the choice between source 

and target.  
Proof: Replacing the groupoid by its inverse in each formula, we may intro-

duce:  

( ) ( ) ( ), ,i r k
i i i i r k k kk

bx dx n a A a y dy n b
y

α α α β β β
 ∂

= = ∂ − ⇔ = = − ∂ 
 

and compare:  

( ) ( ), ,
a b

x yα ϕ β ψ→ ⇔ →  

while setting l k
kl k ly y

β β
ψ

∂ ∂
= −
∂ ∂

. We have successively:  

( ) ( )( )
( ) ( )( )

s r
ij i j j i i j s j i r

l k
i l j j k i

k ll k
i jk l

k ll k
i jk l

k l
kl i j

n A a A a

n b f b f

b b
n f f

y y

f f
y y

f f

ϕ α α

β β

ψ

= ∂ − ∂ = − ∂ − ∂

= − ∂ ∂ − ∂ ∂

 ∂ ∂
= − − ∂ ∂ ∂ ∂ 
 ∂ ∂

= − ∂ ∂ ∂ ∂ 
= ∂ ∂

 

and we notice that ϕ  does not depend any longer on a while ψ  does not de-
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pend any longer on b. Accordingly, we have the equivalences:  

( ) ( )0 0 0 0r rl k
i j r j i rk l

b b
NO EM A a A a

y y
ϕ ψ

∂ ∂
⇔ = ⇔ = ⇔ − = ⇔ ∂ −∂ =

∂ ∂
 

  
REMARK 5.B.11: If we use only the conformal group, we must use the metric 

density ω̂  instead of the metric ω . However, if we can define ω̂  from ω   

by setting ( )( )
1

ˆ n
ij ij detω ω ω= , we cannot recover ω  from ω̂ . The way to  

escape from such a situation is to notice that:  
( ) ( ) ( ) ( )

( )

2e a x k k k k kr
ij ij i j j i ij r

r r
ri ri i

a x a x a x

n a x

ω ω γ γ δ δ ω ω

γ γ

→ ⇒ → + ∂ + ∂ − ∂

⇒ → + ∂
 

a result showing that the conformal symbols 1ĝ  and 2ĝ  do not depend on any 
conformal factor.  

REMARK 5.B.12: In fact, our purpose is quite different now though it is also 
based on the combined use of group theory and the Spencer operator. The idea 
is to notice that the brothers are always dealing with the same group of rigid mo-
tions because the lines, surfaces or media they consider are all supposed to be in 
the same 3-dimensional background/surrounding space which is acted on by the 
group of rigid motions, namely a group with 6 parameters (3 translations + 3 
rotations). In 1909 it should have been strictly impossible for the two brothers to 
extend their approach to bigger groups, in particular to include the only addi-
tional dilatation of the Weyl group that will provide the virial theorem and, a 
fortiori, the elations of the conformal group considered later on by H. Weyl 
([29]). In order to explain the reason for using Lie equations, we provide the ex-
plicit form of the n finite elations and their infinitesimal counterpart with 
1 , ,r s t n≤ ≤ :  

( ) [ ]
2

2
2 2

1 , , 0
21 2

t r r t
s s st r r s st s t

x x by x x x n x
bx b x

θ ω θ ω θ θ−
= ⇒ = − ∂ + ∂ ⇒ ∂ = =

− +
 

where the underlying metric is used for the scalar products 2 2, ,x bx b  involved. 
It is easy to check that *

2 2S T Tξ ∈ ⊗  defined by ( ) ( ) ( )k s k
ij ij sx x xξ λ θ= ∂  be-

longs to 2ĝ  with s
i siA ω λ= . In view of these local formulas, we understand 

how important it is to use “equations” rather than “solutions”. 
REMARK 5.B.13: Setting ( )2 *

1 1q q qD T J Tσ χ− −′= ∈∧ ⊗ , we let the reader 
prove, as an exercise, that the following so-called Bianchi identities hold ([7], p 
221):  

( ) ( ) ( ) ( ){ }1 1 1, , , , , , 0, , ,q q qD Tσ ξ η ζ ξ η ζ σ ξ η χ ζ ξ η ζ− − −+ = ∀ ∈  

In the nonlinear conformal framework, it follows that the first set of Maxwell 
equations has only to do with D′  in the nonlinear Spencer sequence and thus 
nothing to do with the Bianchi identities, contrary to what happens with ( )1U  
in classical gauge theory. Similarly, in the linear conformal framework, the first 
set of Maxwell equations has only to do with 2D  and thus nothing to do with 
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3D  in the linear Spencer sequence. Indeed, the EM potential A is a section of 

0Ĉ  while the EM field F is a section of 1Ĉ  killed by 2D . This “shift by one step 
to the left” is the most important result of this section and could not be even 
imagined with any other approach.  

6. Conclusions 

This paper is part of the achievement of a lifetime research work on the common 
conformal origin of electromagnetism and gravitation. Roughly speaking, the 
Cosserat brothers have only been dealing with the 3 translations and 3 rotations 
of the group of rigid motions of space with 6 parameters while Weyl has only 
been dealing with the dilatation and the 4 elations of the conformal group of 
space-time having now 4 6 1 4 15+ + + =  parameters ([29]). Among the most 
striking results obtained from this conformal extension, we successively notice:  
 The generating nonlinear first order (care) compatibility conditions (CC) for 

the Cosserat fields are exactly described by the first order nonlinear second 
Spencer operator 2D . Accordingly, there is no conceptual difference be-
tween these nonlinear CC and the first set 2 * 3 *: : 0d T T F dF∧ → ∧ → =  
of Maxwell equations where d is the exterior derivative, which is parame-
trized by * 2 *: :d T T A dA F→∧ → = . However, the classical CC of elastici-
ty are described by the nonlinear second order (care) Riemann operator ex-
isting in the nonlinear Janet sequence but this different canonical nonlinear 
differential sequence could not explain the existence of field-matter couplings 
like piezzoelectricity, photoelasticity or even streaming birefringence ([5] 
[37]). On the contrary, in the conformal approach, it is essential to notice 
that the elastic and electromagnetic fields are both specific sections of 

*
1 2

ˆ ˆC T R= ⊗  killed by 2D  and parametrized by 1D . They can thus be 
coupled in a natural way but cannot be associated to the concept of curvature 
described by 2Ĉ . Meanwhile, we insist on the fact that the phenomenologi-
cal laws of these quoted couplings have been discovered by… Maxwell him-
self. This shift by one step to the left, even in the nonlinear framework, can 
be considered as the main novelty of this paper.  

 The linear Cosserat equations are exactly described by the formal adjoint 
( )1ad D  of the linear first Spencer operator 1 0 1

ˆ ˆ:D C C→  which is a first 
order operator ([38]). Accordingly, there is no conceptual difference between 
these equations and the second set ( )ad d  of Maxwell equations where 

* 2 *:d T T→∧ . This result explains why the Cosserat equations are quite dif-
ferent from the Cauchy equations which are described by the formal adjoint 
of the Killing operator in the Janet sequence used in classical elasticity, that is 

( )Cauchy ad Killing=  in the language of operators. It follows that the elas-
tic and electromagnetic inductions are both specific sections of  

4 * * 3 * *
1 2

ˆ ˆT C T R∧ ⊗ ∧ ⊗
, independently of any constitutive relation. The spe-

cific use of the 1-dimensional dilatation subgroup allows to understand the 
mathematical origin of thermoelectricity and the so-called virial theorem 
through the trace of the Cauchy tensor ([36] [40]). 
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 Combining the two previous comments, respectively related to “geometry” 
and to “physics” according to H. Poincaré ([34]), there is no conceptual dif-
ference between the elastic constitutive constants of elasticity and the mag-
netic constant µ  or rather 1 µ  of electromagnetism in the case of homo-
geneous isotropic materials on one side ( space) or between the mass per unit 
volume and the dielectric constant ε  on the other side ( time), a result con-
firmed by the speeds of the various elastic or electromagnetic existing waves 
([5] [37]). In general one has 2 2c nεµ =  where n is the index of refraction 
but in vacuum we have 2

0 0 1cε µ =  and we have thus only one electromag-
netic constant involved in the corresponding Minkowski constitutive law of 
vacuum ([2]).  

 As for gravitation and the possibility to exhibit a conformal factor defined 
everywhere but at the origin, we may simply say that we needed 25 years in 
order to correct the result we already obtained in 1994 ([7] [41]). Such a pos-
sibility highly depends on the new mathematical tools involved in the con-
struction of the Janet or Spencer nonlinear differential sequences for the 
conformal group of space-time because, in this case, the Spencer δ-cohomology 
has very specific properties for the dimension 4n =  only. This will be the 
subject of a forthcoming companion paper (arXiv: 2007.01710).  

We end this paper with the French proverb “AUTRES TEMPS, AUTRES 
MOEURS” adapted from the famous Latin sentence “AUT TEMPORA, AUT 
MORES” as we do believe that a modern scientific translation could be “NEW 
MATHEMATICS, NEW PHYSICS”.  

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Einstein, A. (1905) Annalen der Physik, 17, 891-921.  

https://doi.org/10.1002/andp.19053221004 

[2] Ougarov, V. (1969) Théorie de la Relativité Restreinte. MIR, Moscow. 

[3] Weyl, H. (1918, 1958) Space, Time, Matter. Springer, Berlin.  

[4] Pommaret, J.-F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach, New 
York. 

[5] Pommaret, J.-F. (2019) Journal of Modern Physics, 10, 1566-1595.  
https://doi.org/10.4236/jmp.2019.1013104 

[6] Gutt, S. (1983) Invariance of Maxwell’s Equations. In: Cahen, M., Lemaire, L. and 
Vanhecke, L., Eds., Differential Geometry and Mathematical Physics. Mathematical 
Physics Studies (A Supplementary Series to Letters in Mathematical Physics), Vol. 3, 
Springer, Dordrecht, 27-29. https://doi.org/10.1007/978-94-009-7022-9_3 
https://link.springer.com/chapter/10.1007/978-94-009-7022-9_3  

[7] Pommaret, J.-F. (1994) Partial Differential Equations and Group Theory. Wolters 
Kluwer, Alphen aan den Rijn. https://doi.org/10.1007/978-94-017-2539-2 

https://doi.org/10.4236/jmp.2022.134031
https://doi.org/10.1002/andp.19053221004
https://doi.org/10.4236/jmp.2019.1013104
https://doi.org/10.1007/978-94-009-7022-9_3
https://link.springer.com/chapter/10.1007/978-94-009-7022-9_3
https://doi.org/10.1007/978-94-017-2539-2


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134031 492 Journal of Modern Physics 
 

[8] Appell, P. (1909) Traité de Mécanique Rationnelle. Gauthier-Villars, Paris.   

[9] O’Chwolson, O. (1914) Traité de Physique (See III, 2, 537 + III, 3, 994 + V, 209). 
Hermann, Paris. 

[10] Cosserat, E. and Cosserat, F. (1909) Théorie des Corps Déformables. Hermann, 
Paris. 

[11] Koenig, G. (1897) Leçons de Cinématique (The Note “Sur la Cinématique d’un 
Milieu Continu” by E. Cosserat and F. Cosserat Has Rarely Been Quoted). Hermann, 
Paris, 391-417. 

[12] Pommaret, J.-F. (1997) Annales des Ponts et Chaussées, 82, 59-66. (Translation by 
D.H. Delphenich) 

[13] Pommaret, J.-F. (2001) Partial Differential Control Theory. Kluwer, Dordrecht.  
https://doi.org/10.1007/978-94-010-0854-9 

[14] Teodorescu, P.P. (1975) Dynamics of Linear Elastic Bodies. Abacus Press, Tun-
bridge Wells. (Editura Academiei, Bucuresti, Romania) 

[15] Pommaret, J.-F. (1983) Differential Galois Theory. Gordon and Breach, New York. 

[16] Einstein, A. and Fokker, A.D. (1914) Annalen der Physik, 44, 321-328.  
https://doi.org/10.1002/andp.19143491009 

[17] Janet, M. (1920) Journal de mathématiques pures et appliquées, 8, 65-151.  

[18] Goldschmidt, H. (1972) Journal of Differential Geometry, 6, 357-373 and 7, 67-95.  
https://doi.org/10.4310/jdg/1214430498 

[19] Kumpera, A. and Spencer, D.C. (1972) Lie Equations. Annals of Mathematics Stu-
dies No. 73, Princeton University Press, Princeton.  
https://doi.org/10.1515/9781400881734 

[20] Spencer, D.C. (1965) Bulletin of the American Mathematical Society, 75, 1-114. 

[21] Cartan, E. (1904) Annales Scientifiques de l’École Normale Supérieure, 21, 153-206, 
22 (1905) 219-308. https://doi.org/10.24033/asens.538 

[22] Cartan, E. (1923) Annales de la Société Polonaise de Mathématique, 2, 171-221.  

[23] Vessiot, E. (1903) Annales Scientifiques de l’École Normale Supérieure, 20, 411-451.  
https://doi.org/10.24033/asens.529 

[24] Vessiot, E. (1904) Annales Scientifiques de l’École Normale Supérieure, 21, 9-85.  
https://doi.org/10.24033/asens.534 

[25] Pommaret, J.-F. (1978) Systems of Partial Differential Equations and Lie Pseudo-
groups. Gordon and Breach, New York. Russian Translation: MIR, Moscow (1983). 

[26] Eisenhart, L.P. (1926) Riemannian Geometry. Princeton University Press, Prince-
ton. 

[27] Pommaret, J.-F. (2016) Deformation Theory of Algebraic and Geometric Structures. 
Lambert Academic Publisher (LAP), Saarbrucken. https://arxiv.org/abs/1207.1964  

[28] Pommaret, J.-F. (2021) Advances in Pure Mathematics, 11, 835-882.  
https://doi.org/10.4236/apm.2021.1111056 

[29] Pommaret, J.-F. (2021) Journal of Modern Physics, 12, 1822-1842.  
https://doi.org/10.4236/jmp.2021.1213106 

[30] Northcott, D.G. (1966) An Introduction to Homological Algebra. Cambridge Uni-
versity Press, Cambridge.  

[31] Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press, 
Cambridge.  

[32] Pommaret, J.-F. (2005) Algebraic Analysis of Control Systems Defined by Partial 

https://doi.org/10.4236/jmp.2022.134031
https://doi.org/10.1007/978-94-010-0854-9
https://doi.org/10.1002/andp.19143491009
https://doi.org/10.4310/jdg/1214430498
https://doi.org/10.1515/9781400881734
https://doi.org/10.24033/asens.538
https://doi.org/10.24033/asens.529
https://doi.org/10.24033/asens.534
https://arxiv.org/abs/1207.1964
https://doi.org/10.4236/apm.2021.1111056
https://doi.org/10.4236/jmp.2021.1213106


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134031 493 Journal of Modern Physics 
 

Differential Equations. In: Advanced Topics in Control Systems Theory, Lecture 
Notes in Control and Information Sciences 311, Springer, Berlin, Chapter 5, 155- 
223. https://doi.org/10.1007/11334774_5 

[33] Pommaret, J.-F. (2015) Multidimensional Systems and Signal Processing, 26, 405- 
437. https://doi.org/10.1007/s11045-013-0265-0 

[34] Poincaré, H. (1901) Comptes Rendus de l’Académie des Sciences Paris, 132, 369- 
371.  

[35] Pommaret, J.-F. (2012) Spencer Operator and Applications: From Continuum Me-
chanics to Mathematical Physics. In: Gan, Y., Ed., Continuum Mechanics-Progress 
in Fundamentals and Engineering Applications, InTech, Rijeka, 1-32.  
https://doi.org/10.5772/35607 

[36] Pommaret, J.-F. (2018) New Mathematical Methods for Physics. Mathematical 
Physics Books, Nova Science Publishers, New York, 150 p.  

[37] Pommaret, J.-F. (2001) Acta Mechanica, 149, 23-39.  
https://doi.org/10.1007/BF01261661 

[38] Pommaret, J.-F. (2010) Acta Mechanica, 215, 43-55.  
https://doi.org/10.1007/s00707-010-0292-y 

[39] Pommaret, J.-F. (2014) Journal of Modern Physics, 5, 157-170.  
https://doi.org/10.4236/jmp.2014.55026 

[40] Pommaret, J.-F. (2015) From Thermodynamics to Gauge Theory: The Virial Theo-
rem Revisited. In: Gauge Theories and Differential Geometry, NOVA Science Pub-
lisher, Hauppauge, 1-46. 

[41] Pommaret, J.-F. (2013) Journal of Modern Physics, 4, 223-239.  
https://doi.org/10.4236/jmp.2013.48A022 

 
 
 

https://doi.org/10.4236/jmp.2022.134031
https://doi.org/10.1007/11334774_5
https://doi.org/10.1007/s11045-013-0265-0
https://doi.org/10.5772/35607
https://doi.org/10.1007/BF01261661
https://doi.org/10.1007/s00707-010-0292-y
https://doi.org/10.4236/jmp.2014.55026
https://doi.org/10.4236/jmp.2013.48A022


J.-F. Pommaret 
 

 

DOI: 10.4236/jmp.2022.134031 494 Journal of Modern Physics 
 

List of the Main Notations 

( )1, , nµ µ µ= 
 multi-index, 1 nµ µ µ= + +

,  
( )1 1 11 , , , 1, , ,i i i i nµ µ µ µ µ µ− ++ = + 

. 
( ) ( ),q q qX X J X XΠ = Π ⊂ ×  Lie groupoid of order q over X.  

( ) ( ), , k
qx y x yµ=  local coordinates with 0 qµ≤ ≤  and such that  

( ) 0k
idet y ≠ . 

( ): : ,q q qX x y xα Π → →  source projection, ( ): : ,q q qX Y x y yβ Π → = →  
target projection.  

( ) ( )( ): : , kf X X X x x f x→ × →  section of X X×  ( ( ) ( ): ,id x x x→ ) .  
( ) ( )( ): : , k

q qf X x x f xµ→ Π →  section of qΠ  with  
( ) ( ) ( )( ): : , k

q qj f X x x f xµ→ Π → ∂ . 
E X→  vector bundle over X with section ξ , ( )qJ E  q-jet bundle of E 

with section qξ  over ξ . 
( ) ( ): :q r

q q r q q r qJ E J Eπ ξ ξ+
+ +→ →  canonical projection. 

( ) ( ) ( ) ( ) ( )( ) ( )*
1 1 1 : , ,k k k k

q q q i i i j ij qD j x x x x T J Eξ ξ ξ ξ ξ ξ ξ+ += − ∂ − ∂ − ∈ ⊗  
linear Spencer operator. 

* 1 *: :r rd T T dα α+∧ → ∧ →  exterior derivative with 0d d = .  
( ) ( ) ( )1 * *

1 11 ,r r r
q q q qD d D T J E Tα ξ α ξ α ξ α+
+ +⊗ = ⊗ + − ∧ ∈∧ ⊗ ∀ ∈∧  exten-

sion of D.  

{ } [ ]( )1 1, , , ,q q qj Tξ η ξ η ξ η+ + = ∀ ∈  algebraic bracket.  

{ } ( ) ( ) ( )1 1 1 1, , , ,q q q q q q q q qi D i D J Tξ η ξ η ξ η η ξ ξ η+ + + +  = + − ∀ ∈   differential 
bracket. 

( )q qR J T⊂  with ,q q qR R R  ⊂   system of infinitesimal Lie equations or Lie 
algebroid.  

0
00 0

q

q qR R T
π

→ → → →  exact ⇒  transitive algebroid.  
*

q qT Rχ′ ∈ ⊗  over *
Tid T T∈ ⊗  is called a qR -connection.  

( ) ( ) ( ) [ ]( ) 0, , ,q q q q qRκ ξ η χ ξ χ η χ ξ η′ ′ ′ ′ = − ∈   is called the curvature of qχ′ .  

( ) ( ) ( ) ( )( )1 1 1 1q q q qR J R J T J J Tρ += ∩ ⊂  first prolongation of qR .  

( ) ( ){ }*
1 1 1 1| ,q q q q q q qR J T R D T Rρ ξ ξ ξ+ + += ∈ ∈ ∈ ⊗  alternative definition.  
( ) ( )s q r s
q r q r q r s q rR R Rπ + +
+ + + + += ⊆  prolongation/projection (PP) procedure.  

( ) { } ( ) ( )1 1 1 1 1, ,q q q q q q q qL i D i Dξ η ξ η ξ η ξ η η ξ+ + + + + = + = +   formal Lie deriva-
tive.  

( ) ( )1 *
1 1 1q q q qDf f j f T J T−
+ += ∈ ⊗  first nonlinear Spencer operator.  
( ) ( ) ( ){ } ( )1, , ,q q q q qD D J Tχ ξ η χ ξ η χ ξ χ η −′ = − ∈  second nonlinear Spencer 

operator.  
( )* * 1 * *

1 1: :
i

kr r i k
q qT S T E T S T E dx µµδ ω δω ω+
+ +∧ ⊗ ⊗ → ∧ ⊗ ⊗ → = ∧  Spencer 

δ-map.  
( ) ( )( )* * 1 * *

1= r r r
r q q qF T J E T R T S T Eδ −

+∧ ⊗ ∧ ⊗ + ∧ ⊗ ⊗  Janet bundles.  

( )* 1 *
1= r r

r q qC T R T gδ −
+∧ ⊗ ∧ ⊗  Spencer bundles. 
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