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Abstract 
Many-body correlations in nuclei determine the behavior of Deep-Inelastic- 
Scattering (DIS) and Quasi-Elastic Scattering (QES) cross section ratios off 
heavy over light nuclei especially for xBjorken > 1, obtained at Jefferson Lab. 
They can be described in terms of quark-cluster formation in nuclei due to 
wave-function overlapping, manifesting itself when the momentum transfer 
is high so that the partonic degrees of freedom are resolved. In clusters (cor-
related nucleons) the quark and gluon momentum distributions are softer 
than in single nucleons and extend to xBjorken > 1. The cluster formation prob-
abilities are computed using a network-defining algorithm in which the initial 
nucleon density is either standard Woods-Saxon or is input from lower ener-
gy data while the critical radius for nucleon merging is an adjustable parame-
ter. The exact choice of critical radius depends on the specific nucleus and it 
is anti-correlated to the rescaling of the xBjorken needed for bound nucleons. 
The calculations show that there is a strong dependence of the cross section 
ratios on the xBjorken in agreement with the data and that four-body correla-
tions are needed to explain the experimental results even in the range 1 < 
xBjorken < 2. The dependence on the specific exponents of parton distributions 
in high-order clusters is weak. 
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1. Introduction 

The atomic nucleus is typically described as a system of protons and neutrons 
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interacting via some potential that binds them together. Pions emerge as the 
quanta of these interactions. When the nucleus is probed by high-energy projec-
tiles the parton-degrees of freedom of the nucleons and the pions are resolved 
and the picture of the quark model emerges. In this energy region the quarks 
appear to interact among themselves by means of gluons which in turn can give 
rise to quark-antiquark pairs, constituting the sea or ocean inside the nucleons 
and are distinguished from the valence quarks that make up the “core” of each 
nucleon. However, it is usually assumed that no matter how complicated the in-
teractions among nucleons are or how high the energy scale of the probe is, the 
nucleons maintain their individuality and independence from one another, i.e., 
they are uncorrelated. Data accumulated over the past two decades strongly sug-
gest that this picture is overly simplistic. 

The so called EMC-effect, named after the European Muon Collaboration [1] 
[2] [3] [4] [5], has shown that in the case of Deep Inelastic Scattering (DIS) of 
muons off nuclei the cross section does not scale with the number of nucleons 
and exhibits a strong dependence on the longitudinal momentum fraction car-
ried by the struck quarks. This effect has been observed in many other processes 
involving the electromagnetic and the weak interactions of nuclei with probes at 
high energies, such as Drell-Yan pair production, neutrino scattering, and 
charmonium and bottomonium suppression [6] [7] [8] [9] [10] and predicted 
for direct photon production in hardon-nucleus and nucleus-nucleus collisions 
[11] [12] [13]. 

The many-body correlations can be attributed to a physical overlap of the 
bound nucleons leading to the formation of multi-quark clusters and the conse-
quent exchange of quarks and gluons that results in softening of the parton dis-
tributions. The concept of multi-quark clusters was originally proposed by Pirn-
er, Vary and Coon [14] [15] [16] and has had significant success in interpreting 
data on a variety of processes involving hardon-nucleus and nucleus-nucleus 
collisions such as those mentioned above [17]-[23]. This is the approach taken in 
this work. A model that describes the probability for such overlaps is developed 
along with reasonable assumptions about the parton distributions in clusters. 
The authors of Ref [24] have addressed the issue of correlations by estimating 
their probability to be formed and comparing the results with heavy-to-light 
nuclei cross section ratios for Quasi-Elastic Scattering. These results are in gen-
eral agreement with the data but do not describe the explicit dependence of 
those ratios on the momentum fraction of the struck parton. This dependence 
contains a wealth of information on the nature of the correlations and their ef-
fect on the parton momentum distributions. 

This article is organized as follows: in Section 2, the concept of many-body 
correlations is introduced and described in terms of multi-quark clusters in the 
nucleus. In Section 3, a network-based algorithm for calculating cluster proba-
bilities given an initial spatial distribution of nucleons is presented. Those prob-
abilities are expressed as functions of a critical distance (radius) between two 
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nucleons. In Section 4, a method to calculate the numbers of various types of 
clusters (proton-proton, proton-neutron, etc.) in a given nucleus is introduced. 
In Section 5, the parton (quark and gluon) momentum distributions in clusters 
are postulated on the basis of existing data. They are expressed as functions of 
the longitudinal parton momentum fraction, xBjorken. In Section 6, it is argued 
that for bound nucleons, xBjorken may have to be rescaled by a multiplicative fac-
tor η. In Section 7, the structure functions of nuclei are calculated as sums of 
products of quark distributions weighted by the squares of the quark charges and 
summed over all types of clusters. In Section 8, the heavy-to-light nuclei cross 
section ratio is defined. In Section 9, comparison of the theoretical calculations 
with two sets of data is presented and the best-fit parameters (the critical radius 
and the rescaling factor) are extracted. The similarity of correlations between 
Deep Inelastic Scattering (DIS) and Quasi Elastic Scattering (QES) is discussed. 
Section 10 details the need for many-body correlations as indicated by data. Fi-
nally, in Section 11 conclusions are drawn and some directions of future contin-
uation of this research are suggested. 

2. Correlations as Quark-Clustering 

Correlations among nucleons bound inside nuclei imply that the nucleons are 
not independent particles so that the nucleus is not a collection of mutually in-
teracting, yet separate constituents. From a quantum-mechanical perspective 
this means that the wave-functions of nucleons overlap sufficiently to produce 
effective aggregates. These can be identified as clusters of various orders, from 
1st-order, that is single nucleons, to 2nd-order, made of two nucleons and so on. 
When the protons and neutrons are so close together, they can easily exchange 
gluons and sea quarks. As the gluons propagate they can also produce quark- 
antiquark pairs which subsequently annihilate back into gluons. The quarks may 
emit and reabsorb gluons. The sharing of such particles leads to energy and mo-
mentum exchanges among the nucleons and modifications to the parton mo-
mentum distributions inside them. 

In experiments using high energy electrons (or muons) as probes to peek into 
the structure of the nucleus the 4-momentum exchange between the projectile 
and the target determines the spatial and temporal resolution of the image of the 
nucleus and its constituents. When the square of the 4-momentum exchange, 
Q2, exceeds 2 GeV2 the sub-nucleonic (parton) degrees of freedom start being 
resolved, i.e., the interaction is directly between the electron and the quarks since 
the exchange photon wavelength is 2Qhλ = . This corresponds to distances 
just under 1 fm. Given the average nuclear density it is at this distance that 
nucleon wave-functions begin to overlap. Consequently, at relatively low Q2 the 
electron interacts with quarks in single nucleons and at high Q2 with quarks 
that may be shared among nucleons in clusters. This is illustrated in Figure 1. 
Furthermore, if the (invariant) photon energy, ν, is also large (greater than 1 
GeV) the quarks are probed in the asymptotically free region, that is the strong 
interaction among them is greatly weakened and the cross section becomes  
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Figure 1. Electron scattering off nuclei. At low momentum transfer (low Q2) the ex-
change photon resolves individual nuclei. As the momentum transfer increases the gluon 
(including quark-antiquark bubbles) exchange is probed. The nucleons are no longer in-
dependent and can be treated as clusters. The parton distributions in the clusters differ 
from those of single nucleons and become softer. 

 
approximately independent of Q2, depending only on the invariant quantity 
xBjorken = Q2/2Mν, where M is the nucleon mass (the Bjorken-x scaling variable, 
which, in a frame of reference where the nucleons move very fast and the trans-
verse momentum components can be neglected, is the longitudinal momentum 
fraction of a nucleon carried by a struck quark). This kinematic region is re-
ferred to as Deep Inelastic Scattering (DIS), while the region with large Q2 and 
lower ν in which the quarks are not completely resolved, is known as the Qua-
si-Elastic Scattering (QES) region. Completely elastic scattering corresponds to 
xBjorken = 1. Nucleon binding and the resulting Fermi motion lead to smearing of 
the cross section allowing xBjorken to deviate from unity. It has been reasonably 
argued [8] that Fermi motion and the formation of clusters, i.e., the presence of 
correlations among bound nucleons are strongly overlapping concepts. 

3. Calculation of Clustering Probabilities 

The probabilities for quark-cluster formation can be calculated using a qua-
si-classical network-based algorithm. An initial distribution of particles, nucle-
ons in this case, is produced. The coordinates of these particles are determined 
randomly from the given distribution in 3 dimensions. Then the array of dis-
tances between the particles is computed. The algorithm determines the particles 
whose distances are smaller than a critical radius Rc relative to one another and 
assigns these particles to a particular network (cluster). Special care is taken to 
ensure that each particle belongs to one and only one cluster. The particles are 
not physically displaced so that the center of mass remains fixed. The algorithm 
then counts the clusters of each order, the total number of clusters and the frac-
tion that corresponds to each order. The process is repeated many times starting 
from different randomly-generated initial coordinates. The final averaged num-
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bers of fractions are reported as the probabilities for each cluster-order for the 
chosen critical radius. The latter is then incremented and the algorithm is rerun 
to finally obtain the probabilities as functions of Rc. Specifically, the algorithm 
for N particles consists of the following steps: 

(1) A spherically-symmetric distribution of N particles (nucleons) is produced 
for a range of different Rc (critical distance) values using either a Woods-Saxon 
nuclear density or a Fourier-Bessel nuclear density, fit to real experimental data. 
The distance array ( ),d i j  for , 1, ,i j N=   is produced holding the values for 
the distances between each of the N particles in the distribution. Then, the initial 
network array ( )0 ,A i j  for , 1, ,i j N=   is produced so that ( )0 , 1A i j =  if 
( ), cd i j R<  and ( )0 , 0A i j =  otherwise. The initial network array is reduced 

to the final network array A(i,j) for , 1, ,i j N=   in the following manner. 
(2) Each column 1, , 1i N= −

 is compared with column 1, ,k i N= +  . 
(3) If two separate columns contain a 1 in the same position, the two columns 

are merged by replacing the column A(i,j) with the result of (A(i,j) OR A(k,j)) 
and the column A(k,j) with the zero vector. 

(4) The number of 1’s in each column of the matrix A(i,j) is then counted. This 
number corresponds to the order of the (quark) cluster that column is a part of. 
The total number of clusters of each order is then counted for the trial. These val-
ues are averaged over a large number of initial arrays for each Rc. The cluster 
probabilities fm, where m is the order of the cluster, are the fractions of a clus-
ter-type number over the total cluster number. The order m varies from 1 up to N. 

The crucial steps in the above algorithm are (2) and (3). Step (2) ensures that 
all networks that are formed maintain their internal structure while step (3) 
guarantees that each particle is assigned to one and only one network, specifi-
cally the network from a member of which the said particle has the smallest dis-
tance. This step identifies all the networks upon cycling over the array of 1’s and 
0’s that describe distances that pass the critical-radius test. 

The initial particle distribution can be chosen to be a Woods-Saxon in the 
radial direction and uniform in the azimuthal and polar directions. Another op-
tion is to use a radial distribution derived from experimental data using a Fouri-
er-Bessel method [25] [26]. In either case the results are consistent with larger 
cluster probabilities for larger and denser nuclei. In this approach the coales-
cence happens entirely in coordinate space. Even though the Fermi motion is 
implicit in the finite size of the wave-function, approximated by the critical ra-
dius, the relative momentum of the nucleons is not considered. Also differ-
ences between protons and neutrons are neglected at this stage. In Figure 2 a 
schematic diagram of cluster formation is shown. In Figure 3 the probabilities, fm, 
for clusters of order 1, ,m N= 

 are plotted as functions of the critical radius Rc 
for various nuclei characterized by their mass number A which in this case is the 
total number of particles (N). The Woods-Saxon radial distribution is used, 

( ) ( )( )~ 1 1 exprP r r a b + −  , where r is the distance from the center of mass of  
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Figure 2. Three types of clusters produced by the network algorithm. (a) 2nd-order clus-
ter (two nucleons or six valence quarks). (b) One type of 3rd-order cluster (three nucle-
ons or nine valence quarks). (c) One type of 4th-order cluster (four nucleons or twelve 
valence quarks). The straight-line links indicate distances that are smaller than the criti-
cal radius. 

 
the system, with an attenuation factor b = 0.55 fm and skin-thickness a = 0.33 
fm. It is observed that as the critical radius increases larger clusters are favored, 
resulting in a non-monotonic behavior. In the case of A = 12 (carbon) results 
originating in a Fourier-Bessel initial radial distribution are shown for compari-
son (Figure 4). The difference in cluster probabilities between Woods-Saxon 
and Fourier-Bessel is small. For this work the Woods-Saxon distribution is used. 

The free parameter in this calculation is the critical radius. This determines 
the relative values of cluster probabilities, hence the departure from single-nucleon 
physics. Earlier studies [7] [8] indicate that to account for diverse phenomena 
such as the EMC effect in DIS, nuclear, initial-state modifications of the Drell-Yan 
production, suppression of J/Ψ production in processes involving nuclei the cu-
mulative cluster probability for deuterium should be about 4% and for heavy 
nuclei it could exceed 30% (Table 1). The approximate dependence of the cu-
mulative probability on the mass number is logarithmic but for magic or doub-
ly-magic nuclei this probability is higher. In practice, the critical radius will be 
treated as a parameter to be estimated using particle scattering data off nuclei. 

It must be pointed out that the algorithm described in this section does not 
physically replace nucleons with a single object at the center of mass of the clus-
ter while it is still running. It simply identifies networks of nucleons without 
changing the spatial distribution of matter (and charge) or moving the center of 
mass of the system. 

4. Types of Clusters in Nuclei 

The parton distributions in clusters depend on the type of valance quarks in the 
nucleons they are made of. The 2nd-order clusters may consist of two protons 
(pp-type), two neutrons (nn-type) or a proton and a neutron (np-type). The 
3rd-order clusters can be of nnn, ppp, npp or nnp-type. A similar designation can 
be assigned to higher-order clusters. Therefore, a model is needed in order to 
calculate how many clusters of each type are present in a given nucleus at each 
value of the critical radius. 

To derive the cluster numbers for a nucleus of mass number A and atomic 
number Z certain constraints must apply. 1) The total mass of the nucleus must 
be fixed. In other words, the total baryon number of all clusters must remain  
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Figure 3. Cluster probabilities versus critical radius in fm. (a) A = 2. The brown points cor-
respond to the two-nucleon cluster. (b) A = 4. The brown, green, black and purple points 
correspond to 1st, 2nd, 3rd and 4th-order clusters. The light-blue points indicate the cumula-
tive cluster probability. (c) A = 56. The brow, green, dark-blue, purple and bright-green 
points correspond to 1st, 2nd, 3rd, 4th and 5th-order clusters. The black points indicate the cu-
mulative cluster probability. (d) A = 107. The notation is the same as in the lower left panel. 
All these results are produced using Woods-Saxon radial probability density. 

 

 
Figure 4. Left panel: the Woods-Saxon and the experimentally-derived Fourier-Bessel radial probability distributions 
versus the distance from the center of mass. For 12C. Right panel: Cluster probabilities for 12C versus the critical radius. 

 
Table 1. A sample list of cumulative cluster probabilities for two values of the critical radius. For 12C the results 
produced using Woods-Saxon (WS) and Fourier-Bessel radial distributions are shown for comparison. For 197Au 
the probability can be more than 0.30. 

Nucleus Cluster Probability (f) for Rc = 0.85 fm Cluster Probability (f) for Rc = 0.85 fm 
2H 0.04 0.09 

12C (WS) 0.06 0.13 
12C (FB) 0.08 0.17 

197Au 0.15 0.30 
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equal to A. 2) The total charge of the nucleus must be fixed. Thus, the sum of the 
charges (contributed only by proton components) is equal to Z. In addition, a 
further natural assumption is made. 3) The number of p (or n, pn, nn etc.)-type 
clusters must be proportional to the number of protons (or number of neutrons, 
number of protons times the number of neutrons, number of neutrons squared 
etc.) in the nucleus. In this work clusters only up to 4th order will be considered. 
The highest order clusters, containing 12 valence quarks, will be assigned an ef-
fective probability to occur equal to 4 1 2 31f f f f= − − −  and generic parton dis-
tributions (see next section). In order to accommodate for this truncation, the 
nucleus must be treated as having an effective mass number ( )41A A f′ = −  and 
an effective atomic number ( )41Z Z f′ = − . These equations guarantee mass 
and charge conservation. Then the numbers of 1st, 2nd and 3rd-order clusters of 
all the possible types can be calculated solving a linear system of 10 equations, 
resulting in 

1 1

2 3 2 3

, ,
1 2 1 2p n

f Z f Nn n
f f f f

′ ′
= =

+ + + +
              (1.1) 

( )( ) ( )( )

( )( )

2
2 2

2 3 2 3

2
2

2 3

2
, ,

1 2 1 2

,
1 2

pp pn

nn

f Z f Z Nn n
f f N Z f f N Z

f Nn
f f N Z

′ ′ ′
= =

′ ′ ′ ′+ + + + + +

′
=

′ ′+ + +

     (1.2) 

( )( ) ( )( )

3 2
3 3

2 2
2 3 2 3

3
, ,

1 2 1 2
ppp ppn

f Z f Z N
n n

f f Z N f f Z N

′ ′ ′
=

′ ′ ′ ′+ + + + +
=

+
  (1.3a) 

( )( ) ( )( )

2 3
3 3

2 2
2 3 2 3

3
, ,

1 2 1 2
pnn nnn

f Z N f N
n n

f f Z N f f Z N

′ ′ ′
= =

′ ′ ′ ′+ + + + + +
  (1.3b) 

1 2 3
4

2 3
.

4
A n n n

n
− − −

=                     (1.4) 

Here the notation is self-explanatory. For example, npnn indicates the number 
of 3rd-order clusters of the type containing one proton and two neutrons. The 
effective number of neutrons is N A Z′ ′ ′= − . Also n1, n2, n3 and n4 are the total 
number of clusters for 1st, 2nd, 3rd and 4th order. The last equation involves the 
real mass number A. The 4th-order clusters are not separated into various possi-
ble types. 

5. Parton Distributions in Clusters 

The parton distributions in nucleons or higher-order clusters describe the prob-
ability that a certain type of parton (valence or ocean quark or gluon) carries a 
certain fraction of the cluster momentum in a reference frame where the (longi-
tudinal) momentum of the nucleus is very large. In this case motion is essentially 
one-dimensional and the transverse components of the parton momentum are 
usually and legitimately neglected. The momentum fraction for single nucleons 
(1st-order clusters) is defined as the Bjorken-x (xBjorken) and ranges from 0 to 1. 
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For 2nd, 3rd or higher-order clusters the upper limit of the momentum fraction is 
2, 3 or more, relative to single nucleons as a parton can carry up to 2, 3, or more 
times the nucleon momentum. The parton distributions in general also depend 
on the 4-momentum exchanged between the probe (lepton or quark) and the 
parton, denoted as Q2. This is the invariant mass of the exchange quantum, be it 
a photon or gluon or an intermediate vector boson. However, when Q2 is large, 
in excess of 2 GeV2, this dependence becomes very weak, a phenomenon known 
as Q2-scaling. The phenomena discussed in this article originate in the Q2-scaling 
region, thus the distributions used will depend only on xBjorken. Scaling violations 
are relevant at very small xBjorken [22] [23] [27] [28] [29]. The calculations in this 
article intend to interpret data in the region xBjorken > 1 where the presence of 
higher-order clusters becomes prevalent. In the equations that follow x refers to 
the parton momentum fraction relative to the cluster in which the parton is 
found. Therefore, it is equal to xBjorken/2 for 2nd-order clusters, xBjorken/3 for 
3rd-order and xBjorken/4 for 4th-order ones. 

Inside clusters there are valence quarks, ocean (or sea) quarks with equal num-
bers of ocean antiquarks and gluons. In order to determine the parameters of the 
parton distributions certain constraints must apply. 1) Since the number of va-
lence quarks of each flavor is fixed, the valence distributions should be norma-
lized to this number. 2) The total momentum fractions carried by all partons 
must add up to the momentum of the cluster. Additional model assumptions are 
also needed. 3) The gluon to total-ocean momentum ratio is fixed at 1/5. 4) The 
strange quark distribution in the ocean is chosen to carry one half of the up-quark 
(or antiquark) ocean distribution. Naturally the antiquark distributions in the 
ocean are the same as those of the ocean quarks of the same flavor. The parton 
momentum distributions, i.e., the probability distributions multiplied by x are 
assumed to have the following forms: 

( ) ( )
,

, , 1
u dbu d u d xxV B x−=  (valence up and down quarks),     (2.1) 

( ) ( )1 aS x xA= −  (sea quarks or antiquarks, one flavor),      (2.2) 

( ) ( )1 cG x xC= −  (total gluon),                (2.3) 

where A, Bu,d and C are constants. For the valence exponents, 1d ub b= +  as sup-
ported by scattering data [Ref]. If the total momentum fraction carried by one 
ocean quark flavor is xs and that carried by the gluons is xg then ( )1sA x a= +  
and ( )1gC x c= + . This generic notation applies to clusters of all orders. 

Isospin relations connect the distributions in various types of clusters of the 
same order. 

( ) ( ) ,u d
p nV x V x=                       (2.4a) 

( ) ( ) ( ) ( ) ( ) ( ), ,1  
2

u d u d u d
pp nn pn pn pp ppV V V V V Vx x x x x x = = = +       (2.4b) 

( ) ( ) ( ) ( )5 1 1 ,
2 6 3

u d u d
ppn pnn ppp pppV x V x V x V x = = +  

          (2.4c) 
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( ) ( ) ( ) ( )1 12 .
6 3

d u u d
ppn pnn ppp pppV x V x V x V x = = +  

          (2.4d) 

The ocean and gluon distributions are the same in all types of clusters of the 
same order. The exponents of (1 − x) in these distributions determine their 
overall behavior. Specifically, the higher the exponent, the “softer”, i.e., more 
concentrated towards lower x the distribution is. The choice of exponents is 
guided by the DIS data themselves. It turned out that the specific values of ocean 
and gluon exponents for 3rd and higher-order clusters are not as essential as is 
the actual presence of such clusters in cross-section calculations. Even though to 
a first approximation the gluon distributions do not enter the calculations of DIS 
of electrons off nuclei, the gluon distributions have to be considered because 
they affect the total momentum ratios carried by ocean quarks. The exponents 
for proton-like clusters that produce the best fits to the EMC and QES data (to 
be discussed) are shown in Table 2. The exponents in other types of clusters of 
the same order are determined by the isospin relations. For valence, the expo-
nents related to up quarks are given. For valence down quarks the exponents are 
simply increased by one unit. 

Application of the above mentioned constraints and isospin relations yields 
the multiplicative constants that appear in the distributions. The calculations 
involve extensive use of Beta-functions. The results are shown in Table 3 for 
proton-like clusters. For the ocean and gluon distributions the total momentum 
fraction is presented as it is proportional to the respective coefficient. The isos-
pin relations determine the coefficients in all other types of clusters of all orders. 
In the case of 4th-order clusters the up and down valence quark distributions are 
taken to be the same. It may be worth noting that the ocean and gluon total 

 
Table 2. Exponents of parton distributions in proton-like clusters. The exponents in 
other types of clusters of the same order are determined by the isospin relations. For 
4th-order clusters the valence distribution is generic. 

 
p pp ppp pppp 

Up-Valence (b) 3 9 15 21 

Ocean (a) 9 11 18 23 

Gluon (c) 6 10 16 20 

 
Table 3. Coefficients in parton distributions for all orders of proton-like clusters used. The 
momentum fraction for the ocean pertains to one up quark or antiquark flavor. The 4th-order 
valence distributions are generic so that the up and down coefficients are the same. 

 1st-order 2nd-order 3rd-order 4th-order 

Bu (valence u-quark) 2.18750 7.04788 13.43519 31.57550 

Bd (valence d-quark) 1.23046 3.70014 6.92752 31.57550 

xs (ocean, one flavor) 0.02289 0.02409 0.02442 0.02444 

xg (total gluon) 0.57239 0.60214 0.61039 0.61111 
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momentum fractions become saturated as the order of clusters increases. 

6. Rescaled Bjorken-x 

In a nucleus the physical size of bound nucleons (RMS radius of their wave- 
function) may be slightly altered compared to free nucleons [30] [31]. This is 
due to the attraction from surrounding nucleons and it increases their size. This 
phenomenon clearly affects correlations as it increases the probability for cluster 
formation amounting to an effective decrease in the critical radius. Furthermore, 
it results in a decrease of the parton momentum fraction in bound nucleons or 
higher-order clusters, relative to “free” ones. It can be accounted for by rescaling 
xBjorken by a factor η : 

( )  1 ,bound freex xη η= <                      (3) 

where η  is a constant parameter that does not appreciably depend on the ener-
gy scale. 

7. Structure Functions of Nuclei 

The structure function of a nucleus with mass number A and atomic number Z 
is defined as the sum of all quark momentum distributions over all nucleons and 
higher-order clusters multiplied by the square of the charge of the quark. It is 
denoted by ( ) ( ),

2
A ZF x , x = xBjorken. 

The presence of correlations, described here as clusters, modifies the structure 
function relative to the one calculated for uncorrelated nucleons. The forms of 
the distribution functions are given by Eqs. (2.1, 2.2 and 2.3). In the construction 
of the structure function the cluster numbers, strange-to-up quark ocean ratios 
and isospin relations are employed to express the result in terms of only pro-
ton-like distributions. A straightforward calculation, thus, yields: 

( ) ( ) ( ) ( ) ( ),
2 , , ,

4 1 11
9 9 9

A Z u d
A Z A Z A ZF x V x V x S x= + + ,          (4.1) 

where the total up ( ,
u
A ZV ) down ( ,

d
A ZV ) valence quark and ocean ( ,A ZS ) contri-

butions are 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

4

1
2

5 1 1
2 6 3

1 2 ,
3 3

u u d u u d
A Z p p n p pp pp pn pp pp

d u u d
nn pp ppp ppp ppn ppp ppp

u d d u
pnn ppp ppp nnn ppp pppp

V x n V x n V x n V x n V y V y

n V y n V z n V z V z

n V z V z n V z n V w

 = + + + + 

 + + + +  
 + + + +  

  (4.2) 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,

4

1
2

1 2
3 3

5 1 1 ,
2 6 3

d d u d u d
A Z p p n p pp pp pn pp pp

u d u d
nn pp ppp ppp ppn ppp ppp

u d u u
pnn ppp ppp nnn ppp pppp

V x n V x n V x n V x n V y V y

n V y n V z n V z V z

n V z V z n V z n V w

 = + + + + 

 + + + +  
 + + + +  

  (4.3) 
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( ) ( ) ( ) ( ) ( ), 1 2 3 4 ,A Z p pp ppp ppppS x n S x n S y n S z n S w= + + +        (4.4) 

and y = x/2, z = x/3 and w = x/4. In Equation (4) the variable x is the Bjorken-x 
rescaled by the parameter η. 

8. Heavy-to-Light Nuclei Cross-Section Ratios 

The interaction investigated in this work is Deep Inelastic Scattering (DIS) of 
electrons off nuclei in the Q2-scaling region. The scattering cross section is pro-
portional to the structure function. Therefore, the ratio of structure functions 
per nucleon for heavy over light nuclei studied as a function of xBjorken can reveal 
the presence and nature of correlations. Formally, 

( )
( ) ( )
( ) ( )

1 1

2 2

,
2 1

,
2 2

A Z

A Z

F x A
R x

F x A
= .                     (5) 

This is the ratio that revealed the EMC-effect. If no correlations or other mod-
ifications are present it should be equal to 1 for all x. However, data have shown 
that there is a strong, non-monotonic dependence of R on x even in the region 0 
< x < 1. Newer data show that R is measurable beyond x = 1. A step-wise beha-
vior as x increases by a unit is a strong indication that the cluster model predicts 
correlations in the nucleus. 

9. Comparison with Data 

The calculations presented here are compared with data from JLab Experiment 
E02-019. The experiment used a 5.75 GeV electron beam and reported results 
for high Q2. Final-state interactions are very small under this condition. To ex-
tract information on short-range correlations the data are focused on the QES 
region with cuts in the energy transfer imposed to remove DIS contributions. 
Therefore, the comparison may not expected to be complete. However, the xBjor-

ken-dependence of cross section ratios must be similar for the following reasons: 
First, the quark-cluster model strongly overlaps with the Fermi-motion model 
[8]. Second, the nature of the correlations should be the same in both QES and 
DIS cases. There are strong indications for this. According to Ref. [32] [33] 
there is a remarkably linear relation between the EMC effect which manifests 
itself in the DIS region for xBjorken < 1 and the short-range correlations. In fact 
the A-dependence of the EMC effect closely matches that of the correlations ef-
fect according to Jefferson Lab data [34]. Because of these observations a com-
parison of the model derived using parton-distributions in the asymptotical-
ly-free region with the date in the QES region is possible. The comparison 
should be focused around xBjorken = 1 to evaluate the rise of the cross-section ratio 
and on the plateau that follows it. 

First the 2007 data are addressed [35]. The free parameters in the model are Rc 
and η. The values of these parameters that produced the best fits to the 2007 data 
for various nuclei are shown in Table 4. Remarkably η turned out to have almost 
the same value for all nuclei studied. This parameter effectively controls the xBjor-
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ken point at which the cross section ratio begins to rise. 
The cluster formation probabilities for each order are shown in Table 5 for 

the various nuclei studied. The values presented correspond to the critical radius 
shown in Table 4. The 4th-order probability is the cumulative value for all orders 
higher than the 3rd. In the model presented here even the dilute deuterium nuc-
leus has a substantial probability for correlations. 

In Figure 5 the model calculations are compared with the experimental data 
from 2007. The curves represent the best obtained fits of the theoretical ratio, R, 
for four cases. It is immediately observed that the sharp rise of the data right af-
ter x = 1 is well described by the model. However, the dip around x = 1 is not. 
There is a pseudo-plateau in the data for 1 < x < 1.8 that is almost followed by 
the curves. However, the shape of the data in the case of the 12C over 3He ratio is 
not reproduced well. It must be noted that the parameters used for each nucleus 
are maintained for all curves. A better fit to the 12C over 3He data would result in 
a worse fit to the 12C over 2H data. Overall the curves involving 2H are closer to 
the data that those for 3He. The experimental uncertainties in these plots are sig-
nificant, though, and 3He may be an unusual case. 

The same experiment produced more detailed data published in 2012 [36]. 
Fitting the theoretical model to the new data with the two independent parame-
ters, Rc and η, resulted in slightly different values, presented in Table 6. The re-
sulting cluster formation probabilities are shown in Table 7. For 63Cu, 12C and 
3He a larger critical radius was needed with the same value of the rescaling pa-
rameter while for 2H the rescaling parameter was smaller, equal to 0.76. Stronger 
correlations were, thus, found for these nuclei based on the 2012 data. 

The fit to data in which 2H is in the denominator of the ratio is better, as 
shown in Figure 6. It is clear, though, that the model overestimates the ratio at 
high x. This is to some extent the result of the truncation of the model to the 4th 
–order clusters but mostly of the fact that the denominator, pertaining to 2H,  

 
Table 4. The critical radius Rc and the rescaling parameter η for the various nuclei stu-
died. These values fit the data from E02-019 (2007) [35]. 

 
63Cu 12C 3He 2H 

Rc (fm) 0.75 1.20 1.50 1.40 

η 0.80 0.80 0.80 0.80 

 
Table 5. The cluster formation probabilities for the nuclei studied. They correspond to 
the critical radii shown in Table 4. These values fit the data from E02-019 (2007) [35]. 

 
f1 f2 f3 f4 

63Cu 0.7549 0.1402 0.0512 0.0537 
12C 0.8148 0.1093 0.0438 0.0321 
3He 0.8564 0.1212 0.0224 --------- 
2H 0.9176 0.0824 --------- --------- 
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Figure 5. Comparison of the model calculations with data from E02-019 (2007) [35]. The nuclei involved are shown inside the 
plots. Upper left: 63Cu/3He. Upper right: 12C/3He. Lower left: 63Cu/2H. Lower right: 12C/2H. The model reproduces the sharp rise for 
x > 1 but fails to reproduce the dip at x = 1. The worst fit is for 12C over 3He data. 
 

Table 6. The critical radius Rc and the rescaling parameter η for the various nuclei stu-
died. These values fit the data from E02-019 (2012) [36]. 

 
197Au 63Cu 12C 9Be 4He 3He 2H 

Rc (fm) 1.20 0.85 1.50 1.60 1.80 1.70 1.40 

η 0.80 0.80 0.80 0.80 0.80 0.80 0.76 

 
Table 7. The cluster formation probabilities for the nuclei studied. They correspond to 
the critical radii shown in Table 4. These values fit the data from E02-019 (2012) [36]. 

 
f1 f2 f3 f4 

197Au 0.6772 0.1711 0.0704 0.0813 
63Cu 0.6960 0.1497 0.0629 0.0914 
12C 0.7151 0.1334 0.0597 0.0918 
9Be 0.7657 0.1179 0.0476 0.0688 
4He 0.7869 0.0741 0.0511 0.0879 
3He 0.7806 0.1692 0.0501 --------- 
2H 0.9176 0.0824 --------- --------- 
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Figure 6. Comparison of the model calculations with data from E02-019 (2012) [36]. The nuclei involved are shown inside the 
plots. Upper left: 197Au/2H. Upper right: 63Cu/2H. Middle left: 12C/2H. Middle right: 9Be/2H. Lower left: 4He/2H. Lower right: 
3He/2H. The model reproduces the sharp rise for x > 1. 

 
approaches zero as x tends to 2 since there are no 3rd-order clusters in 2H. The 
case of 3He over 2H ratio is most interesting in this regard. The level of the 3He 
over 2H plateau is described very well by the model as the curve remains flat up 
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to x = 1.8. This indicates that the 2nd-order correlations are accounted for suc-
cessfully. Combined with the other results the flat-behavior of the data may 
imply the presence of another mechanism that extends the 2nd-order correlations 
possibly beyond x = 2 or that the data are inaccurate near the kinematic limits of 
the experiment. Alternatively the theoretical ratio should be lower at high x by 
allowing the parton distributions in clusters to be softer. This, however, would 
make it difficult to account for the exact slope of the rise at x = 1. 

The differences in the critical radii used to fit the two sets of data merits some 
discussion. It must be pointed out that the fits are done over the entire sets of 
data so that the parameters for each nucleus are kept the same for the various 
nuclei ratios. 

The observation that the two sets of data required slightly different values of 
the free parameters of the model, most importantly the critical radius that con-
trols the strength of correlations, should be discussed. Clearly the data presented 
in 2007 carry substantially more uncertainty. Furthermore, there are differences 
in the average scattering angle of the emerging electron, i.e., in the average Q2. 
The 2007 data used here correspond to an average Q2 = 4.1 GeV2 while the data 
presented in 2012 are for Q2 = 1.5 GeV2 and have the best kinematic range cov-
erage and statistics. There may be a small scaling violation. The trends, however, 
are similar. As a result of these observations, the difference in the fitting para-
meters must result mostly from statistical differences in the data. The experi-
ment has provided data for other scattering angles but with lower statistics. 
Members of the E02-019 Collaboration have elaborated on their measurements 
in Ref. [37]. 

An interesting extension and challenge is the comparison with data in the 2 < 
x < 3 range. Such data were produced by the CLAS collaboration [38] and even 
though they are limited, they indicate the existence of a second plateau. The 
study of this range within the model is currently undertaken. 

10. The Need for Many-Body Correlations 

The existence of many-body correlations among bound nucleons is an irrefuta-
ble fact based on the data. To further elucidate this conclusion, the theoretical 
curves including 2nd, 3rd and 4th-order clusters are compared to 2007 data in Fig-
ure 7. The specific case of 63Cu over 3He is shown. It is clear that without up to 
4th-order clusters the data cannot be reproduced. It is remarkable that even in 
the range x < 2 the higher-order correlations have a significant effect. The 
nucleon-nucleon clusters also affect the cross-section ratio for x < 1 but to a 
lesser extent. 

11. Conclusion 

In this work it was shown that many-body correlations in the nucleus are ne-
cessary in order to understand Quasi-Elastic Scattering (QES) data. This is in 
agreement with the need for such effects in Deep Inelastic Scattering (DIS) data.  
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Figure 7. The 63Cu to 3He ratio. The curves correspond to theoretical calculations in-
cluding 2nd (red), 3rd (green) and 4th (purple)-order clusters. The higher-order correla-
tions are needed to reproduce the data for 1 < x < 2. The data are from Ref. [35]. 

 
The nature of the correlations appears to be the same. A quark-cluster model has 
been constructed to account for these correlations. This assumes overlapping of 
bound-nucleon wave-functions to the extent that they share partons whose mo-
mentum distributions are consequently softened compared to those in indepen-
dent nucleons. A network-based algorithm was developed in order to calculate 
the formation probabilities for all orders of clusters. This was supplemented by a 
model that produces the actual number of clusters of each type in every nucleus 
as well as a set of reasonable parton distributions. Comparison with two sets of 
data from Jefferson Laboratory helped extract the model parameters but the val-
ues obtained were slightly different for the two sets. The model generally repro-
duces the quasi-plateau in cross section ratios for xBjorken > 1.0 and the slope of 
the rising curve in the range 1.0 < xBjorken < 1.2. Even in the studied region up to 
4-body correlations are needed. The obvious next step is to study the extension 
of the model for xBjorken > 2. There are also data by the CLAS Collaboration to 
compare the theoretical calculations to [38]. However, certain questions arise. Is 
the coordinate-space network algorithm adequate to compute the cluster proba-
bilities? So far it has given results that agree with data but the effect of relative 
momentum among nucleons can be considered. The small differences between 
parameters fitting the two sets of data may be attributable to different average 
Q2. Therefore, one can ask what is the exact Q2-dependence of many-body cor-
relations? The similarity of the correlations between DIS and QES is intriguing 
but what would their mathematical formulation be if the parton-degrees of free-
dom are not entirely resolved? These questions are the subject of current and 
future investigations. 
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