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Abstract 
The possibility of granulated discrete fields is considered in which there are at 
least three distinct base granules. Because of the limited size of the granules, 
the motion of an endlessly extended particle field must to be split into an in-
ner and an outer part. The inner part moves gradually in a point particle-like 
fashion, the outer is moving step-wise in a wave-like manner. This dual be-
haviour is reminiscent of the particle-wave duality. Field granulation can be 
caused by deviations of the structure of the lattice at the boundaries of the 
granule, causing some axes of the granule to be tilted. The granules exhibit 
relativistic effects, inter alia, caused by the universality of the coordination 
number of the lattice. 
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1. Introduction 

A duality in the movement of particles in a discrete space can only be established if 
the possibility of motion in a lattice can be described. The problem of motion in a 
discrete space has a long history. It is first formulated by the Arrow Paradox of the 
ancient Greek philosopher Zeno of Elea. According to the interpretation of Grün-
baum [1], the Arrow paradox states that it would be impossible to perceive any dif-
ference between a moving and a motionless object at the smallest moment of a dis-
crete space-time. More recently, B. Russell [2] also highlighted the problems with 
the movement of point-shaped particles in a lattice. When the object is a field, the 
entities in space determining it are coupled to the vertices of the lattice, then when 
the field moves, the vertices must also move. Because of the time immobility of the 
vertices of a lattice, Čapek Milič and others have seen this as an impossibility [3]. 
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Here too, the immobility of the vertices is a basality, but then in a four-di- 
mensional lattice. It is shown that three-dimensional areas within a four-dimen- 
sional discrete space can be in motion relative to the surrounding lattice when 
the areas have boundaries that provide for the transition of the moving inner re-
gion and the still outer space. When motion in a discrete space is restricted to 
bounded areas, it is obvious to investigate if fields in a discrete space can also be 
composed of bounded areas. The second purpose of the article is therefore to get 
an idea of the properties of the most common fields consisting of granules, i.e. 
bounded three-dimensional areas in a four-dimensional discrete space. For this 
purpose, the so-called discrete field needs only be composed of three different 
types of basic granules, including a moving granule, done in Chapter 2. 

Chapter 3 deals with the properties the divers basic granules must have in or-
der the granulated fields correspond as closely as possible to reality. Considering 
fields as an ensemble of granularities of limited dimensions opens up new ex-
planation opportunities, especially when describing the motion of an endlessly 
expanded particle field. In that case, two modes of motion are needed consistent 
with the de Broglie’s hypothesis when the granular fields are part of a multidi-
rectional hypercubic lattice, as shown in Chapter 4. 

The purpose of how granule movement in a lattice can take place, is explained 
in Chapter 5, showing that the granularities may originate from aberrations of 
the structure of a hypercubic lattice in the boundaries. To show how the move-
ment of a granule looks like, a Minkowski diagram-like visualisation has been 
applied to a lattice. It is also shown that in a lattice, under certain conditions, re-
lativistic effects are present within the moving granule. 

2. The Granulation of Fields in a Lattice-Like Discrete Space 

In a hypercubic lattice, all vertices in time and space are connected by eight 
edges (coordination number). If this four-dimensional lattice is taken as a frame 
of reference, where the fields are somehow connected to the vertices, all the 
phenomena from the past and the future are also linked. Consequently, there are 
two points of view to look at phenomena in the form of fields, both of which are 
used in this article: 
• One is the four-dimensional perspective within which a phenomenon is the 

time development of an unchanging four-dimensional presence extending 
from the past into the future. Also called eternalism or block-universe [4]. 

• The other is the spatial perspective in which a phenomenon is a concatena-
tion of a whether or not in time changing three-dimensional presence. 

2.1. The Discrete Field 

In a continuous space, a field is defined as a quantity present at any location in 
space. In a lattice as discrete space, the location consists of vertices where each 
vertex has a limited number of relations with other vertices. A field in a lattice 
needs to be expressed as a set of quantities related to the vertices. The field thus 
discretized limits the possibilities in the description of a field. 
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In a hypercubic lattice all vertices have the same coordination number. As-
suming this also holds when fields are present, it means that there is a large 
number of vertices with edges having field characteristics in addition to the 
function of position determination in space. So there are field vertices of which 
at least two of the eight edges are needed to determine the position within the 
space and the rest can be field edges. Then, to allow for a diversity of field 
strengths, massive concentrations of field vertices are needed. Because large field 
strength must occur everywhere in space, the space would only consist of field 
vertices. If so, the vertices lose their function as the smallest entities of a fourth- 
dimensional space-time. This can be solved by a much larger coordination num-
ber or by positioning the field vertices in the boundaries of granules. 

2.2. The Granular Character of the Discrete Field 

Another possibility is that interaction stems from the coincidence over time of 
three-dimensional regions with field action. Chapter 5 outlines how such an area 
could look like. The discrete field is then a coherent set of three-dimensional ar-
eas of various sizes L, expressed in the unit distance Δx of a lattice. 

From a three-dimensional perspective, the three-dimensional area is a flat 
spatial plane that extends over time, called the active plane. A variety of field 
strengths is possible when the discrete field consists of a series of active planes at 
regular distance L. The spatial density of the field is then 1/L. The probability of 
two active planes of different fields with the same action coincide is 1/L2. 

With the active planes of size L2 at mutual spatial distances L, the discrete field 
can be split into granules of size L3 having the action at the boundaries of the gra-
nule. This allows the discrete field to be divided into separate non-overlapping 
granules of size L3. 

2.3. The Field Granule from Discretization of the Units 

The likelihood of a granulated field also arises from the transformation of the 
usual units into the two units Δx and S of a hypercubic lattice with multiple di-
rections [5], where Δx is the smallest distance of a lattice and S stands for the 
number of lattices in which a phenomenon is present. The conversion results in 
an expression of the field strength in one lattice or subspace: 

21sub dE L=  1/Δt, 

in which Ld is a quantity analogue to the discrete distance between two particles. 
The inverse proportionality with an area indicates the existence of a field 

granule, or field granule of spatial size 3
dL . The conversion also results in a 

smallest field granule for the electron (electron radius) has the enormous local 
magnitude of about 19

0 3.38 10dL x= × ∆ , expressed in smallest lattice distance. 

3. The Discrete Field in One Subspace  
Described with Field Granules 

Suppose that the granules of the discrete field have the shape of a four-dimen- 
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sional cube, with the dimension L3 in space and an extension L in time, where 
the cause of the field effects is present in the spatial boundaries. Chapter 5 ex-
amines the possibility that the field effect is caused by aberrations of the struc-
ture of the four-dimensional hypercubic lattice. 

It turns out that these active boundaries are repeated after the time Tfield and 
are interconnected by the corner vertices of the cube. The corner vertices form 
the basis of interconnectedness of granules allowing the various types of gran-
ules to form extensive fields. 

3.1. The Three Different Base Field Granules in Each Subspace 

Three different types of field granules are required to describe the most common 
phenomena. 

Still field granule; 
The still field granule is immobile relative to the local discrete space. The field 

granule is regularly repeated every Tfield. There can be different types of still field 
granules, each representing another type of action like electric or magnetic. It is 
assumed that the cause of the action is present in one of the side planes of the 
cubic field granule, making the presence frequency of an active plane 1/Tfield. An 
example of a such plane with local deviation of the axis declination is described 
in Section 5.2. The inner space of the field granule is void, that is, a regular lat-
tice. 

Moving granule; 
The moving granule, called moving space, is a cube with four moving side 

planes that ensures the regular interior space to move with relativistic effects. 
Section 5.5 describes the moving space in a lattice. This possibility is visually il-
lustrated in Figure 1. The moving plane is a three-dimensional bounded area in 
R4, whose entire inner space is moving with speed v and the boundaries are such 
it forms the transition between the still outer space and the moving inner space. 
A more precise description of such a boundary is shown in Section 5.3 in the 
case of a lattice. The relativistic effects are showed in Section 5.4. 

 

 
Figure 1. The moving granule. In the moving space, the entire space between top and 
bottom planes moves integrally with respect to the space around the granule caused by 
the anomalies in the space structure in the upper and bottom planes. The anomalies 
caused that every t = 1/L the space to be changed from a still to a moving space at the top 
and vice versa on the bottom plain. 
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Jumping field granule moving at maximum speed; 
A repeating space jump in time is another mode of movement of a field gran-

ule in a lattice. The field granule is present at one location during the time T be-
fore jumping to a successive location L (=T) in the direction of motion. In R4, 
the sequence of jumping field granules is located along the space-time diagonal. 
Seen from R3, the presence of the field granule moves with discrete speed 

1dv L T= = . In Figure 2, the four-dimensional situation is roughly outlined, 
with the jumping field granule depicted as a three-dimensional cube. 

To be in accordance with reality, it is supposed that the side faces of the cube 
to consist of two orthogonal planes with a E and B action. 

The granular field is an ordered combination of various types of field granules 
forming constructions regularly distributed in space and time and intercon-
nected via the corners. Next, it is investigated what the properties of granular 
fields will be if they are described as a combination of said granules. 

3.2. The Movement of a Homogeneous Electric  
and Magnetic Granular Field 

Take the constructive combination of still and jumping field granules. The still E 
(or B) field is a time chain of still field granules. Let the moving field be a time 
chain of still E (or B) and jumping E, B field granules of the same size L, inter-
connected at the corner vertices, replacing one of a still field granules in the time  

 

 
Figure 2. A jumping field granule. The jump-like motion of field granules is depicted in 
R4 as a series of cubes. The cubes are interconnected sequentially in the corner vertices, 
such that the cubes are present along the diagonal of space-time. 
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chain by a jumping field granule at each jumpT L v= . So, the time chain of field 
granules makes each Tjump a jump Lin the direction of movement. Because the 
jumping field granule consists of both E and B fields as presumed, the E field is 
present at all times. The jumping field granule is the cause of the presence of the 
B field during the short period T (=L) every Tjump. 

It is obvious that the field strength is proportional to the time the field is pre-
sent to perform its operation, i.e. has the probability of coinciding with another 
E or B field granule. Then the fraction B/E is equal to the ratio of the time peri-
ods in which the fields are present, so that jumpB E T T v= = : 

B vE= ,                           (1) 

or when B is the main field: E vB= . 
Equation (1) is in accordance with the empirical expression of a moving elec-

tric or magnetic field, showing that the discrete field can be expressed in field 
granules. 

The disadvantage of het above model is that it misses the reason for the repe-
tition time Tjump, making the model incomplete. 

3.3. The Motion of a Granular Particle Field 

Due to the spatial in homogeneity of the particle field, the motion of a granular 
particle field must be split into two of the above types of motion acting simulta-
neously. Described in granules, an endlessly extending particle field will consist 
of a series of concentric field granules of increasing size. A moving granulated 
particle field necessarily consists of the equal speed of all individual granules of 
different sizes. This makes that none of the three basic granules alone can de-
scribe the motion of the discrete particle field, the solution is a combined pres-
ence of a moving space (granule) and jumping granules. To this end, the motion 
of the particle field is split into an inner and outer sphere, the inner part is being 
moved by one moving granule with rib Lmoving. The outer part by a series of com-
bined still and jumping granules of suitable size moving in the manner of a ho-
mogeneous field as described in the previous paragraph. 

 

 
Figure 3. A moving homogeneous field. A moving homogeneous field is a combination 
of a still and a jumping field, depicted in R4 as a series of cubes. During the time t = L/v 
the field stands still, then the jumping granule causes a jump over the distance L. The 
cubes are interconnected forming a constructive unity. 
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The smallest part of the particle is present as a locally still field within the 
moving space and will, as part of the moving space, move gradually with discrete 
velocity moving1dv L=  relative to the surrounding space. Because the inner part 
is part of the moving space, it also has time dilation and length contraction. 

Using the visualisations of Figure 1 and Figure 3, the moving granule of Fig-
ure 1 is implanted into the granule of the moving field of Figure 3. Many con-
centric granules a la Figure 3 of increasing size form the outer shell of the mov-
ing particle field. 

3.4. The Momentum of the Inner Field 

The concentric field granules of the particle field have increasing discrete sizes 
Ldi and the associated discrete repeat distances in time Tdi. Let Rparticle be the av-
eraged effective spatial size of the many granules and Tparticle the mean repeat 
distance of the granules, determined by: 

particle1 1 diR L= ∑   1/Δx,                  (2) 

both provided with the corresponding discrete units. Remarkably, these two 
quantities have a significant difference in size, as can be seen from ref. [6]: 

( )particle particle2T Rα= π .                     (3) 

Wherein α is the fine structure constant. This means that in one subspace, the 
cube-shaped granules are only sporadically present over time. In the time in be-
tween, the field granules a represent in other subspaces. Call the particle mass in 
one subspace the average density of the still field granules at a given location, 
represented by: 

subspace particle1m T=    1/Δt.                   (4) 

This is conform the particle mass in one subspace of reference [6]. 
Take a moving particle field. All particle granules with size movingdiL L≤  are 

present within the moving space. It is reasonable that 1/Tparticle is mainly deter-
mined by the field granules smaller than Lmoving. Relative to the surroundings of 
the moving space, the density of the particle granules at successive positions in 
the surrounding space is given by multiplying 1/Tparticle by the discrete velocity. 
This will be called the momentum per subspace: 

subspace particledp v T=    1/Δt.                (5) 

In a lattice is x t∆ = ∆  making vd dimensionless. 

3.5. The Momentum of the Outer Particle Field 

Each T (=Lmoving), the moving space makes a unit-step in the direction of motion 
so that after 2t T=  the total size Lmoving of the cube has been covered. The outer 
part of the moving particle field must move in conjunction with the inner part, 
i.e. making a minimum jump Lmoving every 2t T=  or a multiple thereof. This is 
possible if the outer particle field consists of a series of concentric shells of in-
creasing discrete size Ldi, with 1 movingdL L= . To be in motion, each shell consists 
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of several still field granules and one jumping field granule, which makes every 
discrete di di dt L v=  a jump Ldi in the direction of motion. 

Implicitly, every jump Ldi fits exactly into Ldi+1, making Ldi a plural of Ld1. This 
means that, seen in R3, the spatial distribution of the outer particle field is spaced 
by a multiple of Lmoving. This means that during T2 there is a still outer field, after 
which the still field is present at the next spatial location. Therefore there is a 
greater chance of interaction at mutual distances Lmoving, which can be inter-
preted as the wavelength λd. By doing that, the relation between the discrete 
wavelength λd of a moving particle in a discrete space and the discrete velocity 
becomes 1d dv λ= . Thus the number of outer field granules entering a new 
area, or the momentumof the particle field, is determined by 

subspace moving1 1 dp L λ= =    1/Δx.              (6) 

This relation applies next to relation (5). 
In one subspace, the wave length λd is expressed in units of one lattice. In the 

next chapter, relations (5) and (6) will be expanded to a space with multiple lat-
tices. The interpretation movingd Lλ =  links the wavelength to the particle mass 
via Equation (9). 

3.6. Variety of Speeds of the Particle Field 

The jumping outer part of the moving particle resembles the jerking motion de-
scribed in [7] [8] or [9]. The description of a moving particle given here is not 
only more extensive than in these references, it also enables a wide variety of ve-
locities. To clarify this, take the situation where the moving particle consists of a 
series of concentric moving granules. Then, going from the outside in, there is 
an increase of velocity and time dilation caused by the successive moving spaces. 
According to the relativistic relations, the effect of one of the moving granules 
sized Li on velocity and time dilation is determined by ( )2 2 2

1 1i i iT T v+ = −  with 
1i iv L= . With k moving spaces, the cumulative effect is  

( )2 2 2
1 1 | 1, ,k iT T v i k+ = Π − =  . This makes that the velocity vtot of the inner 

moving granule is determined by: ( ) ( )2 2 2 21 1 | 1, ,tot iT v T v i k− = Π − =  , making 

( )2 2 21 1 1tot i iv L v= −Π − ≈ −∑ 

 
With this expression any velocity can be obtained by a suitable combination of 

Li. 

4. Granulated Fields in a Multidirectional Discrete Space 

In a hypercubic lattice, the movement of the particle field can only take place 
along one of the three spatial axis, which is very unrealistic. In a more realistic 
multidirectional discrete space, the entire space is split up into ndirections subspaces 
each with their own set of spatial directions [5]. The number of spatial directions 
ndirections comprises at least 1022 subspaces. The set of subspaces ndirections is a small 
subset of all subspaces nsubspaces; subspaces directionsn n , allowing the particle field 
nparticle to be in a multiple of ndirections. 
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4.1. Movement of a Particle Field in Multiple Subspaces 

When applying the mode of motion of a moving spherical symmetrical particle 
field from the previous chapter in a multidirectional space, the field is present in 
at least ndirections subspaces. Each subspace, if necessary, provided with a subspace 
with an axis in the direction of motion. The necessity for the outermost regions 
of the moving particle field to have a subspace with an axis in the direction of 
movement ensures that the number of these subspaces is also ndirections. Conse-
quently, the moving particle field is present in ndirections subspaces with an axis in 
the direction of motion next to the ndirections subspaces with random axes. The 
different subspaces are interconnected via the space-point. The space-point of a 
multidirectional lattice is a time series of vertices connected in time, the vertices 
being part of subspaces with different spatial directions ref. [5]. 

4.2. The Momentum of a Particle Field in a Multidirectional Lattice 

In section 3.4 it has been determined that per subspace the densityof a field gra-
nule of the particle is subspace particle1m T= . Multiplication of this particle mass per 
subspace by the number of subspaces nparticle gives the total densityof the particle 
field expressed in the two units of a multidirectional discrete space: 

discrete particle particlem n T=    S/Δt.                (7) 

In reference [6] it has been shown that only the discrete units Δx and S are 
needed to express the physical quantities in a multidirectional lattice. Also in 
reference [6], the same mass expression (7) has been found. 

With (5), the density of the particle granules in consecutive positions with re-
spect to the particle’s surrounding space is 

discrete particle particledp v n T=    S/Δt. 

By inserting the mass expression (7) herein, the momentum pd particle expressed 
in discrete units is 

 particle discreted dp m v=    S/Δt,                (8) 

also in accordance with reference [6]. 

4.3. The Movement of the Outer Field Granules 

As explained in section 4.1, the outermost field of the moving particle is pre-
sented as a series of jump field grains in ndirections subspaces that all having an axis 
in the direction of motion. Equation (6) describes the momentum in one sub-
space, i.e. the frequency with which the outer field granules in one subspace en-
ter new areas of space. For ndirections subspaces, the frequency is augmented by 
that number by which the momentum in the multi directional lattice becomes 

 particle directionsd dp n λ=    S/Δx,                (9) 

λd is the discrete wavelength in the subspaces involved. Equation (9) links the 
wavelength to the particle mass. 

In ref. [6] it is shown that the de Broglie relation in a multidirectional lattice is 
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d d dp h λ=    S/Δx,                    (10) 

where in hd is the discrete Planck’s constant,being the Planck’s constant ex-
pressed in the discrete units. With (9), the discrete Planck’s constant becomes: 

directionsdh n=    S.                     (11) 

Relation (11) has also been found in reference [6] by using the same reasoning 
as in section 3.6 to obtain the wavelength of the granulated photon field. 

4.4. Relativistic Mass Increase of Moving Granulated Fields 

In case the number of edges per vertex is the same for every vertex of a hyper-
cubic lattice, it is shown in section 5.4 that length contraction and time dilation 
(14) is present within the moving space, which is also true for the largest granule 
Lmoving of the moving space. Because according to Equation (6) movingd Lλ = , the 
wave length is subject to length contraction 

2
0 1d d dvλ λ′ = −    Δx.                 (12) 

Using the equation (10), the relativistic momentum is 

d d dp h λ′ ′=  
With p m v= ⋅  and considering that the v is the velocity in the surrounding 

space, makes the particle mass relativistic 
2

0 1d d dm m v′ = −    S/Δx.                (13) 

From the length contraction of the wave length follows the increase of the 
particle mass.Based on this, the following observations can be made. 

According to Section 3.4, each granule of the outer paticle field Ldi is a plural 
of Lmoving. When the size of Lmoving changes, the larger granules follow immedi-
ately. Apparently the successive particle granules are spatially interconnected. 

Secondly, the densification by length contraction increases the presence of the 
outer field-units and therewith the likelihood of an encounter with another field 
(interaction). This is in line with the interpretation of the momentum of a 
granular field as the density of the particle granules at successive positions in 
space. 

4.5. The Dual Description of the Particle Momentum  
in a Multidirectional Lattice 

In a multidirectional discrete space, the endlessly extended particle field is pre-
sent as a series of concentric granules of different sizes in each of the ndirections 
(>1022) subspaces. To describe motion of an endlessly extended particle field 
with granules of limited sizes, it will consist of inner and outer granules. The in-
ner field granules show a gradual displacement, represented mathematically by 
equation (8). The outer particle field shows step wise displacement represented 
by (9). 

Because the largest granule within the moving space and the smallest granule 
of the outer part are somehow coupled, Equations (8) and (9) act simultane-
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ously. This means that that in the case of granulated fields, the momentum of a 
particle is mathematically described in two ways, resembling the particle-wave 
duality. 

5. Field Granules Arising from Anomalies  
in the Structure of the Lattice 

This chapter examines whether the granulation of fields can be the result of de-
viations in the structure of a lattice. A lattice consists of vertices and edges with a 
certain coordination number (8 for a hypercubic lattice). The structure of such a 
lattice is the organisation of the vertices and edges. The space structure of a hy-
percubic lattice with four orthogonal axes in every vertex is very simple and 
regular in every vertex, it is called the regular lattice. 

A multitude of local structural deviations from the regular lattice are possible. 
Some of these will be given here whose pattern in deviations is repeated regularly 
along the time axis. The examples, necessarily at the level of vertices and edges, 
are presented visually for quick understanding. 

5.1. An Example of a Simple Anomaly in the Structure of the Lattice 

To become familiar with structural deviations, an example of a very simple anom-
aly in the structure of a regular lattice is given in Figure 4(a). 

Generally, a structural deviation in one vertex necessarily implies that the two 
adjacent vertices also have a structural deviation. A series of adjacent deviating  

 

 
Figure 4. Constructions of anomalies within one hypercubic lattice. The left (a) shows a simple 
anomaly in a two-dimensional lattice forming a straight diagonal anomaly-line. (b) shows a con-
struction of anomaly-lines in a four-dimensional lattice. The anomaly-lines diagonally in space 
and time are indicated by an arrow. The figure shows that a cube-like pattern of anomaly-lines of 
rib L is present at regular intervals in time and space: (t = 0, z = 0), (t = T, z = L), etc. Spatially 
seen, the pattern moves in the z-direction with speed 1. 
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vertices constitutes a so-called anomaly-line. Note that an anomaly-line as in 
Figure 4(a) locally runs diagonally between two axes, and secondly that it has no 
beginning or end. 

In R4, constructions of anomaly-lines can exist when several lines are combined 
to endlessly extending repetitive structures. Figure 4(b) illustrates such a con-
struction. Herein four anomaly-lines merge at regular distances in space-time into 
one vertex. The sketched image is diagonal in space and time and is present in 
R4as a static column-like construction in four dimensions. 

In the construction a recurring pattern can be recognized consisting of a cube- 
shaped assembly of eight anomaly-lines. Each cube consists of four pure spatial 
anomaly-lines and four lines diagonally in space-time. By focussing on the pro-
gression in the time of the cube-shaped pattern, the pattern makes each T a step 
L along the z-axis. The series of positions of the corner vertices of the cube can 
be expressed by the set { } ( ){ }, , | : integer,z t iZ iT i Z T L= = = . 

Seen in R3 the cube moves with velocity 1dv iZ iT= = . 
The assembly of anomaly lines can also be arranged so that the formed con-

struction consists of a series of cube-like patterns extending endlessly in time. 
Seen from R3, these cubes stand still at one location. 

5.2. Stand-Still Three-Dimensional Regions  
with Tilted Axis Caused by Anomalies 

With the possibility of the last section, no physics can be present. Namely, at two 
intersecting moving columns there is no conceivable transition in two fully dif-
ferent columns. 

To provide for possible interactions, consider structural deviations whose ano-
malies are present on the boundaries of a three-dimensional region of R4. These 
anomalies affect the entire inner space-time region by tilting some axes of the 
region. These so-called tilted axes are not parallel to similar axes of the lattice 
surrounding the region. Because the organization of the internal axes is locally 
the same as in a hypercubic lattice, the space is regular within the said region. 

Due to the tilting of the axes within an entire area, there is a chance that re-
gions overlap cannot always occur, i.e. it has an interaction as result. These 
three-dimensional regions in R4 form an active plane within R3. 

An active plane forms an endless corridor in time with, at the top and bottom 
of the corridor, the anomalies that cause the axes to tilt. Figure 5 shows an ex-
ample of an active plane in the form of a time slice of the three-dimensional cor-
ridor. 

The cohesion of slices along the y-axis is enhanced when a z-line is missing in 
the corridor at every T2, caused by two open edges, i.e. an edge with a missing 
vertex, at the top and bottom. A missing z-axis means that there is a gap in time 
in the active plane. Then the organization of the anomalies along the y-axis in 
the top and bottom of the corridor can be such (for example in the manner of 
Appendix A) that every T (=L) the active plane has an open edge at the corner 
vertices. 

https://doi.org/10.4236/jmp.2021.127055


Christiaan T. de Groot 
 

 

DOI: 10.4236/jmp.2021.127055 882 Journal of Modern Physics 
 

 
Figure 5. Time slice with tilted axes of a corridor of a still active plane. The time cross- 
section of the corridor of height L forms a slice along the z-and t-axis of thickness Δy 
(=1). The lines depicted are the connecting edges, the vertices are located at the intersec-
tions of the lines. At regular intervals T, the anomalies at the top and bottom lack a con-
necting edge causing the z- and t-axes to be relatively tilted. The missing edge on each T, 
drawn as an open, unconnected edge in the y-direction, is thought to be connected to a 
vertex of the adjacent slice. 

 
Based on Figure 5, two distinct active planes can be distinguished, one with 

tilted z- and t-axes and the other with tilted y-axis and t-axis. This distinction 
makes that, apart from opposite spatial tilt direction, the active plane can have 
six different spatial orientations in R3.This is reminiscent of the six different E, B 
operating axes. 

Active planes of opposite tilt cannot merge, which means that the merging of 
active planes is not possible in all cases. The said unconnected open edge at the 
corners each T allows to arrange several active planes into a cube, with which 
various field granulesof Section 3.1 can be formed. 

5.3. Anomalies Causing the Movement  
of a Three-Dimensional Regions 

By taking a small variation in the structure of Figure 5, an entire spatial plane is 
in motion. Figure 6 shows the structure of such plane, in which the time axis 
makes a spatial step Δz in the direction of motion each T. Herein, the anomalies 
at top and bottom are such that all time lines of the corridor and boundaries are 
relatively inclined in the direction of motion, where the tilted time axes having 
no beginning or end. 

The time slice of the moving plane consists of the repeated occurrence of T 
segments in which one of the segments makes a jump in time due to a missing 
z-axis. The moving plane is formed by a series of L (=T) adjacent time slices in 
such a way that segments with missing z-axis are never present at the same time. 

Seen in R4, the corridor with the moving plane looks static. In R3, the plane is 
in consecutive positions along the z-axis over time, which means it is in motion. 
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Figure 6. A time slice of a moving plane. Depicted the edges of a time slice of a moving 
plane with the vertices at the intersections. In contrast to the tilted plane, the inner verti-
ces are shifted by the unit-distance on each T (=L). This organization results in two or 
four unconnected edges each T, which are connected with adjacent slices. In a multidirec-
tional lattice, the tilted time lines should be read as the (moving) space-points. 

 
As can be seen in Figure 6, all axes with in the corridor are tilted in the same 

way so that the entire space of the corridor has a locally regular space structure 
that moves at local speed 1dv T= . 

In the case of a moving space-point the set of subspaces must be such that one 
of them has an axis in the direction of motion. This subspace sets the space-point 
in motion. 

5.4. Length Contraction and Time Dilation within a Moving Plane 

An obvious definition for the distance between two vertices on an axis is the 
number of intermediate edges. Using this definition, the time distance within the 
moving plane is shorter than the comparable time distance in the surrounding 
space because of the missing z-axis in the moving plane. The time distance T2 in 
surrounding space has a corresponding time interval 2

vT  within the moving 
plane, which, due to the time gap, is one unit-distance less: 2 2 –1vT T= . Seen 
from the surrounding space, combined with 1v T= , the time distance Tv within 
the moving plane becomes: 21vT T v= − . 

As Figure 6 shows, the time axis within the moving plane is literally stretched 
relative to the time axis of the surroundings. Take the time distance Δt within 
the moving plane. In surrounding space, this time interval lasts longer, i.e. it 
comprises a larger number of Δt' vertices met: vt t T T′∆ ∆ = . Using the above 
expression for Tv, the relation between the time intervals Δt' and Δt becomes 

21t t v′∆ = ∆ − , 
being the time dilation of events. 
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In the corridor the smaller number of vertices overtime is compensated by an 
increase in vertices in the direction of movement. To clarify this: The corridor 
extending indefinitely in time has, in addition to the boundary in upper and 
lower surfaces, also two side surfaces as boundaries. At the location of the side 
surfaces, the inner vertices are connected to the vertices outside of the corridor. 

Take the side surface L. T expressed in distances of the surrounding space. 
The same side surface, expressed in distances of the corridor, comprises of LvTv 
vertices, where Lv is the mean number of vertices forming the height. At the sur-
faces, each vertex of the corridor is connected with a vertex of surrounding 
space, making v vL T LT= . As a result, the average number of vertices within the 
moving plane in the direction of the velocity is 

21z z v′∆ = ∆ − . 

Take a number of vertices Δz within the moving plane in the direction of mo-
tion. Seen from surrounding space, this distance comprises less intermediate 
edges Δz', making 

21z z v′∆ = ∆ − ,                       (14) 

being the expression of the length contraction. 
In a lattices-like discrete space, length contraction arises from the same coor-

dination number of all vertices instead of the principle of relativity. In addition, 
it is based on a high regularity in the presence of anomalies in a hypercubic lat-
tice as discrete space. 

5.5. The Moving Space 

A moving field granule consists of a cube with four moving side planes. All these 
planes are moving with the same speed v in the same spatial direction. This 
caused all the vertices an edges of the cube’s interior also moves with speed v due 
to the interconnections with the side planes. Like the side planes, the entire 
space within the moving space will also have time dilation and length contrac-
tion as well as a regular space structure. 

The consequence of the regular space structure is that each field granule posi-
tioned within the moving space has the same internal structure as placed in the 
non-moving situation, which is the subject of sections 3.3 and 4.2. 

6. Concluding Remarks 

This article is about the possibility that fields are made up of granules, being 
three-dimensional cubic-like regions in R4 of finite sizes. There are some indica-
tions, to see Chapter 2, that fields in a discrete space-time have such a property. 

Consequence of granulation is that the motion of the particle field needs to be 
split into an inner and an outer part. The inner part moves gradually with a 
moving space as point-like particles (8), the outer part coupled thereto consists 
of a series of jumping granules (9) that exhibit wave characteristics. 

The dual description of the particle motion results in an expression for the 
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discrete Planck’s constant (11) in a multidirectional discrete space, the same as 
obtained in ref. [6]. 

As shown in Chapter 5, deviations in the regular structure of a hypercubic lat-
tice offer a promising possibility of being the origin of granulations. The attrac-
tive thing about space deviations is that it opens up the possibility that all phe-
nomena are the result of structural deviations, i.e. expressions of space itself. 

Results 

A discrete space in the form of a hypercubic lattice leads to field granulation. 
In the case of granulated fields, the particle motion needs to be split into parts, 

reminiscent of the particle-wave duality. The particle wave-duality is thus an in-
dication of the granularity of fields besides the existence of the electron radius. 

Motion in a static four-dimensional lattice takes place as a space-time corridor 
in R4 with tilted time axes, to be visualized in a Minkowski diagram-like fashion. 

In a hypercubic lattice, the moving corridor is the cause of both movement 
and relativistic features. The latter arises from regularities in the presence of the 
anomalies in space structure and from the same coordination number of all ver-
tices. 

If the granulation of fields is based on structural anomalies, the multidirec-
tional hypercubic lattice is an ultimate substantival space [10]. 

With the finding here that motion is relative to space itself, the luminiferous 
aether discussion of the early 20e century can be extended with the possibility of 
a multidirectional hypercubic lattice as the fixed frame of reference. 
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Appendix A. The Interconnection of Time Slices 

In the description of an active plane of Figure 5 and Figure 6, there are one or 
two open edges each T, both at bottom and at the top of the time slices. The ver-
tex with one open edge is connected to a vertex of one of the two adjacent slices, 
the vertex with two open edges is connected to both adjacent slices. These open 
edges form the mutual connection of a bundle of time slices. A bundle of L time 
slices forms a spatial plane, whereby the double open edges uniting the plane 
and the single open edge causing the plane to have an open edge every T. 

 

 
Figure A1. The edges connecting the time slices. Depicted in the y,t-plane is the possible organization of the 
coupling of the time slices via one or two open edges. Due to two open edges there is a regular pattern over the 
time distance T2 in the y,t-plane. There are two possible organizations, in the left figure the plane has one open 
edge on each T at alternating left and right corner vertex, on the right plane there is one open edge on each corner 
every 2T. 
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