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Abstract 
This brief note introduces the conceptual framework of special and general 
relativity isoclocks and isoframes. Isoclocks and isoframes, as defined herein, 
can be used to create geometrical maps of space and time (“space-time”) with 
and without matter embedded. They are useful for having a mental picture of 
space-time relationships without having to picture 4-dimensional manifolds, 
which very few students and scientists are able to do. With the aid of the opt-
ical lensing definition of curvature as inverse radius, a new gravitational force 
equation is derived, which also incorporates Einstein’s mass/energy relation 
in the mx term. Thus, one may see how it is that gravitational force correlates 
with its time-embedded curvature-squared ( 2

xC ) space in a more accurate 
formulation than could be envisioned by Newton. This becomes more ap-
parent in high gamma fields, such as found near a black hole horizon. It is 
hoped that probability theories, such as quantum field theories in curved 
space-time, might be adaptable to the general relativity isoframe concept in-
troduced herein. 
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1. Introduction and Background 

Kip Thorne, who shared the 2017 Nobel Prize in physics for his theoretical work 
on black holes, began his Black Holes & Time Warps book [1] with thought ex-
periments for three black holes of radically-different sizes. As Thorne pointed 
out on page 33 of his book, bizarre things should happen to radio signals re-
ceived by observers as the transmitter approaches very close to the horizon of a 
black hole of any size. The signal frequency plummets rapidly towards zero, and 
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the signal disappears entirely at the horizon (as the wavelength becomes infinite 
and the wave energy becomes zero). For the outside observer at a fixed radius 
from the horizon, it is as if a clock (or radio transmitter of a given frequency) 
becomes frozen in time relative to that observer. For observers falling into a black 
hole, it is an entirely different perspective (i.e., reference frame), but that is not 
the focus of this paper.  

Albert Einstein’s genius had much to do with his ability to find the right 
thought experiment and reference frame in which to simplify and understand a 
complex problem at a fundamental level [2]. With special relativity, his concept 
of the proper time clock of an observer in a chosen reference frame in comparison 
to the time clock of an observer in a different reference frame was of paramount 
importance. It was this clock comparison that mattered most to him, if one were 
to accept the embedded assumption of invariance of speed of light measure-
ments. 

In relativity theory, the proper time clock of a given reference frame (we’ll call 
it To) can be compared to those of different reference frames. In fact, an ordering 
of all other reference frame clocks can be mapped with respect to the chosen 
clock of reference. One can utilize a subscript numbering system of the various 
clocks, such that clocks within the same reference frame can be numbered the 
same, and faster-ticking and slower-ticking clocks within different reference frames 
can be numbered higher or lower, respectively. Clocks keeping the same proper 
time are defined herein as “isoclocks,” and their collective reference frame is de-
fined herein as their “isoframe.” 

2. Results: Isoframe Mappinig in Special and General  
Relativity 

Since a relativity isoframe is defined as one in which variously-positioned ob-
servers all keep the same proper time, their clocks can be considered to be per-
fectly synchronized at all times within their isoframe map. 

2.1. Special Relativity 

One can map out a special relativity Minkowskiian space-time isoframe in the 
following way (see Figure 1).  

This is a 2-dimentional slice of rectilinear space-time (i.e., no curves in the 
latticework). For the purpose of this thought experiment, one can think of every 
point of line intersection as a fixed point with respect to an observer at the 
centrally-located To point. Therefore, all such points of intersection can be con-
sidered to be in the same reference frame (isoframe) with respect to this To 
clock, and to have identical To clocks (isoclocks), one of which is shown. Anyone 
moving inertially in this Minkowskiian plane relative to any To clock moves the 
same with respect to all To clocks, and must have a non-To clock of their own. 
One can readily envision the Minkowskiian space to be filled with many differ-
ent non-To clocks, depending upon their particular reference frame velocity with  
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Figure 1. Special relativity isoframe (Minkowskiian space-time). 

 
respect to the To isoframe. So, the To special relativity isoframe map of Figure 1 
is one of stationary (in a relative sense) imaginary clocks in a field devoid of 
matter and its ever-present gravity.  

2.2. General Relativity 

Einstein’s gravity theory, incorporating thought experiments with light beams 
and accelerating reference frames, necessitates that gravitationally-attractive 
matter positively curves space-time in a very specific way, according to a metric 
tensor (the “metric”). Without immersing oneself for years in this arcane branch 
of mathematics, one can nevertheless have a very good idea of how general rela-
tivity improves somewhat on the Newtonian concept of gravity in flat space and 
absolute time.  

The key to this understanding is, once again, an isoframe mapping of identical 
time clocks, but within the gravity space surrounding a concentration of matter 
and/or energy. One must remember that matter and energy are two sides of the 
same coin, by E = mc2. In contrast to the special relativity isoframe map of To 
clocks fixed in position relative to a specified To observer clock, the general rela-
tivity isoframe map is a curved manifold of different clocks at different distances 
(i.e., radii) within the gravity well surrounding a centralized focus of matter/ 
energy. See Figure 2. 

As well-proven by clocks in satellite orbits around Earth, clocks farther from a 
center of gravity tick faster (hence the higher subscript numbers) than clocks 
deeper in a gravity well. Four such orbital clocks are shown in Figure 2 for 
comparison. Each orbital sphere surface (represented by a circle in the two-di- 
mensional figure) can, therefore, be considered to be a gravity isoframe, as de-
fined by its isoclock. The slowest clocks, in comparison to any of these orbital 
clocks, are those on Earth’s surface, which, assuming continuance of the num-
bering sequence, would be labelled as To in Figure 2.  

For the purposes of a general relativity thought experiment, let us consider a 
perfectly homogeneous and spherical extended body of matter which we will call 
a “planet.” This planet has no angular momentum (i.e., it does not rotate) and all 
of its mass can be effectively treated as if it were concentrated at a point at the  
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Figure 2. General relativity isoframes (TX curved space-time). 

 
geometric center of the sphere. Furthermore, this planet has no atmosphere and 
rests in a vacuum of infinite space with no other matter or energy.  

We know from Newtonian mechanics that perfectly circular orbits centered 
on the planetary center can be achieved at any distance from the planetary center 
which is also beyond the planetary surface. We also know that a centripetal gra-
vitating force of attraction on a body (x) in a given circular orbit closely ap-
proximates  

2
Gx x xF GMm r−=                          (1) 

wherein the usual Newtonian symbolic representation applies. Furthermore, each 
circular orbit (x) can be defined by its curvature Cx according to 1

xr
− . This cur-

vature definition is as useful for gravity in this simplified isoframe approach as it 
has been for the field of lens optics. Figure 3 replicates Figure 2, except that 
each orbital in the gravity well is now designated by its curvature Cx. The only 
important difference to keep in mind here is that a smaller curvature subscript 
(x) in Figure 3 corresponds to a greater degree of curvature.  

3. Discussion 

One of the interesting features about this correlation between an x-orbital’s cur-
vature Cx in space and its own proper time Tx is that the square of its curvature 
( 2

xC ) correlates with gravitational force in proportion to 2
xr
− . Thus,  

2
Gx x xF GMm C=                          (2) 

Furthermore, while the GMmx term is a constant in the Newtonian theory, it 
can now actually be considered a variable according to E = mc2. The rest mass- 
energy of body mx on the planetary surface is fractionally less than the mass-  
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Figure 3. General relativity isoframes (CX curved space-time). 

 
energy of orbiting body mx at a certain height h above the surface, according to 
mγh (gravitational potential energy) added to the rest mass-energy. Herein, we 
are using gravity field symbol γ (acceleration due to gravity) in a generic sense, 
corresponding to a given height above a planet of mass M. The importance of 
now requiring the incorporation of E = mc2 into the mx term of 2

x xGMm C  is to 
show how it is that the centripetal gravitational force calculated by Newton al-
ways very slightly underestimates the general relativity force on orbiting bodies 
in relatively weak gravity fields. However, more importantly, it would be ex-
pected to greatly underestimate the general relativity force (including tidal forces) 
on orbiting bodies in strong (i.e., high energy density) gravity fields, such as 
those bordering black hole event horizons. Thus, Newton’s theory can only be 
considered to be a very good approximation where gravitational energy density 
(and its associated space-time curvature) is relatively weak. 

One of the reasons why 2
Gx x xF GMm C= , when it incorporates E = mc2 into 

the equation, appears to be a significantly better approximation of the true gra-
vitational force than Newton’s approximation is that Krogdahl’s incorporation 
of E = mc2 into his own flat space-time cosmology formulation has already been 
shown to be remarkably accurate with respect to the canonical tests of any grav-
ity theory competing with general relativity [3] [4].  

Just as one can transform a square into a cube by multiplying by a measure of 
the 2-dimentional object (namely, its length), a squaring of the 2-dimensional 
circle curvature according to 2 2

x xC r−=  can be considered to be a 3-dimensional 
representation of a Tx orbital. In this way, a 2-dimensional spatial object with an 
embedded time clock corresponding to its curvature radius becomes a 3-dimen- 
sional spatial object with an embedded time clock corresponding to its curvature 
radius. Thus, the manifold of concentric spheres with different embedded isoc-

https://doi.org/10.4236/jmp.2021.126046


E. T. Tatum 
 

 

DOI: 10.4236/jmp.2021.126046 736 Journal of Modern Physics 
 

locks becomes a conceptually useful model of 4-D space-time.  
With respect to black holes, curved general relativity isoframes, with the third 

spatial dimension withheld for clarity, can be mapped around a perfectly spher-
ical Schwarzschild black hole (see Figure 4). 

In this figure, To represents the frozen time clock of the black hole horizon, as 
perceived by a stationary or orbiting outside observer at any fixed radius outside 
the black hole horizon. It is often said that if one could instantaneously convert 
the sun into a Schwarzschild black hole of identical mass, the curved space-time 
of known planetary orbitals would look identical. The known planets would all 
be at such sufficient distances from the three-kilometer radius solar mass black 
hole horizon that we would not observe any appreciable difference in their or-
bital paths or periods.  

The key difference in the adaptation of general relativity isoframes to black 
holes is what happens in close proximity (i.e., within several Schwarzschild radii) 
to the horizon. Here the gravitational field strength and tidal forces deviate sig-
nificantly from Newtonian theory, and the mγh mass-energy contribution to mx 
becomes of paramount importance. At this point, by not incorporating E = mc2 
into mx, Newtonian theory fails to be a close approximation of the extreme tidal 
forces and other phenomena occurring at orbital radii near a black hole horizon. 
Obviously, the frozen horizon clock To in Figure 4 marks the boundary of the 
black hole isoframe map. Nothing certain or useful can be said about the interior 
of a black hole. And no one wants to be the free-falling observer to pass this ho-
rizon and explore the interior! 

One wonders if the above general relativity isoframe conceptualization could 
be of use in terms of unification with quantum physics. Quantum field theories  
 

 
Figure 4. General relativity isoframes around a black hole. 
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in curved space-time do, in fact, exist. These generally follow the local structure 
(i.e., the geometry) of space-time. Therefore, it is hoped that the conceptual 
framework presented herein may be useful in some way to quantum physicists 
working towards unification.  

4. Summary and Conclusions 

This paper has introduced readers to the definition and mapping of isoclocks 
and isoframes in special and general relativity. Particular attention has been paid 
to general relativity isoframe mapping around an ideal spherical body of mat-
ter/energy, according to the mapping of isoclocks and their isoframe orbitals. 
Application of the 1

x xC r−=  curvature definition, borrowed from optical lens-
ing, allows one to define and represent time-embedded orbital curvature in 
2-dimensional space. Furthermore, squaring of curvature ( 2 2

x xC r−= ) allows one 
to define and represent time-embedded curvature in 3-dimensional space. And 
because of its time-embedded nature, this becomes a useful analogue of 4-di- 
mensional space-time. The mapping of concentric time-embedded spheres of 
this type is conceptually useful for the majority of us who cannot otherwise pic-
ture 4-dimensional manifolds. Furthermore, the introduction of isoframe for-
mula 2

Gx x xF GMm C= , may allow one to see how it is that gravitational force not 
only correlates with 2

xr
− , but also time-embedded curvature space (space-time). 

Finally, the author speculates that probability theories, such as quantum field 
theories in curved space-time, might be adaptable to the general relativity iso-
frame concept introduced herein.  
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