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Abstract 
This paper provides a scheme for generating maximally entangled qubit states 
in the anti-Jaynes-Cummings interaction mechanism, so called entangled an-
ti-polariton qubit states. We demonstrate that in an initial vacuum-field, Rabi 
oscillations in a cavity mode in the anti-Jaynes-Cummings interaction process, 
occur in the reverse sense relative to the Jaynes-Cummings interaction process 
and that time evolution of entanglement in the anti-Jaynes-Cummings interac-
tion process takes the same form as in the Jaynes-Cummings interaction 
process. With the generated anti-polariton qubit state as one of the initial qu-
bits, we present quantum teleportation of an atomic quantum state by apply-
ing entanglement swapping protocol achieving an impressive maximal tele-
portation fidelity 1Fρ = . 
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1. Introduction 

The basic model of quantized light-matter interaction describing a two-level 
atom coupled to a single mode of quantized electromagnetic radiation is the 
quantum Rabi model (QRM) [1] [2] [3] [4] [5] initially introduced by Rabi, Isi-
dor Isaac [6] [7] to discuss the phenomenon of nuclear magnetic resonance in a 
semi-classical way. The Jaynes-Cummings (JC) Hamiltonian [3] [4] [5] [8] and 
the anti-Jaynes-Cummings (AJC) Hamiltonian [3] [4] [5] are both generated 
from the QRM. 

Exact analytical solutions of the eigenvalue equation for the QRM have been 
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determined in [1] [2] [9] [10]. However, a major challenge in the QRM that re-
mained an outstanding problem over the years is that while the JC component 
has a conserved excitation number operator and is invariant under the corres-
ponding U (1) symmetry operation, a conserved excitation number and corres-
ponding U (1) symmetry operators for AJC component had never been deter-
mined. Recently, it has been shown that the operator ordering principle distin-
guishes the JC and AJC Hamiltonians [3] [4] [5] as normal and anti-normal or-
der components of the QRM. In this approach the JC interaction represents the 
coupling of a two-level atom to the rotating positive frequency component of the 
field mode while the AJC interaction represents the coupling of the two-level 
atom to the anti-rotating (anti-clockwise or counter-rotating [2] [3] [4] [5] [8] 
[11]) negative frequency component of the field mode, because the electromag-
netic field mode is composed of positive and negative frequency components 
[12]. The long-standing challenge of determining a conserved excitation number 
and corresponding U (1) symmetry operators for the AJC component was finally 
solved in [3]. The discovery and proof of a conserved excitation number opera-
tor of the AJC Hamiltonian [3] now means that dynamics generated by the AJC 
Hamiltonian is exactly solvable, as demonstrated in the polariton and an-
ti-polariton qubit (photospin qubit) models in [4] [5]. 

Noting that fundamental features namely: collapses and revivals in the atomic 
inversion [13], generation of Schrdinger cat states of the quantized field [14] 
[15], transfer of atomic coherence to the quantized field [16], vacuum-field Rabi 
oscillations in a cavity [17] and many more have been extensively studied in the 
JC model in both theory and experiment in quantum optics, we now focus atten-
tion on the AJC model which has not received much attention over the years due 
to the erroneously assumed lack of a conserved excitation number operator. 

We observe that the failure of the JC interaction component to account for 
some experimental features characterised by blue-sideband transitions has dri-
ven various workers to apply numerical methods to probe the full QRM into the 
ultrastrong coupling (USC) and deep strong coupling (DSC) regimes [18] [19] 
[20] [21] [22] to indirectly monitor the dynamical effects of the AJC interaction 
component. However, even such advanced approaches do not give explicitly the 
dynamical features generated solely by the AJC interaction. Fortunately, the re-
formulation developed in [3] [4] [5], drastically simplifies exact solutions of the 
AJC model, which we shall here apply. 

In this paper, we are interested in analysis of quantum state configuration of 
the qubit states in the AJC model, entanglement of qubits in the AJC model and 
the application of the entangled qubit state vectors in teleportation of an entan-
gled atomic quantum state. 

The content of this paper is therefore summarized as follows. Section 2 
presents an overview of the theoretical model. In Section 3, Rabi oscillations in 
the AJC model are studied. In Section 4, entanglement of AJC qubit state vectors 
is analysed. In Section 5, teleportation as an application of entanglement is pre-
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sented. AJC state engineering and experimental implementation is briefly dis-
cussed in Section 6 and finally Section 7 presents the conclusion. 

2. The Model 

The quantum Rabi model of a quantized electromagnetic field mode interacting 
with a two-level atom is generated by the Hamiltonian [3] 

( ) ( )( )† † †
0

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
2R zH a a aa s a a s sω ω λ + −= + + + + +� � �          (1) 

noting that the free field mode Hamiltonian is expressed in normal and an-

ti-normal order form ( )† †1 ˆ ˆ ˆ ˆ
2

a a aaω +� . Here, †ˆ ˆ, ,a aω  are quantized field  

mode angular frequency, annihilation and creation operators, while 0 ˆ ˆ ˆ, , ,zs s sω + −  
are atomic state transition angular frequency and operators. The Rabi Hamilto-
nian in Equation (1) is expressed in a symmetrized two-component form [3] [4] 
[5] 

( )1 ˆˆ ˆ
2RH H H= +                         (2) 

where Ĥ  is the standard JC Hamiltonian interpreted as a polariton qubit Ha-
miltonian expressed in the form [3] 

†

† 0

1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ;
2

ˆ ˆ ˆ ˆ ˆ ˆ ;
2z

H N A N a a s s

A s as a s

ω λ ω

ω ω
α α

λ

+ −

+ −

= + − = +

−
= + + =

� � �
             (3) 

while Ĥ  is the AJC Hamiltonian interpreted as an anti-polariton qubit Ha-
miltonian in the form [3] 

†

† 0

1ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ;
2

ˆ ˆ ˆ ˆ ˆ ˆ ; .
2z

H N A N aa s s

A s as a s

ω λ ω

ω ω
α α

λ

− +

− +

= + − = +

+
= + + =

� � �
             (4) 

In Equations (3) and (4), ˆˆ ,N N  and ˆˆ,A A  are the respective polariton and an-
ti-polariton qubit conserved excitation numbers and state transition operators. 

Following the physical property established in [5], that for the field mode in 
an initial vacuum state only an atom in an initial excited state e  entering the 
cavity couples to the rotating positive frequency field component in the JC inte-
raction mechanism, while only an atom in an initial ground state g  entering 
the cavity couples to the anti-rotating negative frequency field component in an 
AJC interaction mechanism, we generally take the atom to be in an initial ex-
cited state e  in the JC model and in an initial ground state g  in the AJC 
model. 

Considering the AJC dynamics, applying the state transition operator Â  
from Equation (4) to the initial atom-field n-photon ground state vector ,g n , 
the basic qubit state vectors gnψ  and gnφ  are determined in the form 
( 0,1,2,n = � ) [5] 
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, ; , , 1gn gn gn gng n c g n s e nψ φ= = − + +             (5) 

with dimensionless interaction parameters gnc , gns  and Rabi frequency gnR  
defined as 

( )
2

02

2 1; ; 2
2

1 ;
16

gn gn gn gn
gngn

gn

nc s R A
R R

A n

δ λ λ

δ δ ω ω
λ

+
= = =

= + + = +

             (6) 

where we have introduced sum frequency 0δ ω ω= +  to redefine α  in Equa-
tion (4). 

The qubit state vectors in Equation (5) satisfy the qubit state transition alge-
braic operations 

ˆ ˆ;gn gn gn gn gn gnA A A Aψ φ φ ψ= =                (7) 

In the AJC qubit subspace spanned by normalized but non-orthogonal ba-
sic qubit state vectors gnψ , gnφ  the basic qubit state transition operator 
ˆ

gε  and identity operator ˆ
gI  are introduced according to the definitions [5] 

2
2

2

ˆ ˆˆ ˆˆ ˆ;g g g g
gn gn

A AI I
A A

ε ε= = ⇒ =                 (8) 

which on substituting into Equation (7) generates the basic qubit state transition 
algebraic operations 

ˆ ˆ;

ˆ ˆ;

g gn gn g gn gn

g gn gn g gn gnI I

ε ψ φ ε φ ψ

ψ ψ φ φ

= =

= =
                 (9) 

The algebraic properties 2 ˆˆ k
g gIε =  and 2 1ˆ ˆk

g gε ε+ =  easily gives the final prop-
erty [5] 

( ) ( )ˆ ˆ ˆe cos singi
g gI iθε θ θ ε− = −                  (10) 

which is useful in evaluating time-evolution operators. 
The AJC qubit Hamiltonian defined within the qubit subspace spanned by the 

basic qubit state vectors gnψ , gnφ  is then expressed in terms of the basic 
qubit states transition operators ˆ

gε , ˆ
gI  in the form [5] 

3ˆ ˆ ˆ .
2g g gn gH n I Rω ε = + + 

 
� �                   (11) 

We use this form of the AJC Hamiltonian to determine the general time-evolving 
state vector describing Rabi oscillations in the AJC dynamics in Section 3 below. 

3. Rabi Oscillations 

The general dynamics generated by the AJC Hamiltonian in Equation (11) is 
described by a time evolving AJC qubit state vector ( )gn tΨ  obtained from 
the time-dependent Schrödinger equation in the form [5] 
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( ) ( ) ( )
ˆˆ ˆ; e g

i H t

gn g gn gt U t U tψ
−

Ψ = = �              (12) 

where ( )ˆ
gU t  is the time evolution operator. Substituting ˆ

gH  from Equation 
(11) into Equation (12) and applying appropriate algebraic properties [5], we use 
the relation in Equation (10) to express the time evolution operator in its final 
form 

( ) ( ) ( ){ }
3
2ˆ ˆ ˆe cos sin

i t n

g gn g gn gU t R t I i R t
ω

ε
 − + 
 = −            (13) 

which we substitute into equation Equation (12) and use the qubit state transi-
tion operations in Equation (9) to obtain the time-evolving AJC qubit state vec-
tor in the form 

( ) ( ) ( ){ }
3
2e cos sin

i t n

gn gn gn gn gnt R t i R t
ω

ψ φ
 − + 
 Ψ = −         (14) 

This time evolving state vector describes Rabi oscillations between the basic 
qubit states gnψ  and gnφ  at Rabi frequency gnR . 

In order to determine the length of the Bloch vector associated with the state 
vector in Equation (14), we introduce the density operator 

( ) ( ) ( )ˆ
gn gn gnt t tρ = Ψ Ψ                    (15a) 

which we expand to obtain 

( ) ( ) ( )

( ) ( )

2

2

ˆ cos sin 2
2

sin 2 sin .
2

gn gn gn gn gn gn gn

gn gn gn gn

it R t R t

i R t R t

ρ ψ ψ ψ φ

φ ψ φ φ

= +

− +
       (15b) 

Defining the coefficients of the projectors in Equation (15b) as 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

11 2 12

21 22 2

cos ; sin 2
2

sin 2 ; sin
2

gn gn gn gn

gn gn gn gn

it R t t R t

it R t t R t

ρ ρ

ρ ρ

= =

= − =
           (15c) 

and interpreting the coefficients in Equation (15c) as elements of a 2 2×  den-
sity matrix ( )gn tρ , which we express in terms of standard Pauli operator ma-
trices I, xσ , yσ  and zσ  as 

( ) ( ) ( )
( ) ( ) ( )( )

11 12

21 22
1
2

gn gn
gn gn

gn gn

t t
t I t

t t
ρ ρ

ρ ρ σ
ρ ρ

 
= = + ⋅  
 

� �           (15d) 

where ( ), ,x y zσ σ σ σ=
�  is the Pauli matrix vector and we have introduced the 

time-evolving Bloch vector ( )gn tρ
�

 obtained in the form 

( ) ( ) ( ) ( )( ), ,x y z
gn gn gn gnt t t tρ ρ ρ ρ=
�

               (15e) 

with components defined as 

( ) ( ) ( )
( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

12 21

12 21

11 22

0

sin 2

cos 2

x
gn gn gn

y
gn gn gn gn

z
gn gn gn gn

t t t

t i t t R t

t t t R t

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

= + =

= − = −

= − =

            (15f) 
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The Bloch vector in Equation (15e) takes the explicit form 

( ) ( ) ( )( )0, sin 2 ,cos 2gn gn gnt R t R tρ = −
�

             (15g) 

which has unit length obtained easily as 

( ) 1gn tρ =
�

                        (15h) 

The property that the Bloch vector ( )gn tρ
�

 is of unit length (the Bloch sphere 
has unit radius), clearly shows that the general time evolving state vector 

( )gn tΨ  in Equation (14) is a pure state. 
We now proceed to demonstrate the time evolution of the Bloch vector 
( )gn tρ

�
 which in effect describes the geometric configuration of states. We have 

adopted class 4 Bloch-sphere entanglement of a quantum rank-2 bipartite state 
[23] [24] to bring a clear visualization of this interaction. In this respect, we con-
sider the specific example (which also applies to the general n-photon case) of an 
atom initially in ground state g  entering a cavity with the field mode starting 
off in an initial vacuum state 0 , such that the initial atom-field state is ,0g . 
It is important to note that in the AJC interaction process the initial atom-field 
ground state ,0g  is an absolute ground state with both atom and field mode 
in the ground state g , 0 , in contrast to the commonly applied initial 
atom-field ground state ,0e  in the JC model where only the field mode 0  
is in the ground state and the atom in the excited state e . 

In the specific example starting with an atom in the ground state g  and the 
field mode in the vacuum state 0  the basic qubit state vectors 0gψ  and 

0gφ , together with the corresponding entanglement parameters, are obtained 
by setting 0n =  in Equations (5) and (6) in the form 

0 0 0 0

2 2
0 0 0

0 0

,0 ; ,0 ,1 ;

2 1; ; 16
2 2

,0 0 ; ,1 1

g g g g

g g g
g g

g c g s e

c s R
R R

g g e e

ψ φ

δ λ λ δ

= = − +

= = = +

= ⊗ = ⊗

          (16) 

The corresponding Hamiltonian in Equation (11) becomes ( 0n = ) 

0
3ˆ ˆ ˆ
2g g g gH I Rω ε= +� �                     (17) 

The time-evolving state vector in Equation (14) takes the form ( 0n = ) 

( ) ( ) ( ){ }
3
2

0 0 0 0 0e cos sin
i t

g g g g gt R t i R t
ω

ψ φ
−

Ψ = −         (18) 

which describes Rabi oscillations at frequency 0gR  between the initial separable 
qubit state vector 0gψ  and the entangled qubit state vector 0gφ . 

The Rabi oscillation process is best described by the corresponding Bloch 
vector which follows from Equation (15g) in the form ( 0n = ) 

( ) ( ) ( )( )0 0 00, sin 2 ,cos 2g g gt R t R tρ = −
�

              (19) 

The time evolution of this Bloch vector reveals that the Rabi oscillations be-
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tween the basic qubit state vectors 0gψ , 0gφ  describe circles on which the 
states are distributed on the Bloch sphere as we demonstrate in Figure 1. 

In Figure 1 we have plotted the AJC Rabi oscillation process with respective 
Rabi frequencies 0gR  determined according to Equation (16) for various values 
of sum frequency 0δ ω ω= + . We have provided a comparison with plots of the 
corresponding JC process in Figure 2. 

To facilitate the desired comparison of the AJC Rabi oscillation process with 
the standard JC Rabi oscillation process plotted in Figure 2, we substitute the 
redefinition 0 2δ ω ω δ ω= + = +  to express the Rabi frequency 0gR  in Equa-
tion (16) in the form 

( )22
0

1 16 2 .
2gR λ δ ω= + +                   (20) 

In the present work, we have chosen the field mode frequency 2ω λ=  
( 0.5λ ω= ) such that for both AJC and JC processes we vary only the detuning 
frequency 0δ ω ω= − . The resonance case 0δ =  in the JC interaction now 
means 2 4δ ω λ= =  in the AJC interaction. 

For various values of ,3 ,0δ λ λ= , we use the general time evolving state vec-
tor in Equation (18), with 0gR  as defined in Equation (20) to determine the  

coupled qubit state vectors 0gψ , 0gφ  in Equation (16) by setting 0 2gR t = π ,  

describing half cycle of Rabi oscillation as presented below. In each case we have 
an accumulated global phase factor which does not affect measurement results 
[25] [26] [27], but we have maintained them here in Equations (21a)-(21c) to 
explain the continuous time evolution over one cycle. 

79 79
82 415 4; 5 : ,0 e ,0 ,1 e ,0

41 41

i i
g g e gδ λ δ λ

− π − π 
= = → − + → 

 
  (21a) 

113 113
130 657 43 ; 7 : ,0 e ,0 ,1 e ,0

65 65

i i
g g e gδ λ δ λ

− π − π 
= = → − + → 

 
 (21b) 

21 10; 4 : ,0 e ,0 ,1 e ,0
2 2

i ig g e gδ δ λ − π − π 
= = → − + → 

 
   (21c) 

The AJC Rabi oscillations for cases ,3 ,0δ λ λ=  are plotted as red, black and 
blue circles in Figure 1, while the corresponding plots in the JC process are pro-
vided in Figure 2 as a comparison. Here, Figure 1 is a Bloch sphere entangle-
ment [23] that corresponds to a 2-dimensional subspace of 2 2⊗    

{ }0 0Span ,0 , ,0 ,1g gg c g s e− +  with 0
02g

g

c
R
δ

=  and 0
0

2
g

g

s
R
λ

=  while 

Figure 2 is a Bloch sphere entanglement corresponding to a 2-dimensional sub-

space of 2 2⊗   { }0 0Span ,0 , ,0 ,1e ee c e s g+  with 0
02e

e

c
R
δ

=  and 

0
0

2
e

e

s
R
λ

= , where we recall that, in the JC interaction the initial atom-field 

ground state with the field mode in the vacuum state is ,0e . 
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Figure 1. Rabi oscillations in AJC interaction mechanism. The Rabi oscillations for values 
of sum frequencies are shown by red ( 5 ;δ λ δ λ= = ), black ( 7 ; 3δ λ δ λ= = ) and blue 

( 04 ; 0δ λ δ ω ω= = − = ). 
 

 
Figure 2. Rabi oscillations in JC interaction mechanism. Here, blue circle is at resonance 
with detuning 0 0δ ω ω= − = , red circle is for detuning δ λ=  and black circle for de-
tuning 3δ λ= . 

 
In Figure 1 we observe: 
1) that due to the larger sum frequency 2δ δ ω= +  in the AJC interaction 

process as compared to the detuning frequency δ  in the JC interaction 
process, the Rabi oscillation circles in the much faster AJC process are much 
smaller compared to the corresponding Rabi oscillation circles in the slower JC 
interaction process. This effect is in agreement with the assumption usually 
adopted to drop the AJC interaction components in the rotating wave approxi-
mation (RWA), noting that the fast oscillating AJC process averages out over 
time. We have demonstrated the physical property that the size of the Rabi os-
cillations curves decreases with increasing Rabi oscillation frequency by plotting 
the AJC oscillation curves for a considerably larger Rabi frequency 0gR  where 
we have set the field mode frequency 10ω λ=  ( 0.1λ ω= ) in Figure 3. It is 
clear in Figure 3 that for this higher value of the Rabi frequency 0gR  the Rabi 
oscillation curves almost converge to a point-like form; 

2) that Rabi oscillations in the AJC interaction process as demonstrated in 
Figure 1 occur in the left hemisphere of the Bloch sphere while in the JC interaction 
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Figure 3. Rabi oscillations in AJC interaction mechanism. The Rabi oscillations for values 
of sum frequencies are shown by red ( 21 ;δ λ δ λ= = ) and black ( 23 ; 3δ λ δ λ= = ). 

 
process the oscillations occur in the right hemisphere as demonstrated in Figure 
2. This demonstrates an important physical property that the AJC interaction 
process occurs in the reverse sense relative to the JC interaction process; 

3) an interesting feature that appears at resonance specified by 0δ = . While 
in the JC model plotted in Figure 2 the Rabi oscillation at resonance 0δ =  
(blue circle) lies precisely on the yz-plane normal to the equatorial plane, the 
corresponding AJC Rabi oscillation (blue circle in Figure 1) is at an axis away 
from the yz-plane about the south pole of the Bloch sphere. This feature is due to 
the fact that the frequency detuning 2δ ω=  takes a non-zero value under re-
sonance 0δ =  such that the AJC oscillations maintain their original forms even 
under resonance. 

We note that the qubit state transitions described by the Bloch vector in the 
AJC process (Figure 1) are blue-side band transitions characterized by the sum 
frequency 0 2δ ω ω δ ω= + = +  according to the definition of the Rabi fre-
quency 0gR  in Equation (20). 

The geometric configuration of the state space demonstrated on the 
Bloch-sphere in Figure 2 determined using the approach in [5] agrees precisely 
with that determined using the semi-classical approach in [28] corresponding to 
a 2-dimensional subspace of 2  Span { },e g . In the approach [28], at re-
sonance where detuning 0δ =  the atomic population is inverted from e  to 
g  and the Bloch-vector ( ) ( ) ( ) ( ) ( )( )sin cos ,sin sin ,cosr θ φ θ φ θ=

�  describes 
a path along the yz-plane on the Bloch-sphere. For other values of detuning, the 
atom evolves from e  to a linear superposition of e  and g  and back to 
e  and the Bloch-vector r�  describes a circle about the north pole of the 

Bloch-sphere. 

4. Entanglement Properties 

In quantum information, it is of interest to measure or quantify the entangle-
ment of states. In this paper we apply the von Neumann entropy as a measure of 
entanglement. The von Neumann entropy [29] [30] [31] [32] [33] of a quantum 
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state ρ̂  is defined as 

( ) ( )ˆ ˆ ˆlog logd i d i
i

S trρ ρ ρ λ λ= − = −∑               (22) 

where the logarithm is taken to base d, d being the dimension of the Hilbert 
space containing ρ̂  and iλ ‘s are the eigenvalues of ρ̂ . It follows that 

( )ˆ0 1S ρ≤ ≤ , where ( )ˆ 0S ρ =  if and only if ρ̂  is a pure state. 
Further, the von Neumann entropy of the reduced density matrices of a bipar-

tite pure state ˆAB AB ABρ ψ ψ=  is a good and convenient entanglement 
measure ( )ˆABE ρ . The entanglement measure defined as the entropy of either 
of the quantum subsystem is obtained as 

( ) ( ) ( )2 2ˆ ˆ ˆ ˆ ˆlog logAB A A B BE tr trρ ρ ρ ρ ρ= − = −            (23) 

where for all states we have ( )ˆ0 1ABE ρ≤ ≤ . Here the limit 0 is achieved if the 
pure state is a product A Bψ ψ ψ= ⊗  and 1 is achieved for maximally en-
tangled states, noting that the reduced density matrices are maximally mixed 
states. 

In this section we analyse the entanglement properties of the qubit state vectors 
and the dynamical evolution of entanglement generated in the AJC interaction. 

4.1. Entanglement Analysis of Basic Qubit  
State Vectors gψ 0  and gφ 0  

Let us start by considering the entanglement properties of the initial state 0gψ  
which according to the definition in Equation (16) is a separable pure state. The 
density operator of the qubit state vector 0 ,0g gψ =  is obtained as 

0ˆ ,0 ,0g g gρ =                       (24a) 

Using the definition ,0 0g g= ⊗ , we take the partial trace of 0ˆgρ  in 
Equation (24a) with respect to the field mode and atom states respectively, to 
obtain the respective atom and field reduced density operators ˆAρ , ˆFρ  in the 
form (subscripts atomA ≡  and fieldF ≡ ) 

( ) ( )0 0ˆ ˆ ˆ ˆ; 0 0A F g F A gtr g g trρ ρ ρ ρ= = = =          (24b) 

which take explicit 2 2×  matrix forms 

0 0 1 0
ˆ ˆ;

0 1 0 0A Fρ ρ
   

= =   
   

                 (24c) 

The trace of ˆAρ , 2ˆAρ  and ˆFρ , 2ˆFρ  of the matrices in Equation (24c) are 

( ) ( ) ( ) ( )2 2ˆ ˆ ˆ ˆ1; 1A A F Ftr tr tr trρ ρ ρ ρ= = = =            (24d) 

The unit trace determined in Equation (24d) proves that the initial qubit state 
vector 0 ,0g gψ =  is a pure state. 

Next, we substitute the matrix form of ˆAρ  and ˆFρ  from Equation (24c) 
into Equation (23) to obtain equal von Neumann entanglement entropies 

( ) ( ) ( )0ˆ ˆ ˆ 0g A FE S Sρ ρ ρ= = =                  (24e) 
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which together with the property in Equation (24d) quantifies the initial qubit 
state vector 0 ,0g gψ =  as a pure separable state, agreeing with the definition 
in Equation (16). 

We proceed to determine the entanglement properties of the (transition) qubit 
state vector 0gφ  defined in Equation (16). For parameter values , 5δ λ δ λ= =  
we ignore the phase factor in Equation (21a), to write the transition qubit state 
vector in the form 

0
5 4; 5 : ,0 ,1
41 41g g eδ λ δ λ φ= = = − +           (25a) 

The corresponding density operator of the state in Equation (25a) is 

0
25 20 20 16ˆ ,0 ,0 ,0 ,1 ,1 ,0 ,1 ,1
41 41 41 41g g g g e e g e eρ = − − +    (25b) 

which takes the explicit 4 4×  matrix form 

0

0 0 0 0
16 200 0
41 41ˆ
20 250 0
41 41

0 0 0 0

gρ

 
 
 −
 =  
 −
 
 
 

                  (25c) 

with eigenvalues 1 1λ = , 2 0λ = , 3 0λ = , 4 0λ = . Applying Equation (22), its 
von Neumann entropy 

( )0
ˆ 0gS ρ =                         (25d) 

quantifying the state 0gφ  in Equation (25a) as a bipartite pure state. 
Taking the partial trace of 0

ˆ
gρ  in Equation (25b) with respect to the field 

mode and atom states respectively, we obtain the respective atom and field re-
duced density operators ˆ ˆ,A Fρ ρ  together with their squares in the form 

( )

( )

2
0

2
0

25 16 625 256ˆ ˆ ˆ;
41 41 1681 1681
25 16 625 256ˆ ˆ ˆ0 0 1 1 ; 0 0 1 1
41 41 1681 1681

A F g A

F A g F

tr g g e e g g e e

tr

ρ ρ ρ

ρ ρ ρ

= = + = +

= = + = +
  (25e) 

The trace of 2ˆ
Aρ  and 2ˆ

Fρ  in Equation (25e) gives 

( ) ( )2 2 881ˆ ˆ 1
1681A Ftr trρ ρ= = <                   (25f) 

demonstrating that ˆ
Aρ  and ˆ

Fρ  are mixed states, satisfying the general prop-
erty ( )2ˆ 1tr χρ <  for a mixed state ˆχρ . 

To quantify the mixedness we determine the length of the Bloch vector along 
the z-axis as follows 

( ) ( ) 9ˆ ˆˆ ˆ
41z A z F zr tr trρ σ ρ σ= = =                 (25g) 

which shows that the reduced density operators ˆ ˆ,A Fρ ρ  are non-maximally 
mixed states. 
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The eigenvalues ( )1 2,λ λ  of ˆ
Aρ  and ˆ

Fρ  are 16 25,
41 41

 
 
 

 and 25 16,
41 41

 
 
 

 

respectively, which on substituting into Equation (22), gives equal von Neumann 
entanglement entropies 

( ) ( ) ( )0 2 2
16 16 25 25ˆ ˆ ˆ log log 0.964957
41 41 41 41g A FE S Sρ ρ ρ    = = = − − =   

   
 (25h) 

Taking the properties in Equations (25d), (25f)-(25h) together clearly charac-
terizes the qubit state 0gφ  in Equation (25a) as an entangled bipartite pure 
state. However, since ( ) ( )ˆ ˆ 1A FS Sρ ρ= <  the state is not maximally entangled.  

Similarly, the transition qubit state vector 0
7 4,0 ,1
65 65g g eφ = − +  ob-

tained for 3 , 7δ λ δ λ= =  in Equation (21b) is an entangled bipartite pure 
state, but not maximally entangled. 

Finally, we consider the resonance case 0δ = , characterized by 4δ λ=  in 
the AJC model. Ignoring the phase factor in Equation (21c) the transition qubit 
state vector 0gφ  takes the form 

0
1 10; 4 : ,0 ,1
2 2g g eδ δ λ φ= = = − +            (26a) 

The corresponding density operator of the state in Equation (26a) is 

0
1 1 1 1ˆ ,0 ,0 ,0 ,1 ,1 ,0 ,1 ,1
2 2 2 2g g g g e e g e eρ = − − +      (26b) 

which takes the explicit 4 4×  matrix form 

0

0 0 0 0
1 10 0
2 2ˆ
1 10 0
2 2

0 0 0 0

gρ

 
 
 −
 =  
 −
 
 
 

                   (26c) 

with eigenvalues 1 2 3 41, 0, 0, 0λ λ λ λ= = = = . Applying Equation (22) its von 
Neumann entropy 

( )0
ˆ 0gS ρ =                         (26d) 

quantifying the state in Equation (26a) as a bipartite pure state. 
Taking the partial trace of 0

ˆ
gρ  in Equation (26b) with respect to the field 

mode and atom states respectively, we obtain the respective atom and field re-
duced density operators ˆ ˆ,A Fρ ρ  together with their squares in the form 

( )

( )

2
0

2
0

1 1 1 1ˆ ˆ ˆ;
2 2 4 4
1 1 1 1ˆ ˆ ˆ0 0 1 1 ; 0 0 1 1
2 2 4 4

A F g A

F A g F

tr g g e e g g e e

tr

ρ ρ ρ

ρ ρ ρ

= = + = +

= = + = +
    (26e) 

The trace of 2ˆ
Aρ  and 2ˆ

Fρ  in Equation (26e) is 

( ) ( )2 2 1ˆ ˆ 1
2A Ftr trρ ρ= = <                    (26f) 
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which reveals that the reduced density operators ˆ ˆ,A Fρ ρ  are mixed states. To 
quantify the mixedness, we determine the length of the Bloch vector along the 
z-axis as follows 

( ) ( )ˆ ˆˆ ˆ 0z A z F zr tr trρ σ ρ σ= = =                  (26g) 

showing that the reduced density operators ˆ
Aρ  and ˆ

Fρ  are maximally mixed 
states. 

The eigenvalues ( )1 2,λ λ  of ˆ
Aρ  and ˆ

Fρ  are 1 1,
2 2

 
 
 

 respectively which 

on substituting into Equation (22), gives equal von Neumann entanglement en-
tropies 

( ) ( ) ( )0 2 2
1 1 1 1ˆ ˆ ˆ log log 1
2 2 2 2g A FE S Sρ ρ ρ    = = = − − =   

   
     (26h) 

The unit entropy determined in Equation (26h) together with the properties 
in Equations (26d)-(26g) quantifies the transition qubit state determined at re-
sonance 0δ =  in Equation (26a) (or Equation (21c)) as a maximally entangled 
bipartite pure state. Due to this maximal entanglement property, we shall use the 
resonance transition qubit state 0gφ  in Equation (26a) to implement telepor-
tation by an entanglement swapping protocol in Section 5 below. 

Similar proof of entanglement of the AJC qubit states is easily achieved for all 
possible values of sum frequency parameter 0δ ω ω= + , confirming that in the 
initial vacuum-field AJC interaction, reversible transitions occur only between a 
pure initial separable qubit state vector 0gψ  and a pure entangled qubit state 
vector 0gφ . This property of Rabi oscillations between an initial separable state 
and an entangled transition qubit state occurs in the general AJC interaction de-
scribed by the general time evolving state vector ( )gn tΨ  in Equation (14). 

4.2. Entanglement Evolution 

Let us consider the general dynamics of AJC interaction described by the general 
time-evolving qubit state vector ( )gn tΨ  in Equation (14). Substituting 

( )gn tΨ  from Equation (14) into Equation (15a) and using the definitions of 

gnψ , gnφ  in Equation (5) the density operator takes the form 

( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ) ( ) ( ){ }
( ){ }

2 2 2

2

2

2 2

ˆ cos sin , ,

cos sin sin , , 1

cos sin sin , 1 ,

sin , 1 , 1

gn gn gn gn

gn gn gn gn gn gn

gn gn gn gn gn gn

gn gn

t R t c R t g n g n

is R t R t c s R t g n e n

is R t R t c s R t e n g n

s R t e n e n

ρ = +

+ − +

+ − − +

+ + +

   (27) 

The reduced density operator of the atom is determined by tracing over the 
field states, thus taking the form 

( ) ( ) ( )ˆ
A g et P t g g P t e eρ = +                 (28) 

after introducing the general time evolving atomic state probabilities ( )gP t , 
( )eP t  obtained as 
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( ) ( ) ( )
( ) ( )

2 2 2

2 2

cos sin

sin

g gn gn gn

e gn gn

P t R t c R t

P t s R t

= +

=
               (29) 

where the dimensionless interaction parameters gnc , gns  are defined in Equa-
tion (6) and the Rabi frequency takes the form 

( )2 21 16 1
2gnR nλ δ= + +                    (30) 

Expressing ( )ˆ
A tρ  in Equation (28) in 2 2×  matrix form 

( ) ( )
( )
0ˆ

0
e

A
g

P t
t

P t
ρ

 
=   
 

                    (31) 

We determine the quantum system entanglement degree ( )E t  defined in 
Equation (23) as 

( ) ( )( ) ( )( ) ( )
( )

( )
( )

2
2

2

0 log 0ˆ ˆlog
0 0 log

e e
A A

g g

P t P t
E t tr t t tr

P t P t
ρ ρ

   
= − = −          

(32) 

which takes the final form 

( ) ( ) ( ) ( ) ( )2 2log loge e g gE t P t P t P t P t= − −             (33) 

Using the definitions of the dimensionless parameters gnc , gns  and the Rabi 
frequency gnR  in Equations (6), (30), we evaluate the probabilities in Equation 
(29) and plot the quantum system entanglement degree ( )E τ  in Equation (33) 
against scaled time tτ λ=  for arbitrarily chosen values of sum frequency 

2 ,6 ,8δ λ λ λ=  and photon number 1, 2,3,6n =  in Figures 4-6. 
The graphs in Figures 4-6 show the effect of photon number n and sum fre-

quency 0δ ω ω= +  on the dynamical behavior of quantum entanglement 
measured by the von Neumann entropy ( )E τ  ( ( )min 0E τ = ; ( )max 1E τ = ).  

 

 

Figure 4. Degree of entanglement against scaled time for sum frequency 2δ λ=  when 1n =  
and 2n = . 
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Figure 5. Degree of entanglement against scaled time for sum frequency 6δ λ=  and 8δ λ=  
when 1n = . 

 

 

Figure 6. Degree of entanglement against scaled time for sum frequency 8δ λ=  when 1n = , 
2n = , 3n =  and 6n = . 

 
In the three figures, the phenomenon of entanglement sudden birth (ESB) and 
sudden death (ESD) is observed during the time evolution of entanglement sim-
ilar to that observed in the JC model [34] [35] [36]. In ESB there is an observed 
creation of entanglement where the initially un-entangled qubits are entangled 
after a very short time interval. For fairly low values of photon numbers n and 
sum frequency δ  as demonstrated in Figure 4 for 2δ λ=  plotted when 

1n = , 2n = , the degree of entanglement rises sharply to a maximum value of 
unity ( ( )maxE τ ) at an entangled state, stays at the maximum level for a reasona-
bly short duration, decreases to a local minimum, then rises back to the maxi-
mum value before falling sharply to zero ( ( )minE τ ) at the separable state. The 
local minimum disappears for larger values of sum frequency 6δ λ≥  at low 
photon number n and re-emerge at high photon number 4n ≥  (see Figure 5 
and Figure 6) as examples. However, in comparison to the resonance case 
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0δ =  in the JC model [36] we notice a long-lived entanglement at ( )max 1E τ =  
in the cases of 6δ λ=  plotted when 1n =  in Figure 5 and 8δ λ=  plotted 
when 3n =  in Figure 6. The process of ESB and ESD then repeats periodically, 
consistent with Rabi oscillations between the qubit states. 

In Figure 4 and Figure 6 sum frequencies are kept constant at 2δ λ=  and 
8δ λ=  respectively and photon number n is varied in each case. We clearly see 

that the frequency of oscillation of ( )E τ  increases with an increase in photon 
number n. This phenomenon in which the frequency of oscillation of ( )E τ  in-
creases with an increase in photon number n is also observed in the JC model 
[35] [36]. 

To visualize the effect of sum frequency parameter δ  on the dynamics of 
( )E τ , we considered values of sum frequency set at 6δ λ=  and 8δ λ=  for 

photon number 1n =  in Figure 5. It is clear that the frequency of oscillation of 
( )E τ  increases with an increase in sum frequency 0δ ω ω= + . In the JC mod-

el when detuning 0δ ω ω= −  is set at off resonance 0δ ≠  results into a de-
crease in the frequency of oscillation of ( )E τ  as seen in [35] [36] [37] in com-
parison to the resonance case 0δ = . 

Finally, for 8δ λ=  plotted when 1n =  in Figure 5 and in Figure 6 in 
comparison to 6δ λ=  plotted when 1n =  in Figure 5, it is clear in Figure 5 
that the degree of entanglement ( )E τ  decreases at a high value of sum fre-
quency a phenomenon similar to the JC model in [37]. The observed decrease in 
degree of entanglement is due to the property that the system loses its purity and 
the entropy decreases when the effect of sum frequency is considered for small 
number of photons n. This is remedied when the effect of sum frequency is con-
sidered for higher photon numbers n as shown in Figure 6. 

5. Teleportation 

In the present work we consider an interesting case of quantum teleportation by 
applying entanglement swapping protocol (teleportation of entanglement) [38] 
[39] [40] [41] where the teleported state is itself entangled. The state we want to 
teleport is a two-atom maximally entangled state in which we have assigned 
subscripts to distinguish the atomic qubit states in the form [42] 

( )12 1 2 1 2

1
2

e g g eϕ = −                  (34) 

and it is in Alice’s possession. In another location Bob is in possession of a 
maximally entangled qubit state 0gφ  generated in the AJC interaction in Equ-
ation (21c) and expressed as 

3 3 3

1 10 1
2 2x x xg eΦ = − +                 (35) 

where we have also assigned subscripts to the qubits in Equation (35) to clearly 
distinguish them. 

An observer, Charlie, receives qubit-1 from Alice and qubit-x from Bob. The 
entire state of the system 
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12 3xχ ϕ= ⊗ Φ                      (36a) 

which on substituting 
12ϕ  and 

3xΦ  from Equations (34), (35) and reorga-
nizing takes the form 

3 2 3 2 3 2 3 2
1 1

3 2 3 2 3 2 3 2
1 1

1
2 2 2

2 2

x x

x x

e g g e e g g e

g g e e g g e e

χ + −

− +

  +   − 
= Ψ + Ψ           

 −   + 
− Φ − Φ          

  (36b) 

after introducing the emerging Bell states obtained as 

1 1
1

1 1
1

1 1
1

1 1
1

1 0

2
1 0

2
0 1

2
0 1

2

x x
x

x x
x

x x
x

x x
x

e g

e g

e g

e g

+

−

−

+

+
Ψ =

−
Ψ =

−
Φ =

+
Φ =

                   (37) 

Charlie performs Bell state projection between qubit-1 and qubit-x (Bell state 
measurement (BSM)) and communicates his results to Bob which we have pre-
sented in Section 5.1 below. 

5.1. Bell State Measurement 

BSM is realized at Charlie’s end. Projection of a state Λ  onto Σ  is defined 
as [43] 

:PΣ = Σ Λ Σ                        (38) 

Using χ  from Equation (36b) and applying Equation (38) we obtain a Bell 
state projection outcome communicated to Bob in the form 

3 2 3 2
1 32

1 1
2 22x

e g g e
χ− − − 

Ψ = = Ψ  
 

          (39a) 

The Bell state 
32

−Ψ  in Equation (39a) is in the form of Alice’s qubit in Eq-
uation (34). Alice and Bob now have a Bell pair between qubit-2 and qubit-3. 
Similarly the other three Bell projections take the forms 

3 2 3 2
1 32

1 1
2 22x

e g g e
χ+ + + 

Ψ = = Ψ  
 

         (39b) 

3 2 3 2
1 32

1 1
2 22x

e e g g
χ− − − 

Φ = = Φ  
 

          (39c) 

3 2 3 2
1 32

1 1
2 22x

e e g g
χ+ + + 

Φ = − = − Φ  
 

        (39d) 

For these cases of Bell state projections in Equations (39b)-(39d) it will be ne-
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cessary for Bob to perform local corrections to qubit-3 by Pauli operators as 
shown in Table 1. We also see that the probability of measuring states 

32ψ  in  

Equations (39a)-(39d) in Charlie’s lab is 1
4

p = . In general, by application of the  

entanglement swapping protocol (teleportation of entanglement), qubit-2 be-
longing to Alice and qubit-3 belonging to Bob despite never having interacted 
before became entangled. Further, we see that a maximally entangled an-
ti-symmetric atom-field transition state 0gφ  (in Equation (21c)) easily gener-
ated in the AJC interaction, can be used in quantum information processing 
(QIP) protocols like entanglement swapping (teleportation of entanglement) 
which we have demonstrated in this work. We note that it is not possible to gen-
erate such an entangled anti-symmetric state in the JC interaction starting with 
the atom initially in the ground state and the field mode in the vacuum state [5]. 
Recall that the JC interaction produces a meaningful physical effect, namely, 
spontaneous emission only when the atom is initially in the excited state and the 
field mode in the vacuum state. 

5.2. Maximal Teleportation Fidelity 

For any two-qubit state ρ̂  the maximal fidelity is given by [44] 

ˆ
ˆ

2 1
3

f
F ρ
ρ

+
=                         (40) 

where ˆfρ  is the fully entangled fraction defined in the form [32] 
2

1 1
2 2

ˆ expected measured expectedˆ ˆ ˆ ˆmaxf trρ ρ ρ ρ ρ
Ψ

  = Ψ Ψ =  
  

         (41) 

From Table 1 

( )( )expected 12 12 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1ˆ
2

1 , , , , , , , ,
2

0 0 0 0
0 1 1 01
0 1 1 02
0 0 0 0

e g g e e g g e

e g e g e g e e g e e g g e g e

ρ ϕ ϕ  = = − − 

=  − − +  

 
 − =
 −
 
 

 (42) 

 
Table 1. Showing how Bob applies an appropriate gate to his qubit based on BSM from 
Charlie. 

12
ϕ  32

ψ
 UNITARY OPERATION 

( )1 2 1 2

1
2

e g g e−  ( )3 2 3 2

1
2

g g e e− +
 

( ) ( )atom3 atom2
ˆˆ

x Iσ− ⊗
 

 ( )3 2 3 2

1
2

g g e e− −
 

( ) ( )atom3 atom2
ˆˆ

yi Iσ− ⊗
 

 ( )3 2 3 2

1
2

e g g e+
 

( ) ( )atom3 atom2
ˆˆ

z Iσ ⊗
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( )( )measured 32 32 3 2 3 2 3 2 3 2

3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

1ˆ
2

1 , , , , , , , ,
2

0 0 0 0
1 0 1 1 0

0 1 1 02
0 0 0 0

e g g e e g g e

e g e g e g g e g e e g g e g e

ρ ψ ψ  = = − − 

 = − − + 

 
 −
 =

− 
 
 

 

(43) 

Substituting the results in Equation (42) and Equation (43) into the fully en-
tangled fraction Equation (41) we obtain 

2

ˆ

0 0 0 0
1 10 0
2 2 1
1 10 0
2 2

0 0 0 0

f trρ

  
  
  −
  = =  
  −
  
  

  

                (44) 

Substituting the value of the fully entangled fraction into Equation (40) we get 

ˆ 1Fρ =                            (45) 

a maximal teleportation fidelity of unity, showing that the state was fully recov-
ered, i.e. Alice’s qubit in Equation (34) was successfully teleported to Bob. We 
obtain an equal outcome to all the other measured states. We have thus achieved 
teleportation using a maximally entangled qubit state generated in an AJC inte-
raction, using the case where the atom and field are initially in the absolute 
ground state g , 0  as an example. 

6. AJC State Engineering and Experimental Implementation 

In order to systematically implement the AJC Hamiltonian with a single tuned 
blue-sideband interaction, the simulation process will involve AJC state prepara-
tion followed by unitary transformation and measurement. 

The state of the whole system as an interaction of a two-level atom and one 
photon where both the atom and photon are in ground state g , 0  will take 
the form of Equation (18). In a field mode that keeps the cavity field with upto 
one photon, the main focus should be to determine the experimental values of 
the probability amplitudes 

( ) ( )0cos gt R tα =                       (46a) 

( ) ( )0sin gt i R tβ = −                     (46b) 

for the initial states 0gψ  and 0gφ  respectively in Equation (18) and show 
their variation with time that has a direct correspondence to Rabi frequency 

0gR , which is of the form 

2 2
0

1 16
2gR λ δ= +                      (46c) 
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The measurement procedure can be easily implemented using efficient expe-
rimental schemes for manipulating quantum entanglement with atoms and 
photons in a cavity strictly in the AJC model, during which process difficulties 
can be determined as appropriate. The most common scheme being cavity 
quantum electrodynamics [45]. 

Entanglement swapping is realised in an experimental set-up through Bell 
state measurement. Initially, the two sets of entangled states in Equations (34) 
and (35) are prepared. The entire state of the system then takes the form of Equ-
ation (36b). The required Bell state measurement is achieved in this case by first 
applying a quantum controlled-NOT(C-NOT) gate operation followed by a 
quantum Hadamard gate operation to qubit 1, which we now explain with ex-
amples below. In order to realise a C-NOT quantum gate operation in this case, 
we note that state evolution operator in the AJC interaction is generated by the 
time evolution operator in Equation (12), which on substituting the Hamiltonian  

Ĥ  from Equation (11) and dropping the factorizable global phase factor  
3 ˆ
2e

gi t n Iω  − + 
  , we define a C-NOT gate operator in the AJC model in the general 

form in Equation (10), which we rewrite here for ease of reference 

( ) ( )ˆ ˆ ˆe cos singi
g gI iθε θ θ ε− = −                  (10') 

The C-NOT gate process consists of a two-level atom as the control qubit, 
which constitutes a two dimensional Hilbert space spanned by the atomic ex-
cited and ground states e , g  as basis vectors. Two non-degenerate and or-
thogonal polarized cavity modes AC  and BC  make the target qubit. The target 
qubit is defined in two-dimensional Hilbert space spanned by the state vector 

1 1 ,0A Bµ = , which expresses the presence of one photon in mode A, when 
there is no photon in mode B, and the state vector 2 0 ,1A Bµ = , which indi-
cates that mode A is in the vacuum state and one photon is present in mode B. 

Let us consider the case when qubit 1 (in Charlie’s possession) in ground state 

1g  enters an electromagnetic cavity with mode A in vacuum state and a single 
photon in mode B. The atom couples to the anti-rotating negative frequency 
component of the field mode undergoing an AJC qubit state transition. After the  

atom interacts with mode A for a time 
0g

t
R

=
π

, equal to half Rabi oscillation 

time, the driving field is modulated such that 

0 02g gR t A tθ λ= = = π                     (47) 

Redefining [5] 

0 2
2 2 2

ω ω ωδ δ ωα
λ λ λ λ

− +
= = = +                 (48) 

and considering a resonance case where 0 0δ ω ω= − =  with the coupling 
strength λ  far much greater than the quantized field mode angular frequency 
ω , that is λ ω�  in the deep strong coupling regime of the AJC model, α  in 
Equation (48) becomes very small thus 
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2
tθ λ= =

π                          (49) 

since 0 1gA =  in Equation (47) determined from the general form in Equation 
(6). The evolution of this interaction determined by applying the AJC qubit state 
transition operation in Equation (10) noting the definition of ˆ

gI  and ˆ
gε  [5] 

in Equation (8) is of the form 

( ) ( )ˆ
e ,0 cos ,0 sin ,1gi

A A Ag g i eθε θ θ− = −            (50a) 

which reduces to 
,0 ,1A Ag i e→ −                      (50b) 

We observe that the atom interacted with mode A and completed half of the 
Rabi oscillation, as a result, it contributed a photon to mode A and evolved to 
excited state e . Now, after the interaction time, it enters mode B containing a 
single photon, interacting with the cavity mode as follows 

( ) ( )ˆe ,1 cos ,1 sin ,0ei
B B Bi e i e gθε θ θ− = − +           (50c) 

After an interaction with mode B for a time 1 2t t=  such that  

( )0 1
1

0 1

g e

g e

R R
t

R R

+π
= , the driving field is modulated such that 0 1

0 1 2
g e

g e

R R
t

R R
θ

 
= =  
 

π
+

 

with 0 02 2g gR Aλ λ= =  since 0 1gA =  and 1 12 2e eR Aλ λ= =  since 1 1eA = . 

Therefore, 
2

tλ =
π . The form of Equation (50c) results into the evolution 

,1 ,0B Bi e g− →                      (50d) 

The results in Equation (50d) show that the atom evolves to ground state and 
absorbs a photon initially in mode B. Therefore the atom clearly performs a 
swapping of the electromagnetic field between the two field modes by controlled 
interaction. 

When the atom in ground state g , enters the electromagnetic cavity con-
taining a single photon in mode A and mode B in vacuum state, the atom and 
the field interact as follows 

( ) ( )ˆ
e ,0 cos ,0 sin ,1gi

B B Bg g eθε θ θ− = −            (50e) 

After an interaction with field mode B for a time 
0g

t
R

=
π

 equal to half Rabi 

oscillation time, the driving field is modulated such that 0gR tθ = = π , with 

0 02 2g gR Aλ λ= =  since 0 1gA = . Therefore 
2

tθ λ= =
π . The form of Equation 

(50e) results in the evolution 

,0 ,1B Bg e→ −                       (50f) 

The atom then enters mode A containing one photon and interacts as follows 

( ) ( )ˆe ,1 cos ,1 sin ,0ei
A A Ae e i gθε θ θ− = − −           (50g) 

After an interaction with the cavity mode for a time 1 2t t=  such that 
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( )1 0
1

1 0

e g

e g

R R
t

R R

+π
=  we obtain a driving field modulation 1 0

1 0 2
e g

e g

R R
t

R R
θ

 
= =  
 

π
+

, 

with 1 12 2e eR Aλ λ= =  since 1 1eA =  and 0 02 2g gR Aλ λ= =  since 0 1gA = . 

Therefore 
2

tθ λ= =
π . The form of Equation (50g) results into the evolution 

,1 ,0A Ae i g→                       (50h) 

This shows that the atom evolves to ground state and performs a field swap-
ping by absorbing a photon in mode A. 

When the qubit 1, a two-level atom in excited state 
1e  enters mode A in 

vacuum state, that is target qubit 2µ , the atom propagates as a free wave 
without coupling to the field mode in vacuum state 0  [5], leaving the cavity 
without altering the state of the cavity-field mode. A similar observation is made 
when the atom in excited state 

1e  enters cavity B in vacuum state for the case 
of target qubit 1µ . 

The Hadamard gate operation then follows. Noting the qubit state transition 
algebraic operations in Equation (9), we identify the normalized qubit state tran-
sition operator ˆ

gε  defined in Equation (8) as the AJC Hadamard gate operator 
which we use Equation (4) to express in the general form 

†ˆ ˆ ˆ ˆ ˆˆ z
g

gn

s as a s
A

α
ε − ++ +

=                     (51a) 

where gnA  is defined in Equation (6). For the specific example where atom be-
gins in the ground state 

1g  and the field mode in the vacuum state 0 , we 
set 0n =  and take 4δ λ=  in Equation (6) to define the corresponding Ha-
damard gate operator in the form 

( )†
0

0

1ˆ ˆ ˆ ˆ ˆ ˆ2 ; 2g z g
g

s as a s A
A

ε − += + + =              (51b) 

Applying this Hadamard gate operator, rotates the initial atomic ground state 

1g  to 

( )1 1 1

1
2

g e g→ −                    (51c) 

On the other hand, if the atom starts from an initial excited state 
1e , the 

appropriate Hadamard gate operator for such a process follows from the defini-
tion of the relevant normalised qubit state transition operator ˆ

eε  in [5], which 
on setting 4δ λ=  and 1n =  takes the form 

( )†
1

1

1ˆ ˆ ˆ ˆ ˆ ˆ2 ; 2e z e
e

s as a s A
A

ε − += + + =              (52a) 

which rotates the initial atomic excited state e  to 

( )1 1 1

1
2

e e g→ +                    (52b) 

Application of the C-NOT and Hadamard gate operations using the respective 
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operators defined in Equation (10') or earlier (10) and Equations (51b), (52a) as 
briefly explained in the above example, provides a practical platform for experi-
mental implementation of the AJC quantum teleportation process described in 
Sec. 5. Here, results of the Bell state measurement are communicated to Bob (by 
Charlie) who applies appropriate single-qubit rotation to qubit 3 in his posses-
sion. Details of experimental design, procedures and difficulties can be provided 
as appropriate, noting that the quantum Rabi interaction is generally achieved in 
cavity or circuit quantum electrodynamics, quantum dots or ion traps, etc. 

7. Conclusion 

In this paper we have analysed entanglement of a two-level atom and a quan-
tized electromagnetic field mode in an AJC qubit formed in the AJC interaction 
mechanism. The effect of sum-frequency parameter and photon number on the 
dynamical behavior of entanglement measured by von Neumann entropy was 
studied which brought a clear visualization of this interaction similar to the 
graphical representation on Bloch sphere. The graphical representation of Rabi 
oscillations on the Bloch sphere demonstrated an important physical property 
that the AJC interaction process occurs in the reverse sense relative to the JC in-
teraction process. We further generated an entangled AJC qubit state in the AJC 
interaction mechanism which we used in the entanglement swapping protocol as 
Bob’s qubit. We obtained an impressive maximal teleportation fidelity 1Fρ =  
showing that the state was fully recovered. This impressive result of fidelity, 
opens all possible directions for future research in teleportation strictly within 
the AJC model. In conclusion we observe that the operator ordering that distin-
guishes the rotating (JC) component and anti-rotating component (AJC) has an 
important physical foundation with reference to the rotating positive and an-
ti-rotating negative frequency components of the field mode which dictates the 
coupling of the degenerate states of a two-level atom to the frequency compo-
nents of the field mode, an important basis for realizing the workings in the AJC 
interaction mechanism and JC interaction mechanism. 
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