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Abstract 

Einstein theorized that Gravity is not a force derived from a potential that 
acts across a distance. It is a distortion of space and time in which we live by 
masses and energy. Consistent with Einstein’s theory, a model of space-time 
curvature modes and associated curvature quanta in slightly warped space-time 
generated by a light Photon is derived. Both a Schrödinger and a Second 
Quantized representation of the space-time curvature mode quanta are cal-
culated and are fourth rank tensors. The eigenvalues of these equations are 
radii of curvature, not energy. The Eigenfunctions are linear functions of the 
components of the tensor that describes the curvature of space-time. 
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1. Introduction and Summary 

Consistent with Einstein’s [1] description of the effect of gravity being a distor-
tion of space and time, a model of space-time curvature modes generated by a 
light Photon is derived. The space-time curvature modes are derived from Eins-
tein’s Field Equation in the limit of slightly warped space-time. A Quantum 
Mechanical model of the space-time modes is obtained. Both a Schrödinger and 
a Second Quantized representation of the space-time mode quanta are derived. 
The eigenvalues of these equations are radii of curvature, not energy. The Ei-
genfunctions are linear functions of the components of the tensor that describes 
the curvature of space-time. Since light does not interact to first order with iso-
tropic Minkowski space, an Earth-like mass is used to warp space-time and faci-
litate the interaction of the light wave and the space-time curvature modes. Flat 
Minkowski space-time does not have modes or quanta. Only curved space-time 
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has modes and mode quanta that can interact.  
The space-time curvature modes called gravity Phonons [2] are different than 

the Electromagnetic Field modes which also have quanta called Photons. The 
Electromagnetic Field modes exist in space-time. The space-time curvature 
modes are modes of the curvature of space-time itself. The space-time curvature 
modes are modes of a description of the vacuum. This derivation is only valid 
for slightly warped space-time. It is not valid in the vicinity of Black Holes, Neu-
tron stars, or similar objects. Space-time in most of the Universe is only slightly 
curved. 

The reason we don’t feel or hear the space-time curvature modes is that the 
curvature is very slight. Even the Sun with its huge mass produces only a slight 
curvature in space-time. If a sphere is fitted to the space-time curvature pro-
duced by the Sun, it would need a radius equal to the distance light travels in 5 
days and 3.5 hours. The radius of this sphere is the radius of curvature that 
characterizes the modes. 

Einstein [1] theorized in 1915 that Gravity is not a force derived from a poten-
tial that acts across a distance. The effect of gravity is a distortion of space and 
time by masses and energy. For example, one mass moves towards another mass 
because it travels through space and time that is warped to make the masses tra-
vel towards each other. This has been verified by astronomical observations and 
experiments. Einstein also postulated the existence of wave-like space-time 
modes. This too has been verified by the Laser Interferometer Gravity-Wave 
Observatory—LIGO [3] experiment.  

In this paper, equations derived from the General Relativity Theory (GRT) 
and verified by astronomical observations or experiments are employed at 
every step of the calculations. 

Because this space-time curvature mode model is only valid for slightly 
warped space-time, it is only scale-invariant within a limited range of space-time 
curvature amplitudes.  

The space-time curvature mode quanta are fourth rank tensors, and mass-
less Bosons, that propagate with the speed of light. Light Photons are vector 
components derived from the Maxwell Electromagnetic Theory and have a 
spin angular momentum of 1. The space-time curvature modes are fourth rank 
tensors derived from the GRT and have spin angular wave vector of 4. The ex-
ample of gravity Phonons calculated here has a very large radius of curvature of 

CR 5769.812126=  Light Years. Gravity is a very weak force. Space-time curva-
ture modes affect the momentum and energy of objects propagating through it, 
and the momentum and energy of the objects affect the curvature of space-time.  

Note, that this is only a mathematical model that is valid for a limited range of 
Nature, and in this region of Nature it is only an approximation. 

The gravity Phonons, like other wave quanta, can form entangled states [4] [5]. 
Since gravity Phonons have radii of curvature with Astronomical dimensions 
and few losses, entangled gravity Phonon states can link structures over in-
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terstellar distances.  
The eccentric motion of moons and planets also produces space-time wave 

modes. For example, the space-time wave mode generated by the Moon’s eccen-
tric orbit has a period of 27 days 7 hours, 12 minutes, and a wavelength of 
7.071264665 × 1014 m or 27.3 Light Days. Because the wavelength is much larger 
than the 2.667 light seconds size of the system, the motion of the Lunar system 
can be modeled by Newtonian Classical Mechanics.  

In the late part of the 19’th century it was thought that like sound, which is a 
mode of the atoms in a material, electromagnetism is a mode of a substance that 
was named Luminiferous Aether. The Michelson-Morley experiment [6] and 
Einstein’s calculation showed that there is no Luminiferous Aether of which 
electromagnetic effects are modes. Electromagnetic modes can propagate 
through space-time. But the electromagnetic waves are not modes of space-time. 

The electromagnetic wave discussed in this paper is affected by the curvature 
of space-time, and the electromagnetic wave affects the curvature of space-time. 
If the Michelson-Morley experiment could have been performed at a higher ac-
curacy, the interaction of the light and space-time would have been discovered. 
Light propagates differently in different directions due to the Earth not being an 
ideal sphere, and also due to the gravity effects of the Moon, the Sun, Jupiter, 
and the effect of other solar system objects. These effects are described by the 
GRT.  

Sakharov [7] and Puthoff [8] derive the effect of gravity from quantum fluctu-
ations of the vacuum. Boccaletti [9] calculated the effect of a light wave on the 
curvature of space-time subject to a steady electromagnetic field.  

Bryce C. DeWitt [10] [11] [12] attempts to derive a Quantum theory of gravity 
from the GRT starting with a General Relativistic Lagrangian. His derivation is 
intended to be applicable to all gravity values. He wrote 3 papers but he was un-
able to produce a Quantum Mechanical model of gravity in a form that has use-
ful applications.  

There are a large number of publications describing unsuccessful attempts to 
develop models of Quantized Gravity called Gravitons [6] [7] [8] [10] [11] [12]. 
A number of these models use Maxwell’s Equations modified by gravitational 
Potentials [10]. Others use Lagrangeans of Metric tensor components. This is 
similar to Einstein’s equation of motion derived by a variational method. These 
run into difficulty with Gauge Normalization resulting in terms that go to infin-
ity. 

Professor Wytler C. dos Santos [13] derives the effect of gravity on electro-
magnetic fields expressed by the Einstein-Maxwell equation and the Rainich 
condition. Using the Electromagnetic Stress tensor he derives the Ricci tensor of 
Einstein’s Field Equation. He calculates the effect of Maxwell’s equation on the 
Riemann Curvature tensor. This derivation is in flat Minkowski space. Therefore, 
Professor dos Santos result is to second order in the Electromagnetic Field ten-
sor components. The derivation in this paper uses a space-time that has a cur-
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vature due to a mass, and thus the effects calculated are to first order in the Elec-
tromagnetic Field tensor components. 

Professor Rovelli [14] in his “Zakopane Lectures on Loop Gravity” describes 
Loop-Quantum-Gravity. He postulates Curvature Operators. These operators 
are similar to the operators used in this paper. The Curvature operators in this 
paper are derived from the Riemann Christoffel tensor and show that such oper-
ators are only valid for slight space-time curvatures. The Loop-Quantum-Gravity 
models space as a lattice of triangles with Plank length dimensions. Half integer 
spins are associated with the triangle edges. “Loop Quantum Gravity” [15] is also 
based on this discrete space-time model. It results in Gravity Quanta that can 
couple to elementary particles. This implies a very large amplitude of Gravity 
Quanta which is inconsistent with a weak gravity force. 

The Quantum Mechanical model of Gravity derived in this paper is based on 
the GRT which has been verified by observations and experiments rather than 
use postulated quantities. 

2. Einstein’s Field Equation for Slightly Curved Space-Time 

Note: Numbers such as {8} in curly brackets denote equation numbers in the lite-
rature. 

To describe the effect of the energy of the light wave on the curvature of 
space-time, Einstein’s Field Equation is used. In Einstein’s Field Equation, the 
Einstein tensor describes the curvature of space-time, and the Stress tensor de-
scribes the effect of the light wave energy density. The derivation is for slightly 
warped space-time only. The lightwave does not interact with flat isotropic 
Minkowski space to first order in the coordinate components.  

The Metric tensor in curved space-time describes the transformation from 
one coordinate system to another coordinate system that is located at an infini-
tesimal distance away. The two coordinate systems are tilted with respect to each 
other. Thus, the Metric tensor describes the local tilt of the two coordinate sys-
tems. The components of the Metric tensor describe the effect of mass and 
energy. This is the curvature of space-time. Einstein called the Metric Tensor the 
Fundamental Tensor. 

The components of the Metric tensor for isotropic Minkowski space are only 
constant for rectangular coordinates. For curvilinear coordinates, for the same 
isotropic space-time, the Metric tensor has components that are functions of the 
coordinates. Therefore, this derivation is restricted to rectangular coordinates. 
After the calculation, the result can be transformed into any arbitrary coordi-
nates. The metric tensor has the following properties: 

) ) )a  g g       b  g g     therefore    c  g g 4ατ α ατ α ατ
τβ β τα α τα= δ = δ =       (1) 

The Metric tensor components gµν  for the case of slightly warped space-time 
can be approximated as follows: 

) ) ) ( )( )a  g h   where  b  0   c  h h hµν µν µν α µν α µν β µν α β µν≈ η + ∂ η = ∂ ∂ ∂ ∂
 (2) 
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The tensor components hµν  are small parameters. An Earth-like mass is used 
to warp space-time slightly to facilitate the Photon space-time curvature mode 
interaction. The Metric tensor components depend on both the Earth-like mass 
and the energy of the light beam.  

A four-dimensional Riemann space with a signature    − + + +  is used. It 
consists of the three spatial dimensions and time. The time coordinate t is multip-
lied by the velocity of light c in free space so that this coordinate, too, has dimen-
sions of space 0 1 2 3x jct, x , x , x= . Greek subscripts µ = 0, 1, 2, and 3 denote 
four-dimensional coordinates and Latin subscripts a = 1, 2, and 3 denote 
three-dimensional coordinates. The volume V4 and area S3 of a four-dimensional 
sphere is 

) ( ) ) ( ) ( )

) ( ) ) ( )

n
2

n nn
n n n n 1 n

n

2
4 2 3

4 4 4 3 4 4

dV R
n Dimensions  a  V R R      b  S R

n dR1
2

4 Dimensions  c  V R R                d  S R 2 R
2

−= =
 Γ + 


π
π



=

π

=

   (3) 

where n 1
2

 Γ + 
 

 is the Gamma function of n 1
2
+ . The “Surface” S3 in four- 

dimensions has dimensions of volume in three-dimensional space. Here R4 is the 
radius of the four-dimensional sphere which is not the same as the radius R of  

the three-dimensional sphere. The Schwarzschild ratio ssr
R⊕

 of the Earth-like  

mass is 1.390705726 × 10−9. The ratio of the radius R4 of a four-dimensional 
sphere to the radius R of the corresponding three-dimensional sphere is constant 
for all sizes of the sphere. Therefore, the Schwarzschild ratio is the same for the 
three or four-dimensional sphere.  

For a mass M, modeled as a point mass, the radius rss is the distance from the 
center of the mass M to the point at which a test mass m has to have an escape 
velocity equal to the speed of light c. This distance is the Schwarzschild radius rss.  

ss
2

r 2M G
R c R

⊕

⊕ ⊕

=                           (4) 

where 24M 5.9724 10 kg⊕ = ×  is the Earth-like mass. ssr 8.87071165 mm=  is 
the Schwarzschild radius [16] and R 6378137 m⊕ =  is the radius of the 
Earth-like mass. 

The g00 component of the Metric tensor can be approximated by the effect of the 
time dilation calculated by Einstein [1] in the chapter “The Foundation of the GRT” 
section 22 “Behavior of Rods and Clocks in the Static Gravitational Field. Bending 
of Light Rays. Motion of the Perihelion of a Planetary Orbit.” on page 160 using g00 
from equation {70}. This equation for {g00} is also the Schwarzschild metric [17] or 
Schwarzschild solution. 

) ) ss
00 00

4ss

4

r1a  g        b  1 h 1
2Rr1

R

≈ + ≈ −

+

            (5) 
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where 9ss

4

r
1.390705726 10

R
−= ×  is the Schwarzschild ratio of the Earth-like  

mass. The distance vector with components xµ′  in the vicinity of the mass M⊕  
is approximately equal to the product of the metric tensor with components gµν  
times the distance vector far from the mass with components xν . 

) ) ) )ss ss ss

4 4 4

r r r
a  x g x   b  x 1 x   c  x x  d  R 1 R

R R Rµ µν ν µ µ µ ν ⊕ ⊕′ ′ ′ ′= ≈ − ≈ ≈ −     (6) 

Einstein’s Field equation [1] has the following form: 
4c G g T

8 G
Curvature of space-time Energy density

µν µν µν+ Λ =
π

=
               (7) 

where Gµν  is a component of the Einstein tensor, Tµν  is a component of the 
Stress tensor and Λ is Einstein’s Cosmological Constant. The cosmological con-
stant Λ is neglected here. The components of the Einstein tensor Gµν  have  

dimensions of curvature 
2

1
distance

.  

The GRT has always given results in agreement with observations and expe-
riments. Therefore the effect of the energy of the light wave on the curvature of 
space-time, predicted by the GRT must also be correct.  

The Stress tensor has two parts. A part due to the energy density uE of the light 
beam and a part due to the energy density uEM of the interaction of the light 
beam and the mass.  

The part of the Stress tensor that depends only on the energy density of the 
light beam is the Electromagnetic Stress tensor calculated in Appendix A. 
Without losing generality one can assume that the light electric field is aligned 
along the x1 axis and it can be assumed to be a plane wave. As is shown in Ap-
pendix A, Equation (A6), the Electromagnetic Stress Tensor [18] in this case has 
only 4 non zero components T00(Light), T30(Light), T03(Light), and T33(Light) all 
equal, to within a plus or minus sign, to the Electromagnetic Energy density 

2
0 1Eε . The energy density uE of the light beam is:  

) ) ) ( )2
E 1 o Ea  u E      b  u n      c  T Light e nµν µν= ε = ω = ω        (8) 

13
3

Photonsn 1.14527 10
m

= ×  is the density of incident solar Photons at the Equator  

on top of the atmosphere, and 153.756087441 10ω = ×  radians per second is the 
frequency of the light beam at the peak of the Black Body radiation curve of the 
Sun. The Sun’s temperature is 5778˚K. The tensor components eµν  from Equa-
tion (A5) have the following values e00 = 1, e30 = −1, e03 = −1, e33 = 1, and all oth-
er components of this tensor are equal to zero. This term does not change with 
the direction of the light beam, it is symmetric, and depends on even powers of 
the coordinate components only. The effect of the Earth-like mass M⊕  on the  

Light electromagnetic wave with a Photon density n and wave vector 
c
ω

 is to  
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deflect it. The relativistic energy density 2c′ρ  of the Earth-like mass is equal to 
the relativistic mass times the square of the velocity of light divided by the surface  

S3 of a four-dimensional sphere. Using Equation (4) for ss

4

r
R

 one obtains  

) )

) )

2 2
2 2 ss

2 3
44ss

3
4

2 2
2

ss2 3 2 4 2
4 4

M c M c r
a  c       b  c 1

2R2 RrS 1
R

M c M G 2M G
c  c       where   d  r

2 R 2 R c

⊕ ⊕

⊕ ⊕ ⊕

 
′ ′ρ = ρ ≈ + + 

 −

′ρ ≈
π

+ + =

π

π





          (9) 

By using Equation (8b) and the second term on the right of Equation (9c) to 
form the interaction energy density uEM of the light beam and the Earth-like 
mass: 

) )
2 2

EM 2 4 2 4
4 4

M G M G
a  u n       b  T e n

2 R 2 R
⊕ ⊕

µν µν= ω =
π π

ω            (10) 

The energy density uEM of the interaction of the light beam and the space-time 
curvature modes are not symmetric and can be a linear function of the coordi-
nates. The much smaller energy density uE of the light beam does not depend on 
the direction of the light beam. It is symmetric and depends to second-order on 
the coordinates. It has been neglected. 

6
EM E3 3

Joules Joulesu 1616.138805          u 4.536471695 10
m m

−= = ×  

The radius R4 of the four-dimensional sphere is calculated from the radius R⊕  
of the three-dimensional sphere by setting the S3 equal to the three-dimensional 
volume of the sphere. Substituting Equation (10b) into Einstein’s Field Equation, 
Equation (7). 

24

2 4
4

M Gc G e n
8 G 2 R

⊕
µν µνπ π
= ω                     (11) 

The Einstein Tensor with components Gµν  is a function of the Ricci tensor 
with components Rµν  and the scalar curvature Rαα . 

1G R R g
2µν µν αα µν= −                       (12) 

The Ricci tensor with components Rµν  is equal to the contraction over the in-
dices ρ and τ = ρ of the Riemann-Christoffel tensor with components Bρ

µντ . The 
Riemann-Christoffel tensor with components Bρ

µντ  describes the curvature of 
space-time. It describes the transport B Vρ

µντ ρ  of a covariant vector with com-
ponents Vρ  around an infinitesimal size volume in curved space-time. The 
difference of the vector V when transported clockwise and counter-clockwise 
back to the same point is a measure of the curvature of space-time. Therefore, the 
Riemann-Christoffel tensor is equal to the difference between two similar tensors 
Aρ

µντ  and Aρ
µτν  shown in reference [1] in section 12 “The Riemann-Christoffel 

Tensor”, equation {42} and the preceding discussion. The route of the vector can 

https://doi.org/10.4236/jmp.2020.1112125


P. Kornreich 
 

 

DOI: 10.4236/jmp.2020.1112125 1984 Journal of Modern Physics 
 

be modeled by a path with four turning points. The index µ is the number of 
each turning point. At each turning point µ, a rotation matrix associated with a 
clockwise path has indices ντ, and the rotation matrices associated with the 
counter-clockwise path have indices τν. 

The first Riemann-Christoffel tensor contravariant index describes the index 
of the components ρ of the vector V. The second Riemann-Christoffel tensor 
covariant index describes the turning point number μ. The row and column 
numbers ν and τ of the rotation matrices at the turning points provide another 
two covariant Riemann-Christoffel tensor indices. Thus, the Riemann-Christoffel 
tensor Bρ

µντ  is a fourth-rank tensor with 4 indices , ,ρ µ ν  and τ . In a flat 
Minkowski space, the vector V has the same form after being transported 
around the infinitesimal volume clockwise or counter-clockwise and thus, the 
Riemann-Christoffel tensor is equal to zero.  

The Riemann-Christoffel tensor is also equal to the commutation relation of 
two covariant derivatives [1]. In flat space, the covariant derivatives reduce to 
ordinary derivatives that commute. Thus, in flat Minkowski space, the commu-
tation relation of two derivatives is equal to zero, and therefore, the Rie-
mann-Christoffel tensor is equal to zero.  

This description has too much unnecessary data to just describe the curvature 
of the space-time. Certainly, the initial direction of the vector V with component 
indices ρ is irrelevant. It is, also, sufficient to describe the new direction ac-
quired by the vector V at each turning point by a vector with index ν or τ, ra-
ther than describing the turning process by a matrix with indices ν and τ. This 
leaves the tensor describing the curvature of space-time with just two indices, 
μ and ν. Thus, the Riemann-Christoffel tensor describing the curvature of 
space-time can be reduced to a second-rank tensor, the Ricci tensor with in-
dices μ and ν. The conversion of the fourth-rank Riemann-Christoffel tensor 
to the second-rank Ricci tensor, with components Rµν  can be accomplished 
by taking the inner product of the vector V with components Vρ  and a vector 
with components that have indices equal to the row numbers τ of the matrices at 
the turning points. A vector with components with indices equal to the column 
numbers ν of the matrices at the turning points can also be used. Thus, the Rie-
mann-Christoffel tensor is contracted over the two indices ρ and τ to obtain the 
Ricci tensor Rµν . 

R Bρ
µν µνρ=                            (13) 

The Riemann-Christoffel tensor was derived in Reference [1], page 141 equa-
tion {43}: 

)
) ( )( )
)

a  B

b  B     where   h h h

c  R

ρ ρ ρ α ρ α ρ
µντ τ µν ν µτ µν ατ µτ αν

ρ ρ ρ αβ αβ µβ
µντ τ µν ν µτ α β µ α

ρ ρ
µν ρ µν ν µρ

= −∂ Γ + ∂ Γ −Γ Γ + Γ Γ

≈ −∂ Γ + ∂ Γ ∂ ∂ ∂ ∂

≈ −∂ Γ + ∂ Γ

    (14) 

The Christoffel symbol ρ
µνΓ  is a function of the derivatives of the Metric tensor 

components. The Metric tensor components are of the order of the Schwarzschild  
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ratio 9ssr
1.3907 10

R
−= × . Therefore, the last two terms of Equation (14a)  

consisting of products of Christoffel symbols are of the order of 1.934 × 
10−18, and thus can be neglected which simplifies the calculation. The Chris-
toffel symbols ρ

µνΓ  are obtained from reference [1] Einstein’s Equation of Mo-
tion, equation {20d} and equations {21} and {23} on page 182, given here by: 

)

)

1a  g g g g
2
1b  h h h
2

ρ ρα
µν ν µα µ να α µν

ρ ρα
µν ν µα µ να α µν

 Γ = − ∂ + ∂ − ∂ 

 Γ ≈ − η ∂ + ∂ − ∂ 

               (15) 

where ραη  is a Minkowski Metric tensor component for a Riemann space with 
a signature − + + +. Note from Equations (15) that the Christoffel symbol com-
ponents are functions of the derivatives of the Metric tensor components. The 
Metric tensor components hµν  shown in Equations (1) and (2) are very small. 
For slightly warped space-time the Metric tensor components gµν  of Equation 
(2) can be approximated by the Minkowski tensor components µνη . Substitut-
ing Equation (15b) into Equation (14c)      

( )v
1R h h h h
2

ρα
µν ρ µ α ρ α µν ν µ ρα ρ α µρ≈ η ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂            (16) 

The trace of the Ricci tensor can be calculated from Equation (16) 

1 1R h h h h
2 4

ρα
γγ ρ γ γα ρ α γγ γ γ ρα γ α γρ ≈ η ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂             (17) 

Substituting Equation (16) and Equation (17) into Equation (12). 

( )

( )

1G h h h h
2
1        h h h h
4

ρα
µν ρ µ µα ρ α µν ν µ ρα ν α µρ

µν ρα
ρ β βα ρ α ββ β β ρα β α βρ

= η ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂

− η η ∂ ∂ − ∂ ∂ − ∂ ∂ + ∂ ∂
         (18) 

Equation (18) for Einstein’s tensor can be written in terms of a fourth-rank 
tensor with components sαβµν .  

s Gαβ
α β µν µν∂ ∂ =                         (19) 

Since the gradient vector with components α∂  is covariant and the inner 
product sαβα β µν∂ ∂  contracts to Gµν , the tensor with components sαβµν  must be 
partially contravariant. The tensor components ( )s s hαβ αβ

µν µν ρτ=  are linear func-
tions of the Metric tensor components. For example, the G33 component of the 
Einstein tensor derived from Equation (18) is: 

[ ] 33 03 00 1 2 3

22 21 1
33

12 11 2

30 00 3

h 0 0 h
0 h h 01G
0 h h 02
h 0 0 h

− ∂∂ ∂ ∂ ∂    
   − ∂   ≈
   − ∂
   − ∂   

    (20) 

After multiplying out Equation (20) all derivatives have to be moved to the left 
like in Equation (19). The differentiation operators µ∂  operate on the Metric 
tensor components that describe the effect of the Earth-like mass and the light 
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electromagnetic field. Substituting Equation (10b) and Equation (19) into Equa-
tion (7) to obtain for Einstein’s Field Equation in the limit of slightly warped 
space-time. 

) ( )

) ( )

24
Earth Earth

2 4
4

24

2 4
4

M Gca  s s e n
8 G 2 R

M Gcb  s s e n
8 G 2 R

αβ αβ ⊕
α β µν α β µν µν

αβ αβ ⊕
α β µν α β µν µν

π π

π

+ ∂ ∂ = ω

+ = ω
π

K K





∂ ∂

∂ ∂

          (21) 

Equation (21) has dimensions of energy density. Equation (21b) is in the form of 
a Hamiltonian. The canonical variables are the momentum components j α− ∂  
and the curvature vector components αK . The first term sαβα β µν∂ ∂  of Equation 
(21a) describes the part associated with the effect of the interaction energy den-
sity of the light beam and the Earth-like mass.  

The terms Earth Earths sαβ αβ
α β µν α β µν∂ ∂ = K K  appearing in Equation (21a) and Equa-

tion (21b) describe the part associated with the curvature of space-time due to 
the Earth-like mass. This is similar to equation {7} in “Physical and Geometric 
Interpretation of the Ricci Tensor and Scalar Curvature” by L. C. Loveridge [19]. 
The tensor with components sαβµν  is dimensionless.  

3. Schrödinger Formulation of Space-Time Curvature Modes 

Equation (21b), derived from the GRT, bears a resemblance to a tensor form of 
Schrödinger’s equation. Here j α− ∂  is a component of a momentum vector oper-
ator and αK  is a curvature vector potential operator. αK  stands for Krümmung,  

curvature in German. By multiplying Equation (21b) by 4

8 G
c
π  one obtains a  

tensor Schrödinger like equation for curvature instead of energy. The equa-
tion instead of having an energy Eigenvalue, as the conventional Schrödinger  

equation, this equation has a curvature Eigenvalue 2
EM

1
R

. 

2
EM

V
R

αβαβ αβ αβ
α β µν αβ µν µν

η
∂ ∂ ψ + ψ = ψ                     (22) 

αβη  are components of the Minkowski Metric tensor and ( )hαβ
µν λρψ  is a di-

mensionless tensor wave function of a space-time curvature mode. The tensor 
wave functions ( )hαβ

µν λρψ  are linear functions of the components of the Metric 
tensor components hλρ  that describe the curvature of space-time due to the 
light beam and Earth-like mass. The eigenvalues of these equations are radii of 
curvature, not energy. 

) ( ) ) ( ) ( )
4

4-Volume 4-Volume

1a  ws       b  1 d x
V

αβ αβ ∗ αβ
µνµν αβ µν µνψ = = ψ ψ∫         (23) 

No summation over subscripts in brackets is not implied. This derivation of a 
Quantum Mechanical formulation is only valid for slightly curved space-time. 
Since this is a straightforward derivation from Einstein’s Field Equation no 
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Gauge requirements are necessary. From Equation (21) the square of the reci-
procal of the radius of curvature REM is: 

2

2 4 2 4
EM 4

M G1 8 Ge n
R c 2 R

⊕
µν

π
π

= ω                     (24) 

where 19
EMR 5.45866374 10 m= ×  or REM = 5769.812126 Light Years.  

4. Formulation Second Quantized Form of Space-Time  
Curvature Modes 

Dividing Equation (21b) by 
2

2 4
4

M G
n

2 R
⊕

π
ω , using Equation (24) in the resulting 

equation and expanding the ensuing equation.  

( )( ) ( )( )2 2
M M

1e j j R s j j R s
2

αβ αβ
µν α α β β µν α α β β µν

 = + − + − + K K K K∂ ∂ ∂ ∂  (25) 

The j α∂  and αK  curvature operators don’t commute. 

2 2
EM EMj R s j R s eαβ αβ

α β µν α β µν µν− + =K K∂ ∂                (26) 

Similar to the derivation of the quantization of the Electromagnetic Field by G. 
M. Wysin [20] in equations {43} and {44} the state raising and state lowering 
operators are defined. 

) ( ) ( )

) ( ) ( )

† ME
a a

ME
a a

R
a  exp  jq x j

2
R

b  exp jq x j
2

α α α

α α α

− ≡ −

≡ +

b K

b K

∂

∂
              (27) 

The state raising and state lowering operators are dimensionless curvature oper-
ators. Here ( )exp jq xτ τ−  represents a forward traveling space-time wave mode 
and ( )exp jq xτ τ  represents a reverse traveling space-time wave mode. The 
gravity Phonon number state wave functions mλ  form a Hilbert space. The 
state raising vector component operators †

αb  and state lowering vector compo-
nent operators αb  are operators on the gravity Phonon Hilbert space. 

) ( )
)
) ( )†

ˆa  s m a s m m 1

b  s 0 0

ˆc  s m a s m 1 m 1

αβ αβ
α µν λ α µν λ

αβ
α µν λ

αβ αβ
α µν λ α µν λ

= −

=

= + +

b

b

b

              (28) 

âβ  is a component of a unit vector in four dimensional space. The commuta-
tion relations of the αb  and †

βb  are: 
† †

† †

e

where   for 
β α β α µν

β α α β

− =

= α ≠ β

b b b b

b b b b
                 (29) 

Substituting Equation (27) into Equation (25) and dividing the result equation 
by 2

EMR . 
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( )† †
2
EM

1
2Rµν α β α β= +C b b b b                    (30) 

where µνC  is a curvature Hamiltonian tensor. Since the Metric tensor is sym-
metric, the tensor with components s sαβ βα

µν µν=  and s sαβ αβ
µν νµ=  is also symmetric. 

The tensor with components sαβµν  is a linear function the components 
h hαβ βα=  of the Metric tensor. Substituting Equation (29) into Equation (30) to 
obtain a curvature Hamiltonian tensor µνC  in second quantized form for the 
gravity Phonons is: 

†
2
EM

1 1s e
2R

αβ
µν α β µν µν

 = + 
 

C b b                (31) 

The gravity Phonon ground state from Equation (31) is: 

)

)

†
2
EM

2
EM

1 1a  0 0 0 s e 0
2R

1b  0 0 e
2R

αβ
λ µν λ λ α β µν µν λ

λ µν λ µν

 = + 
 

=

C b b

C
      (32) 

The tensor wave functions that describe the components of the Metric 
tensor can be calculated from the Curvature Hamiltonians of Equation (22) 
and Equation (31). The Metric tensor components describe the curvature of 
space-time due to the Earth-like mass and the energy of the light beam. 

5. Conclusions 

Both a Schrödinger and second quantized formulations of space-time curvature 
quanta are derived. The tensor wave functions that describe the components of 
the Metric tensor can be calculated from the Curvature Hamiltonians. The Me-
tric tensor components describe the effect of the Earth-like mass and the energy 
of the light beam.  

Einstein [1] theorized in 1915 that Gravity is not a force derived from a poten-
tial that acts across a distance. Gravity is a distortion of space and time by 
masses and energy. For example, a test mass moves towards another mass be-
cause it travels through space and time that is warped in such a way as to make 
the test mass travel towards the other mass. Einstein also postulated the exis-
tence of wave-like space-time modes. These too, have been verified by the LIGO 
experiment [3].  

In this paper, equations derived from the GRT and verified by astronom-
ical observations or experiments are employed at every step of the calcula-
tions.  

A model of space-time curvature modes in slightly warped space-time gener-
ated by a light Photon is derived. Since an electromagnetic wave does not inte-
ract with isotropic space-time, to first order, an Earth-like mass is used to warp 
space-time to facilitate the Photon space-time curvature mode interaction. Each 
space-time curvature mode is a fourth-rank tensor and can have any number of 
curvature quanta, called gravity Phonons. Gravity Phonons have very large radii 
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of curvature in agreement with gravity being a weak force. The gravity Phonons 
are fourth-rank tensors, massless Bosons, have a spin angular wave vector of 4, 
and propagate with the speed of light. Energy and momentum are conserved 
because curved space-time causes a change in energy and momentum of the 
electromagnetic wave, and the energy of the electromagnetic wave causes a 
change of the curvature of space-time. Because this model is only valid for 
slightly warped space-time, it is only scale invariant within a limited range of 
space-time curvature amplitudes. 

A large number of publications describing unsuccessful attempts to develop 
models of Quantized Gravity called Gravitons have been published. A number of 
these models use Post Newtonian Maxwell’s Equations modified by gravitational 
potentials. These run into difficulty with Gauge Normalization resulting in terms 
that go to infinity. The other approach uses “Loop Quantum Gravity”. It uses a 
lattice of triangles with Plank distance and Plank time sides to calculate the grav-
ity energy quanta. This results in huge energy quanta amplitudes, not consistent 
with gravity being a very weak force. Therefore, in order to derive a Quantum 
Mechanical model of Gravity, one has to calculate space-time curvature mode 
quanta rather than use Gravitational potentials or Plank space and time to for-
mulate gravity energy quanta.  

Space-time is only slightly warped throughout most of the Universe except in 
the vicinity of Black Holes and Neutron Stars. For example, space-time at the 
surface of the sun has a radius of curvature of approximately 5.165 Light Days. 
Thus, gravity Phonons are a suitable Quantum Mechanical description of most 
of space-time in the Universe.  

The space-time curvature quanta, like electromagnetic wave quanta, can form 
entangled states [4] [5]. Photons are vector quantities while gravity Phonons are 
fourth-rank tensors. Gravity Phonons have radii of curvature with Astronomical 
dimensions, therefore entangled gravity Phonon fourth-rank tensor states can 
link structures over interstellar distances. 
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Appendix A 

The electromagnetic field tensor described here is only valid for gravity-free 
space. Any additions to the electromagnetic field tenser due to the effect of the 
Earth-like mass are small parameters. When these small parts of the electro-
magnetic Tensor are multiplied by the small terms describing the space-time 
curvature one obtains very small second-order terms that can be neglected. The 
Tµν  component of the Electromagnetic Stress Tensor is given by: 

) )
o

1 1a  T F F F F        b  F F
4

αβ αβ µβ αν µν
µν µα βν µν αβ βα

 = η − η η η = µ  
    (A1) 

The contravariant Electromagnetic field tensor with components Fµν  and the 
covariant Electromagnetic field tensor with components Fµν  are:  

) )

3 31 2 1 2

1 1
3 2 3 2

2 2
3 1 3 1

3 3
2 1 2 1

E EE E E E
0 0

c c c c c c
E E

0 B B 0 B B
c ca  F     b  F

E E
B 0 B B 0 B

c c
E E

B B 0 B B 0
c c

µρ
ρν

   − − −   
   
   − − −   

= =   
   − − −   
   
   − − −
      

 (A2) 

and where αβη  is a component of the Minkowski Metric tensor for a Riemann 
space signature + − − −.  

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

αβ

 
 − η =
 −
 

− 

                     (A3) 

Substituting Equation (A2) and Equation (A3) into Equation (A1a) 
2 2 2
1 2 3 2 3 3 2 1 3 3 1 1 2 2 1

2

2
2 22 3 3 2 1 31 1 2
3 2 1 2 1 32 2 2

2
o 2 21 3 3 1 2 31 2 2

1 2 3 1 2 32 2 2

2
2 21 3 2 3 31 2 2 1

1 3 2 3 2 12 2 2

E E E E B E B E B E B E B E B
c c cc

E B E B E EE E E
B B B B B B

1 2 c c cT
E B E B E EE E E

B B B B B B
c c c c

E E E E EE B E B
B B B B B B

c c c c

µν

 + + − − −
− −

−
− − + + − − − −

=
µ −

− − − + + − −

−
− − − − − − + +



2 2 2
2 2 21 2 3
1 2 32

1 0 0 0
0 1 0 0E E E1           B B B
0 0 1 02 c
0 0 0 1


 
 
 
 
 
 
 
 
 
 


 
   −+ +  − − − −   −   

− 

(A4) 

The Electric field and the Magnetic Flux density pseudo vectors of a Plane-wave 
propagating in the 3 direction are:  

) 3
1 1

xˆa  E exp j t j
c

ω = ω − 
 

E a  
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) 1
2

E
b  B

c
=                            (A5) 

where the Electric field vector is in the 1 direction. Substituting Equation (A5) 
into Equation (A4) 

) )2 2
o 1 o 1

1 0 0 1
0 0 0 0

a  T E        b  T E e
0 0 0 0
1 0 0 1

µν µν µν

− 
 
 = ε = ε
 
 
− 

          (A6) 

where ε0 is the dielectric constant of free isotropic space. 
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