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Abstract 
Using a novel wave equation, which is Galileo invariant but can give precise 
results up to energies as high as mc2, exact quasi-relativistic quantum me-
chanical solutions are found for the Hydrogen atom. It is shown that the ex-
act solutions of the Grave de Peralta equation include the relativistic correc-
tion to the non-relativistic kinetic energies calculated using the Schrödinger 
equation. 
 

Keywords 
Quantum Mechanics, Schrödinger Equation, Relativistic Quantum  
Mechanics, Klein-Gordon Equation, Hydrogen Atom 

 

1. Introduction 

Quantum mechanics triumphed when physicists learned to describe the quan-
tum states of the electrons in the atoms by solving the Schrödinger equation [1] 
[2] [3] [4] [5]. However, the Schrödinger equation is not Lorentz invariant but 
Galilean invariant [6] [7]; therefore, a relativistic quantum mechanics cannot be 
based on the Schrödinger equation. A fully relativistic quantum theory requires 
to be funded on equations that are valid for any two observers moving respect to 
each other at constant velocity [8] [9]. In contrast, the Galilean invariance of the 
Schrödinger equation means that two such observers will only agree in the ade-
quacy of the Schrödinger equation for describing the movement of a massive 
free quantum particle when the relative speed between the observers is much 
smaller than the speed of the light in the vacuum (c). In practice, this is not a 
terrible limitation of the Schrödinger equation because up to today humans have 
been only able to travel at speeds much smaller than c. This is one of the prin-
cipal reasons why the Schrödinger equation is still relevant almost 100 years after 

How to cite this paper: de Peralta, L.G.  
(2020) Quasi-Relativistic Description of Hy-
drogen-Like Atoms. Journal of Modern Phys-
ics, 11, 788-802. 
https://doi.org/10.4236/jmp.2020.116051  
 
Received: May 7, 2020 
Accepted: May 30, 2020 
Published: June 2, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmp
https://doi.org/10.4236/jmp.2020.116051
https://www.scirp.org/
https://doi.org/10.4236/jmp.2020.116051
http://creativecommons.org/licenses/by/4.0/


L. G. de Peralta 
 

 

DOI: 10.4236/jmp.2020.116051 789 Journal of Modern Physics 
 

its discovery. Moreover, there is another important limitation of the Schrödinger 
equation: it describes a particle in which linear momentum (p) and kinetic 
energy (K) are related by a classical relation that is not valid at relativistic speeds 
[6] [7] [8] [9] [10]. Nevertheless, wave mechanics triumphed when Schrödinger, 
using his equation, was able to reproduce the results previously obtained by Bohr 
for the energies of the bound states of the electron in the Hydrogen atom. This was 
possible because the electron in the Hydrogen atom moves at non-relativistic 
energies [1] [2] [3] [4] [5]. Rigorously, the number of particles may be not con-
stant in a fully relativistic quantum theory [7] [8] [9]. This is because when the 
sum of the kinetic and the potential (U) energy of a particle with mass m equals 
the energy associate to the mass of the particle, i.e. 2Ę K U mc= + = , then a 
second particle with the same mass could be created from Ę. Consequently, the 
number of particles is constant when 2Ę K U mc= + < . This is what happens in 
atoms and molecules; thus, this explains why the results obtained using the 
Schrödinger equation are a good first approximation in chemistry applications 
[5]. In between the Galilean invariant Schrödinger equation and the fully relati-
vistic quantum mechanics, there is a quasi-relativistic region where Ę < mc2 but 
Ę is so large that it is necessary to use an equation that describes a particle hav-
ing a relativistic relation between p and K. In this work, the use of the Grave de 
Peralta equation is explored [7] [11], which is a quasi-relativistic wave equation, 
for describing the bounded states of an electron in a Hydrogen-like atom with 
atomic number Z. It is shown that the energies calculated using the Grave de 
Peralta equation are in excellent correspondence with the sum of the energies 
calculated using the Schrödinger equation plus the relativistic Thomas correc-
tion [12]. This demonstrates both the correctness and the usefulness of the pro-
posed approach at quasi-relativistic energies. In what follows, first, a brief sum-
mary of the Grave de Peralta equation and its basic properties is presented; then 
solutions of this equation are obtained for a central potential in general and for 
the Coulomb potential. Finally, the conclusions of this work are given in the last 
section.  

2. The Grave de Peralta Equation  

Formally, the one-dimensional (1D) Schrödinger equation for a free quantum 
particle with mass m can be obtained from the classical relation between K and p 
for a free particle when its speed (V) is much smaller than the c [1] [2] [3] [4] 
[5]:  

2

, .
2
pK p mV
m

= =                          (1) 

Then, substituting K and p by the following energy and momentum quantum 
operators [1] [2] [3] [4]: 

ˆ ,ˆ ˆ .K pE i i
t x
∂ ∂

= = = −
∂ ∂
                       (2) 
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In Equation (2), ℏ is the Plank constant (h) divided by 2π, results [1] [2] [3] [4] 
[5]: 

( ) ( )
2 2

2, , .
2Sch Schi x t x t

t m x
ψ ψ∂ ∂

= −
∂ ∂



                   (3) 

However, Equation (1) does not give the correct relation between K and p 
when the particle moves at faster speeds. Correspondingly, the Schrödinger equ-
ation (Equation (3)) is not Lorentz invariant but Galileo invariant [6] [7]; thus, 
only should be used for particles moving slowly. At larger particle’s speed, one 
should use the following well-known relativistic relations [10]: 

( )( )2 2 4 2 2 2 2 2 2 .E m c p c E mc E mc p c− = ⇔ + − =            (4) 

And: 
2 , .V VE mc p mVγ γ= =                        (5) 

Here, E = K + mc2 is the total relativistic energy of the free particle, and [10]:  

2

2

1 .

1
V

V
c

γ =

−

                           (6) 

One can then formally proceed as it is done for obtaining the 1D Schrödinger 
equation, and use Equation (2) for assigning the temporal partial derivative op-
erator to E in the first expression of Equation (4) [7] [8] [9]. In this way, one can 
formally obtain the 1D Klein-Gordon equation [8] [9]: 

( ) ( ) ( )
2 2 2 2

2 2 2 2

1 , , , .KG KG KG
m cx t x t x t

c t x
ψ ψ ψ∂ ∂

= −
∂ ∂ 

           (7) 

The Klein-Gordon equation is Lorentz invariant and describes a free quantum 
particle with mass m and spin-0 [8] [9]. In contrast to the Schrödinger equation, 
a second-order temporal derivative is present in Equation (7). This determines 
that Equation (7) has solutions with positive and negative energy values while 
Equation (3) has only solutions with positive energies, which is in correspon-
dence with K having only positive values in Equation (1) but E having positive 
and negative values in Equation (4). The factor (E + mc2) is always different than 
0 for E > 0; consequently, Equation (4) and the following algebraic equation are 
equivalents for E > 0: 

( ) ( )
2

2

1V

pE mc
mγ

− =
+

                       (8) 

Each member of Equation (8) is just a different expression of the relativistic 
kinetic energy of the particle [7]. Assigning the temporal partial derivative oper-
ator in Equation (2) to E in Equation (8) results in the following differential eq-
uation [11]: 

( ) ( ) ( ) ( )
2 2

2
2, , , .

1KG KG KG
V

i x t x t mc x t
t m x
ψ ψ ψ

γ+ + +
∂ ∂

= − +
∂ + ∂



      (9) 

A simple substitution in Equation (7) and Equation (9) shows that the follow-
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ing plane wave is a solution of both equations for E > 0: 

( ) ( )
, e .

i px Et

KG x tψ
−

+ =                          (10) 

The plane wave ψKG+ has an unphysical phase velocity equal to c2/V > c [7] 
[11]. However, one can look for a solution of Equation (9) of the following form: 

( )
2

, e , .miw t
KG m

mcx t wψ ψ += =


                   (11) 

Such that ψ has a phase velocity smaller than c [7] [11]; thus: 

( ) ( )
, e .

i px Kt
x tψ

−
=                          (12) 

Substituting ψ given by Equation (11) in Equation (9) results in the 1D Grave 
de Peralta equation [7] [11]: 

( ) ( ) ( )
2 2

2, , .
1V

i x t x t
t m x
ψ ψ

γ
∂ ∂

= −
∂ + ∂



                 (13) 

Equation (13) clearly coincides with the Schrödinger equation at low particle’s 
speeds. Moreover, a positive probability density can be defined for the solutions 
of Equation (13) by analogy of how it is defined for the solutions of the Schrödin-
ger equation and, like the Schrödinger equation, Equation (13) is Galilean inva-
riant for observers traveling at low speeds respect to each other [7]. Despite this, 
Equation (13) can be used for obtaining precise solutions of very interesting 
quantum problems at quasi-relativistic energies [7] [11], where a particle moves 
at so large speeds that it is necessary to use the correct relativistic relation be-
tween p and K, but where the particle should not be moving too fast so that the 
number of particles remains constant. When the particle moves through a 1D 
piecewise constant potential U(x), Equation (13) should be generalized in the 
following way [11]: 

( )
( )

( ) ( ) ( )
2 2

2, , , .
1V

i x t x t U x x t
t xx m
ψ ψ ψ

γ
∂ ∂

= − +
∂ ∂+  




      (14) 

Often, one looks for solutions of Equation (14) corresponding to a constant 
value of the energy Ę = K + U, where Ę is not the total relativistic energy of the 
particle (E) but Ę = E – mc2. At quasi-relativistic energies, the number of par-
ticles is constant; therefore, Ę is constant whenever E is constant. For a 1D 
piecewise constant potential Ę, K, γV, and V2 are constants in each x-region 
where U is constant. In contrast to Ę, however, K, γV and V2 have a discontinuity 
wherever U(x) has one. Consequently, in Equation (14) γV is a function of x be-
cause, in general, the square of the particle’s speed (V2) depends on the position 
[11]. Nevertheless, for 1D piecewise constant potentials, one can look for a solu-
tion of Equation (14) with the following form in each of the regions where K, γV, 
and V2 are constants [1] [2] [3] [4] [11]:  

( ) ( ), e ,
i Ęt

K Ęx t K UX xψ
−

= = +                  (15) 
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XK is a solution of the following equation [1] [2] [3] [4] [11]: 

( ) ( )
2

2
2

d 0, .
d K K

pX x X x
x

κ κ+ = =


                (16) 

And [11]: 

( ) ( ) ( )1 11 1 .V V
p mK m Ę Uκ γ γ= = + = + −
  

          (17) 

Consequently, κ and XK are not determined by the values of Ę but by the val-
ues of K = Ę – U. Once the allowed values of κ are determined from Equation 
(16) and the boundary conditions, the allowed values of the relativistic kinetic 
energy of the particle K = Ę – U are given by:  

( )
2 2

.
1V

K
m

κ
γ

=
+
                          (18) 

As expected, when γV ~ 1, Equation (18) gives the non-relativistic values of 
the particle’s energies at low speeds, ( )2 2~ 2K mκ  [1] [2] [3] [4]. Moreover, 
from Equation (18) and the relativistic equation, ( ) 21VK mcγ= − , follows that 
[11]: 

2
2 21 , , .C
V C

h
mc

λ
γ λ λ

λ κ
π = + = = 

 
                (19) 

In Equation (19), λC is the Compton wavelength associate to the mass of the 
particle [8] [10], and λ is the De Broglie wavelength of the wavefunction given 
by Equation (7) and Equation (10) [1] [2] [3] [4]. Substituting Equation (19) in 
Equation (18) allows obtaining an analytical expression of the precise qua-
si-relativistic kinetic energy of the particle: 

2 2

2
.

1 1 C

K

m

κ

λ
λ

=
   + +     



                    (20) 

As expected, Equation (20) match the non-relativistic expression of the par-
ticle’s kinetic energy when p = h/λ is very small because Cλ λ . However, in 
each region where the value of U is constant, the values of K and then Ę = K + U 
calculated using Equation (20) are smaller than the ones calculated using the 
Schrödinger equation. 

3. Movement in a Central Potential 

A quantum state of a particle with mass m moving at quasi-relativistic energies 
in a central potential, U(r), is a solution of the following 3D Grave de Peralta 
equation [7]: 

( )
( )

( ) ( ) ( )
2

2, , , .
1V

i t t U r t
t r m
ψ ψ ψ

γ
∂

= − ∇ +
∂ +  



 r r r        (21) 

In Equation (21), γV and V2 depend only on the radial variable (r) because the 
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potential is a central potential. In spherical coordinates, the Laplacian operator 
in Equation (21) is given by the following expression [1]: 

( )
2

2 2
,2 2

1 1 .r
r r r θ ϕψ ψ ψ∂

∇ = + ∇
∂

                    (22) 

In Equation (22): 
2

2
, 2 2

1 1sin .
sin sinθ ϕ θ

θ θ θ θ ϕ
∂ ∂ ∂ ∇ = + ∂ ∂ ∂ 

               (23) 

Using Equation (22) and Equation (23) allows for rewriting Equation (21) in 
the following way [7]:  

( )
( )

( )
( )

2 2 2
2

,2 2 .
1 1V V

i r U r
t rr mr r mr θ ϕψ ψ ψ ψ

γ γ
∂ ∂

= − − ∇ +
∂ ∂+ +      

 


  (24) 

The second term of the right size of Equation (24) corresponds to the rota-
tional energy of the particle. For a quantum rotor, which describes a particle 
moving in a sphere, r is constant [2] [5]. This allows for simplifying Equation 
(24) in the following way [7]: 

( )
( )

( )
2

2
,2, , .

1V

i
t mr θ ϕψ θ ϕ ψ θ ϕ

γ
∂

= − ∇
∂ +



             (25) 

The explicit absence of a potential in Equation (25) determines that it has so-
lutions with constant values of Ę, K, γV and V2 [7]. However, one should expect 
to have solution of Equation (24) with constant values of Ę, but all K, γV and V2 
depending on r. Looking for a solution of Equation (24) as in Ref. [1]:  

( ) ( ) ( ), , , , e .
i Ęt

r t R rψ θ ϕ θ ϕ= Ω                  (26) 

Results: 

( ) ( )2
, , , .θ ϕ θ ϕ η θ ϕ∇ Ω = Ω                    (27) 

And:  

( )
( )

( )
22

2 2 2

11 d .
d

V r mr RrR Ę U r R
r r r

γ
η

+  + − = −  


         (28) 

Equation (27) is the well-known equation for the spherical harmonic func-
tions [1] [2] [3] [4] [5], which solutions are: 

( ) ( ) ( ) ( ), , , ; 1 ; 0,1, 2, ; , 1, ,0,1, , .m
l m lY l l l m l l lθ ϕ θ ϕ ηΩ = = + = = − − +   (29) 

Here, ( )m
lY  are the spherical harmonic functions [1] [2] [3] [4] [5]. Substi-

tuting η given by Equation (29) in Equation (28) and looking for a solution of 
the form R(r) = χ(r)/r as in Ref. [4], then results the following equation: 

( )
( )

( ) ( )
2

2 2

1d 0.
d

V r m
r Ę W r r

r
γ

χ χ
+  + − =  



          (30) 

In Equation (30): 

( ) ( )
( )

( )2

2

1
.

1V

l l
W r U r

rr mγ

 +
= + 

+    



             (31) 
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The radial equation, Equation (30), is then formally identical to Equation (16) 
with: 

( ) ( ) ( ) ( ) ( ) ( )1 11 1 .V V

p r
r r mK r r m Ę W rκ γ γ= = + = + −          

  

   (32) 

At low particle speeds, γV(r) ~ 1, thus Equation (30) coincide with the radial 
equation that can be obtained when solving the same problem using the Schrödin-
ger equation [1] [2] [3] [4] [5]. However, at quasi-relativistic energies, γV de-
pends on r; therefore, in general, the solutions of Equation (30) are different 
than the solutions of the radial equation for the Schrödinger equation. A notable 
exception is the infinite spherical well problem for l = 0 where U(r) is given by 
the following expression [4]: 

( )
0,

,
o

o o

r r
U r

U r r→

<
=  +∞ ≥

                    (33) 

In this case ( ) 0W r ≡ ; thus K, γV, and V2 are constant inside the well. Equa-
tion (30) can then be solved as it is done for the Schrödinger equation. Conse-
quently [4]: 

( )
2

2
2 .

1n n
V o

hĘ K n
mDγ

= =
+

                    (34) 

In Equation (34), Do = 2ro and n is a positive integer number. From Equation 
(34) and the relativistic equation ( ) 21VK mcγ= −  follows that: 

2
2 21 , .C
V C

o

hn
D mc
λ

γ λ
 

= + = 
 

                  (35) 

Substituting γV given by Equation (35) in Equation (34) results: 
22

2

2
.

1 1

C
n

o
C

o

nĘ mc
Dn

D

λ

λ

 
=  
     + +     

               (36) 

As expected, γV ~ 1 when n = 1 and o CD λ ; thus, Equation (36) coincides 
with the energies of the infinite spherical well calculated using the Schrödinger 
equation [4]. In contrast, when the diameter of the well is close to λC, the mini-
mum particle energy is quasi-relativistic; therefore, Equation (36) must be used. 
For instance, 2 2Vγ = , V ~ 0.7c, and K ~ 0.4mc2 when Equation (35) is evaluated 
for n = 1 and Do = λC. However, 2 5Vγ =  and K ~ 1.2mc2 when n = 1 and Do = 
λC/2. The number of particles may not be constant at these energies. Conse-
quently, the Grave de Peralta equation establishes a fundamental connection 
between quantum mechanics and especial theory of relativity: no single particle 
with mass can be confined in a volume much smaller than 31 8 Cλ  because when 
this occurs, K > mc2 and the number of particles may not be constant anymore; 
therefore, a single point-particle with mass cannot exist. Point-particles with 
mass can only exist in fully relativistic quantum field theories where the number 
of particles is not constant. This is true for an electron, a quark, and probably 
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may also be true for a black hole and the whole universe at the beginning of the 
Big Bang. This is consistent, for instance, with the confinement of an electron in 
the Hydrogen atom because for an electron λC ~ 2.4 × 10−3 nm, which is ~ 20 
times smaller than the Bohr radius of the Hydrogen atom, rB ~ 5.3 × 10−2 nm [1] 
[2] [3] [4] [5]. It should be noted that strictly speaking, the problem corres-
ponding to the potential defined by Equation (33) is a relativistic problem be-
cause 2

oU U mc∆ =   and thus the number of particles may not be constant. 
Nevertheless, the non-relativistic and quasi-relativistic infinite well problems 
could be considered approximations to the problem of a quantum particle abso-
lutely trapped in a finite region. This is because for obtaining Equation (34) and 
Equation (36) the infinitude of the potential is only used for arguing that χ(r) 
should be null everywhere except inside of the well, thus assigning null boundary 
conditions to Equation (30). 

4. Hydrogen-Like Atoms 

In the Hydrogen atom or in highly ionized atoms with a single electron, U(r) is 
the Coulomb potential [1] [2] [3] [4] [5]: 

( ) ( )
2

.
4C

o

e ZU r U r
rε

= = −
π

                      (37) 

Here, e is the electron charge, Z is the atomic number, and εo is the electric 
permittivity of vacuum. Therefore, the radial equation corresponding to the qu-
asi-relativistic states of the electron in a hydrogen-like atom with a nucleus of 
mass mn is given by the Equation (30) with the electron mass, me, substituted by 
the reduced mass of the electron, ( ) ( )e n e nm m m mµ = + , i.e.: 

( )
( )

( ) ( )
2

2 2

1d 0.
d

V
C

r
r Ę W r r

r
γ µ

χ χ
+  + − =  



            (38) 

In Equation (38): 

( ) ( )
( )

( )2

2

1
.

1C C
V

l l
W r U r

rrγ µ

 +
= + 

+    



              (39) 

As expected, when the electron moves slowly (V c ) then γV ~ 1; therefore, 
Equation (38) reduces to the radial equation of a hydrogen-like atom obtained 
using the Schrödinger equation [4]. Using Equation (5), it is possible to elimi-
nate γV from Equation (38) and Equation (39) by making: 

( ) ( ) 22

2 2 2 2 2

1 22 .V Cr Ę U r cK c
c c

γ µ µµ+ − +   +   = =
  

          (40) 

 Using Equation (40) then allows for rewriting Equation (38) in the following 
way: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

2 2

2

2

1d
2 2d
1 0.

2

C

C

l l
r Ę U r r r

µr r

Ę U r r
c

χ χ χ
µ

χ
µ

+  − − − +     

− − =  

 

       (41) 
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The term between braces in Equation (41) coincides with the radial equation 
that should be solved when using the Schrödinger equation [4]. The last term of 
Equation (41) can be disregarded when 2K cµ

; therefore, the last term is a 
quasi-relativistic correction to the non-relativistic radial equation. Proceeding 
like it is done when solving the non-relativistic radial equation, one can intro-
duce [4]: 

1 2 .Ęζ µ= −


                          (42) 

For bound states, Ę < 0; therefore, ζ  is real. Using Equation (42) allows for 
rewriting Equation (41) in the following way: 

( ) ( )
( )
( )

( ) ( ) ( )

2 2

2 2 2 2

22 2
2

2

11 d 1
d 2

.
2

o

l le Zr
rr r

Z Z r
c r cr

µχ
ζζ ε ζ ζ

α ζ α ζ χ
µ ζ µζ

 += − + 
π  

   − − +  
    



 

      (43) 

where α is the fine-structure constant [8] [9] [12]: 
21  ~ 1 137.

4 o

e
c

α
ε

=
π 

                      (44) 

It is convenient to rewrite Equation (43) as: 

( ) ( )

( )
( )

( )

22 2

2 2 2

2 2

2

1 d 1
2d 2

1
.

o

e Zr
c c rr

l l Z
r

r

ζ µ ζχ α
µ µ ζζ ε ζ

α
χ

ζ

     = − − −       π         
+ − + 


 



      (45) 

So that introducing the new variables: 
22

12, , 1 .
22o

o

er Z
c c

µ ζ ζρ ζ ρ α ρ
µ µε ζ

    
≡ ≡ − ≡ −    π      

 



       (46) 

Allows for rewriting Equation (45) in the following way: 

( ) ( ) ( )
2 22

12 2

1d .
d

o l l Zαρ
χ ρ ρ χ ρ

ρρ ρ
 + −

= − + 
  

           (47) 

If the electron was free and moving slowly with kinetic energy K = Ę, then its 
linear momentum would be cζ µ  . In this limit, one can approximate Equ-
ation (46) in the following way [3] [4]: 

2

12, ~ , ~ 1.
2o

o

e Zr µρ ζ ρ ρ
ε ζ

≡
π 

                  (48) 

Using Equation (48), and considering that for the Hydrogen atom 2 2 1Zα  , 
allows for approximating Equation (47) in the following way [3] [4]: 

( ) ( ) ( )
2

2 2

1d 1 .
d

o l lρ
χ ρ χ ρ

ρρ ρ
+ 

= − + 
 

               (49) 
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which is the equation that is solved for the Hydrogen atom when using the 
Schrödinger equation [4]. Consequently, when solving the Schrödinger equation 
can be found that [4]: 

2 , 1, 2,3,o n nρ = =                        (50) 

From Equation (50), Equation (48), and Equation (42) then follows for Z = 1 
the following well-known result [2] [3] [4]: 

22

, 2 2

1 .
42n Sch

o

eĘ
n

µ
ε

  
 = −  π   

                  (51) 

However, each of the three terms in the right side of Equation (47) contains a 
different quasi-relativistic correction to the radial equation of hydrogen-like 
atoms. Nevertheless, one can try to solve the quasi-relativistic Equation (47) as 
Equation (49) is solved [4]. When ρ →∞ , the constant term in the brackets in 
Equation (47) dominates, so (approximately): 

( ) ( )
2

12

d .
d

χ ρ ρ χ ρ
ρ

=                       (52) 

which general solution is: 

( ) 1 1e e .A Bρ ρ ρ ρχ ρ −= +                     (53) 

But 1 0ρ > ; therefore, B must be null, so for large ρ: 

( ) 1~ e .A ρ ρχ ρ −                         (54) 

On the other hand, when 0ρ →  the centrifugal term dominates; approx-
imately, then: 

( ) ( ) ( )
2 22

2 2

1d  .
d

l l Zα
χ ρ χ ρ

ρ ρ
+ −

=                 (55) 

Which general solution is: 

( )
( ) ( )2 22 2 2 21 11 1 2 4 1 1 2 4

2 2 .
l Z l Z

C D
α α

χ ρ ρ ρ
   + + − − + −      = +          (56) 

Therefore, D must be null, so for small ρ: 

( )
( )2 2 21 1 1 2 4

2~ .
l Z

C
α

χ ρ ρ
 + + −                       (57) 

As expected, if the quasi-relativistic corrections are very small, then Equation 
(54) and Equation (57) reduces to the ones obtained when using the Schrödinger 
equation [4]. After knowing the asymptotic behavior of ( )χ ρ , one can look for 
a solution of Equation (47) as [4]:  

( ) ( )
( )2 2 2

1

1 1 1 2 4
2 e .

l Zα ρ ρχ ρ τ ρ ρ
 + + −  − ≡                (58) 

From Equation (58) and Equation (47) then follow that ( )τ ρ  is a solution of 
the following equation:  
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( ) ( ) ( ) ( )

( )( ) ( )

2
2 2 2

12

2 2 2
1

d d1 2 1 2 4
dd

1 1 2 4 0.o

l Z

l Z

ρ τ ρ ρ ρ α τ ρ
ρρ

ρ ρ α τ ρ

 + − + + −  

 + − + + − =  

      (59) 

Again, as expected, if the quasi-relativistic corrections are very small, then 
Equation (59) reduces to the one obtained when using the Schrödinger equation 
[4]. Finally, assuming that ( )τ ρ  can expressed as a finite power series in ρ  
[4]: 

( ) max
0 .j j

jj aτ ρ ρ
=

= ∑                          (60) 

And substituting Equation (60) in Equation (59) results: 

( )( )
( ) ( )( )

2 2 2
1

1
2 2 2

2 1 1 2 4
.

1 1 1 2 4

o

j j

j l Z
a a

j j l Z

ρ α ρ

α
+

 + + + − −  =
 + + + + −  

           (61) 

Evaluating Equation (61) for maxj j=  and making 
max 1 0ja + = , results: 

( )( )2 2 2

1

2 1 1 2 4 .o j l Z
ρ

α
ρ

 = + + + −  
               (62) 

As expected, if the quasi-relativistic corrections are very small, then Equation 
(62) reduces to Equation (50) with 1n j l= + +  [4]. Nevertheless, one can re-
write Equation (62) in the following way:  

( ) 12 , .o n l Zρ ρ= + ∆                        (63) 

In Equation (63): 

( ) ( )( ) ( )2 2 2, 1 1 2 4 2 1 .l Z l Z lα ∆ = + + − − +  
           (64) 

Substituting oρ  and 1ρ  given by Equation (46) in Equation (63), solving 
the resulting equation for ζ , and using Equation (42) allows for obtaining an 
exact analytical expression for Ę, which now depends not only on the principal 
quantum number n, but also on the angular quantum number l, and Z . For in-
stance, assuming that the quasi-relativistic corrections included in oρ  and 1ρ  
do not need to be accounting for because they are too small, the effect of the qu-
asi-relativistic correction included in the centrifugal term in Equation (63) is 
quantified by the following equation: 

( )

22 2

, 2 2 .
22 2 ,

n l
o

e ZĘ
n l Z

µ
ε

  
 = −  π  + ∆     

              (65) 

As expected, if α was null and Z = 1, then Equation (65) would be identical to 
Equation (51). However, ( ) 0,l Z∆ <  and ( ),l Z∆  increases when Z increases. 
Therefore, for n > 1 and l > 0, the degeneration of Ęn given by Equation (51) is 
broken by the quasi-relativistic correction ( ),l Z∆ . This effect is more pro-
nounced for heavy elements. In addition, as shown in Figure 1, ( ),l Z∆  de-
creases when l increases; therefore, ,n l nĘ Ę→  when l is large. Figure 1 shows a  
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Figure 1. Schematic of the values of Ęn,l - Ęn (in eV), which are calculated for Z = 1 and n 
= 1, 2, 3 using Equation (65) and Equation (51), respectively. The inset at the right per-
mits to appreciate the details corresponding to the energy levels n = 2 and 3. 
 
schematic of the calculated values of ,n l nĘ Ę−  in eV, where Ęn,l and Ęn were 
evaluated using Equation (65) with Z = 1 and Equation (51), respectively. In all 
cases, stabilizing negative quasi-relativistic corrections to the non-relativistic 
energies were obtained. This is because the negative contribution of −α2Z2 in the 
numerator of the centrifugal term in Equation (47).  

In columns 2 and 3 in Table 1 are reported the calculated values of Ęn,l (in eV) 
that were calculated using Equation (65) and Equation (63), respectively. The 
difference between the approximated values (Equation (65)) and the exact values 
(Equation (63)) of Ęn,l are ~0.01 meV; thus smaller than the exact values of 

, 0n l nĘ Ę= −  reported in the third column of Table 1. Therefore, Figure 1 also 
represents a good schematic of the exact values of ,n l nĘ Ę− ; i.e. calculated using 
Equation (63) and Equation (51). There is an excellent correspondence between 
the exact values of ,n l nĘ Ę−  reported in the third column of Table 1, and pre-
viously reported values of the relativistic correction to Ęn [4] [12]. This suggests 
that the solutions of Equation (63) are approximately equal to [4] [12]: 

2
2

, , 2

3~ 1 .
14
2

n l n Sch
nĘ Ę Z

n l

α
  
   − −  
  +
   

                 (66) 

where Ęn,l,Sch given by Equation (51) correspond to the Hydrogen energies calcu-
lated using the Schrödinger equation. In correspondence with this, one can show 
that the values of Ęn,l calculated using Equation (65) are approximately equal to: 

( )
2

2
, ,

2~ 1 .
2 1n l n SchĘ Ę Z

n l
α 

+  + 
                   (67) 

Indeed, Equation (65) can be rewritten as: 

( )
2 2 2

, 2

1 .
2 ,

n lĘ c Z
n l Z

µ α= −
+ ∆  

                 (68) 
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Table 1. First four columns: Calculated values of Ęn,l (in eV) and Ęn,l - Ęn (in meV). The 
last three columns report the calculated values of the energies (in eV) and wavelengths (in 
nm) corresponding to the Hydrogen’s Lyman (second row) and average Balmer α-line 
(sixth row), which were calculated using the exact quasi-relativistic values of Ęn,l reported 
in the third column. 

(n,l) Equation (65) Equation (63) Enl − En (meV) (n',l') → (n,l) En’l’ − En,l λ (nm) 

(1,0) −13.5997 −13.5992 −0.90526 (2,1) → (1,0) 10.1996 121.558 

(2,0) −3.39975 −3.39972 −0.147102 (3,1) → (2,0) 1.88879 656.422 

(2,1) −3.39963 −3.3996 −0.0264008 (3,0) → (2,1) 1.88863 656.477 

(3,0) −1.51097 −1.51097 −0.046938 (3,2) → (2,1) 1.88867 656.462 

(3,1) −1.51094 −1.51093 −0.0111749 (3) → (2,1) 1.88863 656.4695 

(3,2) −1.51093 1.51092 −0.00402301    

 
Then Equation (67) can be obtained from Equation (68) using the following 

approximated relations: 

( ) ( )
( ) ( )

2

2 2

,1 1 2~ 1 , , ~ .
2 122 ,

l Z
l Z

n lnn l Z

α∆ 
− ∆ −  ++ ∆    

       (69) 

This is an important result: the quasi-relativist energies calculated using the 
Grave de Peralta equation corresponds to the sum of the non-relativistic ener-
gies calculated using the Schrödinger equation plus the relativistic corrections to 
the kinetic energy. Consequently, these energies do not include the Darwin 
energy term [12]. In addition, like the Schrödinger equation, Equation (21) and 
Equation (38) describe a charged particle with spin-0 moving in a Coulomb po-
tential; therefore, no spin-orbit interaction is included in Equation (63) and Eq-
uation (65). It is well-known that both the Darwin and spin-orbit corrections are 
needed for a successful description of the Hydrogen spectrum [8] [9] [12]. Nev-
ertheless, it is good to emphasize the improvement that can be obtained by using 
the Grave de Peralta equation in comparison to using the Schrödinger equation. 
The quasi-relativistic approximation to the Hydrogen spectral lines correspond-
ing to the α-lines of the Lyman and Balmer series can be estimated using the 
values of En,l reported in the third column of Table 1 and the spectral rule 

1l∆ = ±  [12]. The calculated values of , ,n l n lE E′ ′ −  (in eV), which correspond to 
all possible transitions between the states (n, l) reported in the third column of 
Table 1, are reported in the sixth column of Table 1. The corresponding wave-
length values (in nm) are reported in the last column of Table 1. Table 2 allows 
for making a breve comparison between the calculated values reported in the last 
two columns of Table 1 and previously reported experimental data [13] [14]. 
The doublet structure of the α-Lyman Hydrogen line cannot be explained with-
out the spin-orbit interaction because only the transition (2,1) to (1,0) satisfices 
the spectral rule 1l∆ = ± . However, the existence of the doublet fine-structure of 
the Balmer’s α-line could be calculated as corresponding to the λ1 = 656.422 nm 
spectral line produced by the (3,1) to (2,0) atomic transition and the λ2 = 
656.4695 nm spectral line, which was estimated as in the middle of the spectral  
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Table 2. Experimental (second column) and calculated (third column) wavelengths cor-
responding to the doublet structure of the Hydrogen’s Lyman (first two rows) and Balmer 
α-lines (last two rows). 

(In nm) Experimental Calculated 

α-Lyman (λ in nm) 121.567 121.558 

α-Lyman (Δλ in nm) 0.006 No 

α-Balmer (λ in nm) 656.279 656.422 

α-Lyman (Δλ in meV) 0.04 0.16 

 
lines corresponding to the atomic transitions (3,0) to (2,1) and (3,2) to (2,1). 
This corresponds to a Balmer’s α-doublet separation of ∆λ ~ 0.048 nm or ∆E ~ 
0.16 meV. Nevertheless, as shown in Table 2, this value is four times larger than 
the experimental value [14], which demonstrates the need for including in the 
calculation both the Darwin and the spin-orbit contributions.  

5. Conclusion 

It has been shown how to solve the Grave de Peralta equation for a charged 
quantum particle with mass and spin-0, which is moving in a Coulomb potential 
or contained in a spherical infinite well. The solutions were found following the 
same procedures and with no more difficulty than the corresponding to solving 
the same problems using the Schrödinger equation. Nevertheless, the solutions 
found in this work are also valid when the particle is moving with quasi-relativistic 
energies. For instance, it was shown that the energies of the electron in a Hy-
drogen atom, which were calculated by solving the Grave de Peralta equation, 
includes the relativistic Thomas correction. Moreover, the relativistic correction 
to the kinetic energy is just an approximation found using a perturbative ap-
proach while Equation (63) was exactly solved. In addition, it should be noted 
that Equation (41) is different than the radial equation obtained using the 
Schrödinger equation. The author is currently working on solving Equation (41). 
This will allow to obtain more precise expressions for the atomic orbitals cur-
rently used in numerous ab initio computer packages dedicated to computer 
calculations in physical-chemistry and atomic and solid-state physics.  
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