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License (CC BY 4.0). Risk management is a major issue for financial companies. Mathematical models
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[ONom

are constantly being developed to provide a better understanding of risks and
their evolution, with the simplifying assumption of independence between the
random variables involved in risk modelling (see, for example, references [1]
[2]). However, in certain practical contexts, this assumption is inappropriate and
too restrictive. In flood insurance, for example, the occurrence of several floods
in a short space of time can generate large amounts of damage, and therefore
large claims, due to the accumulation of water. In earthquake insurance, it’s the
other way around: in a high-risk zone, the longer the time between two earth-
quakes, the greater the impact of the second earthquake, due to the accumula-

tion of energy.
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To make up for this shortcoming, many works include in the risk model the
dependence between certain dependence between certain random variables, in
particular the variables claim amount and inter-claim time, thanks to the Farlie
Gumbel Morgenstern copula [3]-[8]. Although this copula is commonly used in
the literature, encounters certain limitations. It fails to model tail dependencies
[9] [10] [11] [12] [13].

To remedy the inadequacy of the Farlie Gumbel Morgenstern copula, while
taking into account the reality of insurance companies, we consider in this ar-
ticle, the Compound Poisson risk model in which we integrate not only the de-
pendence between the variables claim amounts and interclaim times via the
Spearman copula, with also a strategy of partial payment of dividends to share-
holders of constant threshold b.

In this model, when the surplus process reaches the constant threshold barrier b
set, bonuses are partially granted to shareholders at a contant rate § such that
0<6<1. Noting by U, (¢) the surplus process in the presence of the threshold
dividend barrier b (with U, (0) = u ), the model follows the following dynamics:

dUb(t)z{cdt—dS(t) if U, (t')<b an

(1-0)cdr—dS(¢) if U,(1)=b

where:

e U, (t) is the surplus process in the presence of a b threshold dividend bar-
rier b (with U, (0)=u the initial surplus and 0<u <b);

e cisthe constant rate of premium received by the insurer per unit of time;

e ¢, is the first instant when the surplus reaches the horizontal barrier 5 so

_b-u
.

4

o S(t)= Zi(]t)Xi s the aggregate Poisson loss process composed of:
> {N (1),02 0} the total number of claims recorded up to time  which
follows a Poisson process of intensity A>0; (Note that S(¢)=0 if
N (t) =0);
> {X,,i>1} a sequence of random representing the individual amounts
of claims with common density function fand distribution function F
and assumed to have an exponential distribution with parameter £.

The interclaim times {V,,i >1} form a sequence of random variables with
exponential law of parameter 1, probability density function k(t) = Ate™
and distribution function K (f)=1-¢".

The aim of this work is to determine the probability of ultimate ruin in the
risk model defined by relations (1.1). The rest of the article is structured as fol-
lows: In section 2, we discuss the preliminaries of the risk model defined by the
relation (1.1). In Section 3, we study the integro-differential equation satisfied by
the Gerber Shiu function in the risk model defined by relation (1.1).

Section 4 deals with the study of the Laplace transforms of the Gerber Shiu
functions and the probability of ultimate ruin in the risk model defined by rela-
tion (1.1).
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In section 5, we discuss the probability of ultimate ruin in the risk model de-
fined by relations (1.1).

2. Preliminaries

2.1. Ruin measures

The insurer’s probability of ruin is the probability of ruin occurring either over a
finite horizon or over an infinite horizon. In the latter case, we speak of the ul-

timate probability of risk.

Let rbe the insurance company’s instant of ruin. 7is defined by:
z=inf{r>0,U(t)<0} (2.1)

When the probability of ruin is always zero, by convention we note r=o in

this case
U(t)=0 Vi>0.
The probability of ultimate failure is defined by:
v (u.t)=Pr[re[0.(],U(t)<0|U(0)=u] (2.2)

Similarly, the probability of ultimate failure is defined by:
l//(u)=l/l(u,oo)=Pi’[T<OO,U(I)<0‘U(0)=M:| (2.3)

2.2. Gerber-Shiu Discounted Penalty Function

The Gerber-Shiu expected penalty function or Gerber-Shiu function appeared in
1998 in the work of Gerber and Shiu (see [1]). Nowadays, this function is of
great interest for research. Its analysis remains a central issue in both insurance
and finance, as it is a valuable tool not only in the study of the probability of
ruin, but also in the calculation of pension and reinsurance premiums, the pric-

ing of options and so on. It is defined by:

¢(u) = El:e’&w(U(r,),

UT

)I(T<oo)|U(O):u:| (2.4)

where:

e ris the instant of failure defined by the relation (2.1);

e 7 is the moment just before ruin;

e (isa force of interest;

e The penalty function w(x,y) is a positive function of the surplus just be-
U,.|,Vx,y=>0;

e [is the indicator function which is worth 1 if event A occurs and 0 otherwise.

fore ruin U - and of the ruin deficit

2.3. Dependency Structure

In 1959, Abe Sklar introduced the copula function, which was not widely recog-
nized by financial experts until the 1990s [14]. As a method for studying associated
structures of random variables, the copula possesses unique properties, such as the

ability to describe the multivariate distribution function using univariate marginal
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functions and multivariate correlation structure functions. Copulas are mathe-
matical tools used to model the structure of dependence between multiple random
variables, regardless of their marginal distributions [15] [16] [17] [18] [19].

2.3.1. Tail Dependence
The concept of tail dependence is essential for analysing the asymptotic depen-
dence between two random variables. It allows us to describe the level of depen-
dence at the extremes of the distribution, which makes it an appropriate tool for
studying the dependence between strong values (higher tail dependence) and
weak values (lower tail dependence). This measure is of great importance for ex-
treme value copulas. There are two tail dependence coefficients which are de-
fined as follows:

Definition: Let X; Y'be two continuous random variables with respective dis-
tribution functions F and G. The lower tail dependence coefficient A, is de-
fined by:

2, (X,Y)=lim Pr(X <F ()Y <G ()

u—0+
and the upper dependency coefficient A, is defined by:
T -1 -1
2y (X.Y)=lim Pr(X < F ™ (a)|Y <G (a))

These measurements can be defined in terms of a copula C.

Definition: Let X; Y be two continuous random variables of copula C, then

we have
. Clu,u
A (X,Y):ull)rg(T);
and
. 1—2u+C(u,u)
Ay (X.Y) = lim — = 0t)
u—1" l—u
Remark

-When 2, €]0,1]; then Chas a lower tail dependency.

-When A, =0;then Chas no lower tail dependency.

- When 4, €]0,1]; then Chas an upper tail dependency.

-When 4, =0;then Chas no upper tail dependency.

Many authors [20] [21] [22] [23] [24] to name but a few, have used the Farlie-
Gumbel-Morgenstern (FGM) copula to define the dependency structure be-
tween the size of demand and the delay between requests. The FGM copula is
given by

C, (u,v):uv+auv(l—u)(l—v); 0<u,v<1.

It is not suitable for modelling dependencies on extreme values because
A, =0 and 4,=0.

2.3.2. Dependency Model Based on Spearman’s Copula

In this work, the dependency structure is provided by the Spearman copula de-
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fined by: V(u,v)€[0,1]" and ae[0,1] par:
C,(u,v)=(1-a)C, (u,v)+aC,, (u,v) (2.5)

where: C, (u,v)=uv; C, (u,v)=min(u,v); o isdependency parameter.

It is suitable for modelling dependence on extreme values because 1, =«
and 4, =c.

Spearman’s copula can be used to express positive dependencies and also tail
dependencies in many situations in many situations. Using formula (3.1), the
random vector claims amount and inter-claim times (X, V) has the joint distri-

bution function given by:
Fy, (x,1)=C,(Fy (x).F (1))

=(1-a)C, (Fy (x).F, (t))+aC, (Fy (x).F, (1)) (2.6)
=(1-a)F, (x,t)+aF), (x.t)

where: Fy, Fyare the respective marginals of the random variables Xand V.

3. Integro-Differential Equation Satisfied by the Gerber Shiu
Function

The aim of this section is to determine the differential equation satisfied by the
function ¢, («) in a risk model with constant threshold dividend payment b
and dependence between the random variables claim amount and inter-claim
time via Spearman’s copula. In this risk model [9] [23] [24], the Gerber Shiu
function ¢, (u) is given by:

¢, (u)=(1=a)(1,, (u)+1,, (u))+ (1,5 (u)+1,,(x)) (3.1)

where:

0 u+ct

117,1(”):{ -([ e ¢, (u+ct—x)dF, (x,t);

J ¢ W (u+ct,x—u—ct)dF,(x,1);

u+ct

O‘—.8

u+ct

_[ e g, (u+ct—x)dF, (x,t);
0

o'—.S

:I I e "W (u+ct,x—u—ct)dF,, (x,1)
0 u+ct
To determine the integro-differential equation satisfied by the Gerber Shiu
function in the risk model defined by relation (1.1), we adopt the following ap-
proach:
o The first loss occurs at time ¢ before the surplus process reaches the barrier b
b—

c

u .
(1< ). The amount xis such that x<u-+ct.

e The first loss occurs at time ¢ before the surplus process reaches the barrier b
bh—

c

u .
(1< ). The amount xis such that x>u+cr.

DOI: 10.4236/jmf.2024.141002

22 Journal of Mathematical Finance


https://doi.org/10.4236/jmf.2024.141002

K. M. Ouedraogo et al.

o The first loss occurs at time #after the surplus process has crossed the barrier

b(t> b-u ). The amount xis such that x<b+(1—t9)c(t—tb).

¢
o The first loss occurs at time tafter the surplus process has crossed the barrier

b(t>b

~"). The amount xis such that x> b+(1-6)c(t—1,).
c

By conditioning on the time and amount of the first claim, and taking into
account the different scenarios above, we have:

th u+ct

u):.([ Z[ e gy (u+ct—x)dF, (x,1)

o b+ec(i—1p) (32)
+J. J e g, (b+ec(t—t,)—x)dF, (x.1)
PR
where: 1, _bzu
1, ©
I, (u):j. I ¢ W (u+ct,x—u—ct)dF, (x,1)
01(:0[ ; (33)
+J' I W (b+ec(t—t,).x—b—gc(t—1,))dF, (x,1)
1y b+ejc(t—tp)

where: g =1-6;

The copula G being the independent part of the Spearman copula, we have:
dr, (x,t) =le M f, (x)dxdt (3.4)

By posing 1, (u)=1,,(u)+1,,(u), and with using the relations (3.2)-(3.4),
we have:

th u+ct

=[ [ e, (u+ct—x) e f (x)dxds

o brege(t—t,)

+[ [ g (brac(i—t,)—x) A £ (x)dxde
bl (3.5)

Iy, ©
+f I e W (u+ct,x—u—ct)de™ fy (x)dxdt
0 u+ct

+T T W (b+gc(t—t,),x—b—gc(t—1,))Ae™ fy (x)dxds

1, b+eic(t—tp)

To simplify the notation of relation (3.4), we pose:

©

a)(u) = Iw(u,x—u)f(x)dx; o, (u) = :[¢b (u—x)f(x)dx+a)(u) (3.6)

u

The relation (3 ( .5) becomes:

I g u+ct)dt+/1.[ R O'b(b+c.91 (t—b—jjdt (3.7)
o c

b-u

c

Let’s move on to calculating integrals /,(u) and I,,(u) in the relation
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(3.1).
The copula support C,, is D= { [O 1 u= v}.
. 2 ao’c,,
On the domain [0,1] \ D, e =0;and on D, C,, is uniformly distri-

buted.
Since the dependency structure is described by the copula C,, then they are

monotonic and there is almost certainly an increasing function / such that
X =1(V) (SeeNelsen 2006 [6], page 27).
The distribution function of Xis:
Fy(x)=F (1" ()

oloe =l ™

oAl (x) =—fx

eI (x)= bx (3.8)

From relation (3.2) we deduce that: l(t) = %t .

The joint distribution F, , (x,t) of the random vector (X,V) is singular,
whose support is the domain D' ={(x,t): Fy (x) = F, (¢)} = {(x.t):x=1(1)} .

Its distribution is G(¢) = F,, (l(t),t) =1-e¢* on the domain

D'={(x,t):x=%}.

I, (u):Jqu.c e ¢, (u+ct—x)dF, (x;t)+J. J. e W (u+ct,x—u—ct)dF, (x;t)

0 u+ct

—I e "¢, (u+ct—x)dG(1) .[ e "W (u+ct,x—u—ct)dG(t)

t o

(3.9

where:
K:{IE}R+ :Oﬁtﬁb_u andOSx:itSu—i-ct}

¢ s

:{te}R+ :OStSb_u and(c—i]tz—u}
¢ B

:{teR+ :OStSb_u andteR*}carc>%;t20andu>0
c

Hence:
K:[O;b_u} (3.10)
c

—u A
and u+ct<x=—t
c

={teR+:O£t3b_u and(i—cjtZu}
c s
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%—c<0;t20andu>03{teR+ and(%—cjtZu}=@

Hence:
J=0 (3.11)

By injecting relations (3.10) and (3.11) in the relation (3.9), we obtain:
hooo
I(u)= Ie"”¢b (u+ct—x)dG(¢)
0

=A[e g, (u +et— %tjdt

0

b—u
I, (u):ﬂ I e"(‘5+l)’¢b [u+(c—i)tJdt (3.12)
0 B
where:

K’:{zeR* 2> bu andOSx=itSb+cel (t—t,,)}

¢ B
:{IGR*:th_u and(i—cgl}sb—gl(b—u)}

¢ B

A A
To guarantee solvency, it is assumed that: cg, 2— = ——c¢ <0;

We also have: ¢>0; b—g (b—u)>0 because 0<¢ <1 and b-u<b.

Hence:

b-—u

K'z{teR*:tZ andteR*}

C

Subsequently:

K':[“”;m[ (3.13)

c

J'={IGR+:t2b_

“ andx:it2b+cgl(t—tb)}
¢ B

={IER+:t2b_
c

L and [i—cgl)t >b—g (b—u)}
p

We have: %—cel<0; t20; b—¢g (b—u) hence:

{tew ;[%-cgljtzb-gl(b-u)}w.

We also have:
J' =0 (3.14)

By injecting relations (3.14) and (3.15) into relation (3.13), we have:
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L, (u)=2 T e*(5+/1)t¢b (b +ceg (t _b%uj —%t} dt (3.15)

b-u

By posing: 1; (u)=1,;(u)+1,,(u).

I (u)=2 j e Oy [u +(c—%]t]dt

. (3.16)
+4 [ ey, (b+ ce, (I b _”j—it]dz
B c ) B

By relations (3.7) and (3.17) relation (4.1) becomes:

b—u

¢, (u)=(1-a)| 2

e e, (u+ct)dt+ﬁ,j e e, (b+cg1 (t—b_uDdt
c

b-u

O C—

c

b-u

+al A j e Oy, [u+(c—%jtjdt (3.17)

+A [ ey, (b+ ce, (r - b_uJ—itJdt
B c ) B
The relation (3.18) can be written as:

8,() = A(1-a) [ o, [(Ha)A(bml (t—b ‘”mdt

0 c

+ a/iT e’(fm)’@ [(u +[c —thJ A (b +cg (t _bzu J —itj] de
0 B ¢ B

By changing the variable to s=>b+cg (t b —u) and s=u +(c —%)t in
c

the relation (3.19), we obtain:

4, (1) = Al-a) T e’mjj{%m’"]% ([b +%j A sts

cé bz, (b—u)
aﬂ/’t T ,ﬁ[mj(xfu)% (s/\[b+(ﬂcgl —ﬂ,)(ﬂs_u/lj—é‘] (b—u)deS
u C -

Lemma 3.1: The Gerber Shiu function in the risk model defined by relation

(3.19)

(1.1) satisfies the following integro-differential equation:

(D_ng[p LAZA j¢b( )

ﬂf;iil) 5 prl-a)6+2), 20-a) )
:[ c(pe=2) ' pe- J¢”() [ ce-2) < DJG”(”)
Proof:
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We derive ¢, (u) in relation (3.20) with respect to u.

o e VO (S

aﬂ p) [ S+A j "

"o 2\ pea (3.21)
je Az, [s A[b+( pes, _4)(26‘_”1] -4 (b—u)nds
A(1-a) api

c % U _/)’c—/1¢b(u)

Noting by D and ¢ the respective differentiation and identity operators,

let’s calculate (3.20) and (3.22), let’s calculate g(u):(D—é‘_M1 J¢b( ).
)=, 1) ) LA L)
c b Pc— b Pc— Pc—1 ¢
. ﬂ[ ] ) (3.22)
« pe=i)"” 22 e (b
je ¢b(S/\(b+(ﬁcgl l)[ﬁc—ﬂ] & (b M)Dds
Let’s derive g(u) in relation (3.23) with respect to u.
RN Ul aph 0‘:32/1(5”) ﬁ 5+/1
gu)=-—"—ai(u)- s u)+ Be—2 \fe—a c)\Be-2
XIeﬁ(ﬂcl)(S“)% (s /\[b+(,[3cg1 —ﬁ,)(ﬂsc j] (3.23)
_aﬂl(é‘+/1) B 1
) (ﬁc—ﬂ cj¢b(”)
Using relations (3.23) and (3.24), let’s calculate
(n_ B(5+2)
h(u)—(D —ﬂc—/l EJ@,(M).
__/1(1—05) . afi BA(1—a)(5+ 1)
e S = U
apA(5+2) '
+m¢b (u)
From relations (3.20), (3.22), (3.23), (3.24) and (3.25), we deduce relation

(321) m

4. Laplace Transforms of Gerber Shiu Functions ¢, (#) and
the Probability of Ultimate Ruin
The aim of this section is to determine the Laplace transform of the Gerber Shiu

functions ¢, (1) and the probability of ultimate failure in the risk model de-
fined by relationship (1.1)
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Lemma 4.1: The Gerber Shiu fgunction ¢, (u) in the risk model defined by
the relation (1.1) has Laplace transform ¢3b (s) given by:

é (S)=% (4.1)

where:
o)~ P - A ot et
N, (S)Z(s+ aﬂic—ii;—f_)gz)ﬂc—lq% (0)+4.(0)
D (s):s2 + (Zﬂﬂc—(5+/i)(2ﬂc—/1)s+ (5+ﬂ,)2 —aﬂﬂ.(§+,1)
1 c(ﬂC—ﬂ) c(ﬂ )
p,(s)=2HU=@)fe=2)s_ prA(1-a)(S+2)
p C(ﬂ+S)(,Bc—ﬂ) C(/3+S)(ﬂc )
Proof:
By posing:
ORI R = e
K,(u)= [i/zﬂ;cﬁ;/;) . ﬂiﬂ_il DJ% ()
N PA(1-a)(5+4) _/1(1_05) .
[ C(,Bc—,i) ! c DJ b( )

Taking the Laplace transform of the two members of Equation (3.21), we have:

J.:e*“‘[{l (u)du = [52 - (5+ﬂ)(2ﬂ0_l)s+ ﬂ(é‘—’_i))J&b (S)

c(ﬂc—ﬂ.) c(ﬂc—/l

(4.2)
+(%_SJ¢,,(0)—¢;(O)
Jre s uan = L () 510 0)
e B
PG sy Dt

From relations (4.2) and (4.3), we deduce relation (4.1) m
Theorem 4.1: The Laplace transtorm of the probability of ultimate ruin in the
risk model defined by relation (1.1) is given by:

. _N3(s)+N4(s)
/()= 5 5D, (5)

(4.4)
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where:
- pA(1-a) _l(l—a)Hﬂ(l—a)w
NS( ) c(ﬂc—l)(ﬂ+s) c(,B+s) c (0)

aﬁic—l(Zﬂc—/l)

N4(s):(s+ e 1) J¢b(0)+¢;(0)

aﬂﬁc—ﬂ(Zﬂc—/l) pA? (l—a)
c(ﬂc—i) ST c(ﬁc—ﬂ)

pe-2)s  (BA) (1-a)

Dy(s)=s"+

D4(S)= ﬂj(l_a

)(
(B+s)(Bc—2)  c(B+s)(Bc—2)

Proof:

By posing w(x,y)=1, we have: &(s)= ﬂl . By setting §=0 and
+5

w(x,y) =1, in the relation (4.1), we have the relation (4.4) m

5. Probability of Ultimate Ruin

Lemma 5.1: The Laplace transform of the ultimate probability of ruin can be

written as
N ks +kys +k,
=17 "3 5.1
v (5) sd (s) (5.1)
where:

k= c(Be—12)¢,(0)
ky = 2(1-a)(fe=2)(@(0) 1)+ (aphe - fac+(fe =) )4, (0)
+c(Bc—2)4;(0)
ky = BA(1-a)(Be—2)o(0) +(af Ac— BA(2Bc - 1)), (0)
+ Be(Be—2)¢,(0)
d(s)=052(,Bc—ﬁ,)+s(aﬁﬂc—ﬁxlc+(ﬁc—/1)2)—ﬁl(ﬂc—l)

Proof:
By multiplying the numerator and denominator of the relations (4.4) by

c(B+s)(Bc—2),on we obtain after simplification the desired result. m
Theorem 5.1: The probability of ultimate ruin in the risk model defined by

relation (1.1) is explicitly expressed as follows:

v, (u) =—/1(1;§ )Y;cc_ﬂ) " (5.2)
where:
Bei—apic—(pc—A) —\/(aﬂlc—ﬁﬁc+(ﬁc—l)2 )2 +4BAc(Be-AY
R = (5.3)
2c(,3c —/1)
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Bei—apic—(Be-A) + \/(aﬂ/lc —mc+(ﬁc—1)2)2 +4BAc(Be-AY
B 2c(Be-A)

R, (5.4)

Proof:
The polynomial d(s) in relation (5.1) is clearly a polynomial of degree 2 in s
2

with discriminant A = (aﬂﬁc — pAc+(pfc- /1)2 ) +4pAc(fec- /1)2 >0
and poles R, and R, given, by relations (5.3) and (5.4). (To note that R, <0
and R, >0;[9]).

The denominator of relation (5.1) is clearly a polynomial of degree 3 in s,
while its numerator is a polynomial of degree 2. By simple element decomposi-
tion, the Laplace transform of the ultimate ruin probability , (s) in the rela-

tion (5.1) can therefore be expressed as:

_¢(A4+B+C)s” +¢(—AR — AR, - BR, —CR,)s + AcR R,

7, (s)= 5.5
l//b( ) cs(s—Rl)(s—Rz) (59)
where: 4,B,CeR; R and R, given by the relations (5.3) and (5.4).
By identifying relations (5.1) and (5.5), we find:
k
A=—23 (5.6)
CR R,
_ cAR, + kR, +k, (5.7)
¢(R,—R,)
k
B="1—A-C (5.8)
c

where: k,k, and k; are given in the relation (5.1).
Using the properties of the inverse Laplace transform, the probability of ulti-

mate failure can therefore be expressed as:
v, (u) = A+ Be™" + cePt (5.9)

where: A, Band Care respectively given by the relations (5.6), (5.7) and (5.8).

Since lim,_, v, (u)=0 (natural condition), we deduce that:

C=0 (5.10)
A4=0 (5.11)
B=(pc—1)¢,(0) (5.12)
_A(1-a)
, (0)_m (5.13)

By injecting relations (5.10); (5.11); (5.12) and (5.13) into relation (5.9), we
obtain the desired result. m

Example. By fixing the parameters ¢ = 0.5; A = 0.3; f = 1; b = 10; using
MATLAB we present the curves associated with the probabilities of failure asso-

ciated with various values of the dependency parameter a (See Figure 1).
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Pp(u) for different values of alpha

0.05 T T T T
alpha=0
——— alpha=1
0.04 1 alpha=05 | |
0.03
S
=
>
0.02
0.01
0
0

Figure 1. v, (u) for different values of alpha.

The probability of ruin y,(u) is the decreasing function of the dependence

parameter a.

6. Conclusion

In this paper, we have determined the probability of ultimate ruin in a com-
pound Poisson risk model with a partial shareholder dividend policy and a de-
pendency between claim amounts and inter-claim times via the Spearman copu-
la. In the remainder of this work, we will look at the applications of our results to

insurance.
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