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Abstract 
Gerber-Shiu function is the joint distribution of the time to ruin, the surplus 
before ruin and the deficit at ruin. In this paper, we propose a non-parametric 
estimator of the expected discounted penalty function; the Gerber-Shiu func-
tion for a compound Poisson risk model perturbed by diffusion is also called 
the Wiener-Poisson risk model. The estimator is based on the Fourier cosine 
series expansion method. It shows that our estimator has a fast convergence 
rate. We also derived some simulation examples to show the effectiveness of 
the estimator under a finite sample. 
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1. Introduction 

In this paper, we consider that the financial surplus of an insurance company 
evolves as a compound Poisson risk model perturbed by a Wiener process 

( )
1

, 0σ
=

= + − + ≥∑
tN

t i
i

U u ct X W t t                    (1) 

where 0≥u  is the initial capital and 0>c  is the constant premium per time. 
The aggregate claims 1=∑ tN

ii X  follows a compound Poisson process, where the 
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number of claims { } 0≥t t
N  is an homogeneous Poisson process with intensity 

0λ > , and the individual claim sizes { } 1≥i i
X  is a sequence of positive i.i.d. 

random variables generated by a generic variable X with density Xf  and mean 
µ . Finally, ( ){ } 0≥t

W t  is a standard Brownian motion with ( )0 0=W , and 
0σ >  is the diffusion volatility parameter. We suppose that { }tN , { }iX  and 
( ){ }W t  are mutually independent. In this paper, we shall assume throughout 

the safety loading condition λµ>c , so that ruin is an uncertain event. 
The ruin time is defined by ( ){ }inf 0 : 0τ = ≥ <t U t  with the convention 

τ = ∞  if ( ) 0≥U t  for all 0≥t . Problems related to ruin are a hot topic in risk 
theory literature. Starting with Cramér and Lundberg’s fundamental collective 
insurance risk model which was established at the turn of the century [1] [2], 
actuarial scholars are still investigating into specific examples of it or tweaking 
some of its aspects to make it more useful. [3] proposed three equivalent equa-
tions for ruin probability in a Cramér Lundberg model, and the solutions were 
means of inverse Laplace transform. To extend the ruin problem, [4] was the 
first to propose the joint distribution of the time to ruin, the surplus before ruin, 
and the deficit at ruin, named the Gerber-Shiu function. 

( ) ( ) ( )( ) { } 0e , | , 0δτ
τφ τ τ−

− <∞
 = = ≥  u w U U U u u             (2) 

where [ ) [ ) [ ): 0, 0, 0,∞ ∗ ∞ ∞w  is a measurable penalty function of the surplus 
prior to ruin and the deficit at ruin, 0δ ≥  represents the force of interest and 

{ } A  is the indicator function of the event A. Set ( )0 0,0=w w . The Gerber-Shiu 
function is a powerful tool for studying ruin related problems. To make it simple, 
when 1≡w , φ  becomes the ruin probability when 0δ =  or the Laplace 
transform of the time to ruin when 0δ > . For ( ), ≡w x y y , φ  becomes the 
expected discounted deficit at ruin when ruin is caused by a claim. Finally, for 
( ), ≡ +w x y x y , φ  becomes the expected discounted claim size causing ruin. 

Over the last decades, Gerber-Shiu has drawn the attention of numerous actuar-
ial scholars in various risk models. [5] [6] [7] [8] [9] 

The Wiener-Poisson risk model was initially proposed in the literature of ac-
tuarial science by [10] to extend the classical compound Poisson risk model, 
where the diffusion perturbation is used to describe the uncertainty of the pre-
mium income and aggregate claims. Since then, many scholars have made sub-
stantial contributions to this model. For instance, [11] showed that the probabil-
ity of ruin satisfied certain renewal equations; [12] studied the ruin problems; 
[13] derived and solved boundary conditions for the n-th moment of the dis-
counted dividend payments; [14] investigated some explicit solutions of the ex-
pected discounted penalty function; [15] considered a model with two-sided 
jumps. For further investigation, we refer the interested readers to [16] [17] and 
[18]. The explicit formula of the Gerber-Shiu function can be determined when 
it is assumed that the Poisson intensity, claim size density and diffusion volatility 
parameter are known. However, insurance companies do not have these proba-
bility distributions, instead they have the data information on the surplus flow 
levels, individual claim sizes and claim numbers. So the big challenge is to figure 
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out how to estimate the Gerber-Shiu function based on the data information. 
Recently, non-parametric estimation of risk measures has emerged as a hot 

topic in risk theory. For the classical model, [19] proposed a semi parametric es-
timator of the ruin probability, [20] constructed a non parametric estimator for 
ruin probability by Fourier inversion and kernel density estimation method, [21] 
estimated the finite time ruin by double Fourier transform. For the Wien-
er-Poisson risk model, [22] presented the estimator of the Gerber-Shiu function 
based on a regularized inversion of the Laplace transform, [23] presented an al-
ternative method, the Fourier sinc series expansion to ameliorate the regularized 
inversion of Laplace transform, [24] proposed a new method for the estimation 
of the Gerber-Shiu function, Laguerre series expansion method which is not 
based on the Fourier transform and the Laplace transform. 

In this paper, we implement the Fourier cosine series expansion to estimate 
the Gerber-Shiu function in the risk model (1). The Fourier cosine series expan-
sion has some applications in pricing financial products and it is also named the 
COS method in the literature. In the field of risk theory, [25] approximated the 
Gerber-Shiu function under the Levy subordinator model, [26] studied the den-
sity of the time to ruin in the classical compound Poisson risk model and [27] 
estimated the expected discounted penalty function in the Levy risk model based 
on the Fourier cosine series expansion. 

The remainder of this paper is organized as follows. In Section 2, we introduce 
the Fourier cosine series expansion. In Section 3, we show how to construct our 
estimator based on the COS method. The convergence rate of the estimator is 
derived in Section 4. Finally, some numerical simulations are presented in Sec-
tion 5 to show that the estimator performs well when the sample size is finite 
and Section 6 is the conclusion. 

2. Fourier Cosine Series Expansion 

This section presents some known results of the COS method. For an integrable 
function g with a finite support [ ]1 2,a a , we have the following Fourier Cosine 
series expansion, 

( ) 1
,

0 2 1

cos
∞

=

 −
=  −

π


∑ g k
k

x ag x ' A k
a a

                  (3) 

where ∑'  indicates that the first term in the summation is weighted by 
one-half, and the cosine coefficients are given by 

( )2

1

1
,

2 1 2 1

2 exp d
  − =   − −

π
  

∫
a

g k a

x aA Re g x ik x
a a a a

            (4) 

Let define ( ) ( )e d= ∫ isxg s g x x  as the Fourier transform of g. Assume that 

( ) ( ) ( )2

1
e d e d= =∫ ∫




a isx isx
a

g x x g x x g s               (5) 

Then 
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1
, ,

2 1 2 1 2 1

2: exp
    − ≈ =     − − −  

π



π

 
g k g k

ik akA B Re g
a a a a a a

           (6) 

Finally, the approximation of our function is given by 

( ) ( ) 1
,

0 2 1

: cos
=

 −
≈ =  π − 

∑

K

g k
k

x ag x g x ' B k
a a

                (7) 

The approximation error for the COS method is provided in [28] by the fol-
lowing Lemma. 

Lemma 1. For the real-value integrable function g supported on ( ]0,∞ , sup-

pose that ( )0+′ < ∞g , ( )′ < ∞g a  and ( )
0

d
∞

′′ < ∞∫ g y y . Then, for some 

positive constants 1C  and 2C , we have 

[ ]
( ) ( ) ( )1 1

1 2
0,

sup d .
∞− −

∈
− ≤ + ∫

ax a
g x g x C aK C Ka g y y             (8) 

Remark. Lemma 8 shows that COS method has two types of approximation 
errors depending on the parameter a which is in fact an integration domain 
truncation parameter in the COS method and the parameter K which is used in 
the approximation of the of the COS coefficients by the Fourier transform g . 
The first error term 1−aK  means that larger K yields better approximation, but 
large a may slowdown the convergence rate. The second error term 

( )1
2 d

∞− ∫aC Ka g y y  means that larger a can result in more accurate approxima-

tion of the COS coefficient. However, this error term is increasing with respect 
to K since larger K means more COS coefficients have to be approximated. 

3. Estimation Procedure 
In this section, we shall first approximate the expected discounted penalty func-
tion by the COS method. Afterward, we shall replace the estimate values in the 
approximate function to have our estimator. 

3.1. The COS Approximation Method 

We consider how to use the COS method to approximate the expected dis-
counted penalty function ( )φ u . The Laplace transform of the Gerber-Shiu 
function is given as follow, see [29] 

( )
( ) ( ) ( )

( )

2

02
σ ρ λ ω ρ ω

φ
ψ δ

 − + − 
=

−

 


U

w s s
s

s
              (9) 

where ( )0 0,0=w w  and ( ) ( ) ( ), d , 0ω
∞

= − ≥∫ Xu
u w u x u f x x u . 

From the relation between Laplace transform and Fourier transform, it fol-
lows that 

( ) ( )
( ) ( ) ( )

( )

2

02
σ ρ λ ω ρ ω

φ φ
ψ δ

 − − + − 
= − =

− −

 
 

U

w is s
s is

is
       (10) 
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By Formula 7, we use the COS method approximation as follow 

( ) ( ) ,
0

: cos , 0φφ φ
=

 ≈ π= ≤ ≤ 
 

∑

K

k
k

uu u ' B k u a
a

             (11) 

where the COS coefficients are given by: 

,
2:φ φ π  =   

  
k

kB Re
a a

 

Remark. The approximation error can also be obtained Lemma 8. Further-
more, suppose that ( )0φ +′ < ∞ , ( )0φ +′′ < ∞ , ( )φ′ < ∞a , ( )φ′′ < ∞a  and  

( )
0

dφ
∞

′ < ∞∫ u u , ( )
0

dφ
∞

′′ < ∞∫ u u  and let C be a positive constant, then from 

Lemma 8 and Remark 2, we can obtain 

( ) ( ) ( ),φφ φ ξ− ≤ ⋅ u u C a K                      (12) 

where 

( ) ( ) ( )1 1 1, d dφξ φ φ
∞ ∞− − − ′= + +∫ ∫a a

a K aK Ka u u Ka u u           (13) 

3.2. The COS Estimation Method 

Since we have approximated the expected discounted penalty function, it can 
now be estimated based of the dataset of the surplus flow level, a random sample 
on individual claim sizes and claim numbers. 

Let us assume that the premium rate c is constant, but the Poisson parameter 
λ  and the claim size density function Xf  are both unknown, but as in [23], 
we assume that the surplus process can be observed over a long time interval 
[ ]0,T . Let 0∆ ≥  be a sampling interval. Without loss of generality, we assume 
that ∆T  is an integer and let = ∆n T . 

Suppose that the insurer can get the following data-set. 
• Data-set of surplus level: { }: 0,1,2, ,∆ = jU j n  Where ∆jU  is the observed 

surplus level at time = ∆t j  
• Data-set of claim numbers and claim sizes: 

{ }1 2, , , , , 0,1,2, ,
∆∆ = 

jj N TN X X X j N  where ∆jN  is the total claim num-

ber up to time = ∆t j . 

We shall propose an estimator for the expected discounted penalty function 
( )φ u . Obviously, we need to estimate the following quantities  

( ) ( ) ( )2 , , , , ,σ λ ρ ψ ρ +′ U Xf s h u  and ( )+g u . As in [23], we can estimate  
( ), ,λ ρ  Xf s  and ( ) Xf s  by 

( )
( )1 1

2

2
1

1

1σ̂
∆

− ∆+

∆ − ∆
= =

 
= − − ∆ + 

∆   
∑ ∑

jT

j

NN

j kj
j k N

U U c X
n

 

λ̂ = TN
T

 

 ( )
1

1 e
=

= ∑
T

j
N

isX
X

jT

f s
N
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 ( )
1

1 e−

=

= ∑
T

j
N

sX
X

jT

f s
N

 

It is known that ( )2 2 2
ˆ

ˆ ˆ ˆ2 , λ δρ σ δ σ
 +

∈ − + + 
 

c c
c

 and ρ̂ δ≥ c . 

Finally, we propose an estimator for the expected discounted penalty function 
( )φ u . It is easily seen that 

( ) ( ) ( )

( )( )
0 0

0

e , d d

e , d

ω
∞ −

−

= −

= −

∫ ∫

∫


x su

X

X su

s w u x u uf x x

w u X u u
 

( ) ( ) ( )

( )( )
0 0

0

e , d d

e , d

ω
∞

= −

= −

∫ ∫

∫


x isu

X

X isu

s w u x u uf x x

w u X u u
 

see [23]. From which we obtain the estimators for ( )ω s  and ( )ω s  

 ( ) ( )ˆ
0

1

1ˆ e , dρω ρ −

=

= −∑∫
T

j
N X u

j
jT

w u X u u
N

 

 ( ) ( )0
1

1 e , dω
=

= −∑∫
T

j
N X isu

j
jT

s w u X u u
N

 

Now the Fourier transforms ( )φ s  can be estimated as follows, 

 ( )
( )  ( )  ( )

( )

2

0
ˆ ˆ ˆ
2

ˆ

σ ρ λ ω ρ ω
φ

ψ δ

 − − + − 
=

− −

 


U

w is s
s

is
            (14) 

Then ( )φ u  is estimated as follows, 

( ) ,
0

ˆ ˆ: cos , 0φφ
=

 = ≤ ≤ 
 
π∑

K

k
k

uu ' B k u a
a

               (15) 

where the COS coefficients are given by: 



,
2ˆ :φ φ π  =   

  
k

kB Re
a a

 

4. Consistency Properties 
In this section, we derive the consistency properties of our estimators when the 

observation interval [ ]0,T  is very large. First, we know that 
1
2λ̂ λ

− 
− =   

 
PO T , 

1
2 2 2σ̂ σ

− 
− =   

 
PO T  

Lemma 2. Suppose that ( )λ≥ c X , ( )2 < ∞ X  and ( )=a o K  and 

( )( )0
d− ≤ ∞∫

X
w X x x , ( )( )2

0
d− ≤ ∞∫

X
xw X x x , then we have  

( )1 2ρ̂ ρ −− = pO T  and 

( ) ( ) ( ) ( )
0

logˆsup φ φ
≤ ≤

 
 − =
 
 



p
u a

K a
u u O K a

T
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Proof. The convergence of ( )1 2ρ̂ ρ −− = pO T  is well known, see [30]. 
For the Gerber-Shiu function, we have that 

( ) ( )

( )


 ( ) ( )

( )
 ( ) ( )

, ,
0 0 0 0

, ,
0 =0

0 0

0

ˆ ˆsup sup cos cos

sup

2sup

2sup 1

2 1
sup

φ φ

φ φ

φ φ

φ φ

φ φ

φ φ

≤ ≤ ≤ ≤ = =

≤ ≤

≤ ≤ =

∈ =

∈

   − = −   
   

≤ −

       ≤ −       
      

π π

π



≤ −

+
= −

π

∑ ∑

∑

∑

∑



 

 

 

K K

k k
u a u a k k

K

k k
u a k

K

u a k

K

s S k

s S

u uu u ' B k ' B k
a a

' B B

k k' Re Re
a a a

' s s
a

K
s s

a

     (16) 

where 

 ( ) ( )
( )

( )
( )

( )

 ( )  ( )
( )

( ) ( )
( )

( ) ( )

2 2

0 0

1 2

ˆ ˆ
2 2sup sup

ˆ

ˆ
sup

ˆ

σ σρ ρ
φ φ

ψ δ ψ δ

λ ω ρ ω λ ω ρ ω
ψ δ ψ δ

∈ ∈

∈

− − − −
− ≤ −

− − − −

 −  −   + −
− − − −

= +

 

   

s S s S U U

s S U U

w is w is
s s

is is

s s
is is

M s M s

 

It is shown in [31] that ( ) ( ) ( ) ( )
1 2

log 
 = =
 
 

p

K a
M s M s O K a

T
 Hence, 

 ( ) ( ) ( ) ( )log
sup φ φ
∈

 
 − =
 
 

  p
s S

K a
s s O K a

T
           (17) 

Then by formula 16 and 17, we can conclude that 

( ) ( ) ( ) ( )
0

logˆsup φ φ
≤ ≤

 
 − =
 
 



p
u a

K a
u u O K a

T
 

5. Numerical Simulation 
In this section, we present some numerical results to show the effectiveness of 
our method. All computations are done in MATLAB on a EliteBook, with In-
tel(R) Core(TM) i5-6300U CPU@2.40GHz 2.50GHz and a RAM of 8GB. 
Throughout this section, we set 8=c , 5λ = , 0.1δ =  and consider claim size 
density functions, the exponential EXP(1): ( ) e , 0−= >x

Xf x x  and the Erlang (2, 
2): ( ) 24 e , 0−= >x

Xf x x x . Then the true value of the Gerber-Shiu function can 
be found in [23]. Now for these two claim size density functions, closed form of 
Fourier transforms exist so that the COS method approximation of ( )φ u  can 
be computed. When using Fourier Cosine Series expansion method to approx-
imate ( )φ u , we apply the cumulant method given in [32] to determine the pa-
rameter a. We take 10=L , 72=K  to provide the benchmark. 
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First of all, we test the effectiveness of the Fourier Cosine method for ap-
proximating ( )φ u . In Table 1 and Table 2, we present some average relative 
errors and average absolute errors for ( )φ u  respectively for exponential and 
Erlang distributions which are calculated by the following 

( ) ( )
( )

1Average relative errors :
#

φ φ

φ∈

−
∑



 u

u u

u
 

( ) ( )1Average absolute errors :
#

φ φ
∈

−∑ 

 u
u u  

Here, we take { }1,2, ,15=  , since when 15> , ( )φ u  is very small. We 
consider the truncation parameter 2= qK , 4,5,6,7=q . It can be observed that 
in each column of Table 1 and Table 2, both average relative errors and the av-
erage absolute errors are decreasing w.r.t. q, which implies that large truncation 
parameter can reduce the bias under the model setting. In Table 1 and Table 2, 
we find that the average relative errors are larger than the average absolute er-
rors, which is due to that ( )φ u  is always smaller than 1, and in particular, it is 
close to zero for large initial surplus. 

Next we test the performance of our estimator ( )φ̂ u . We fixe 72=K . As for 
the observation interval [ ]0,T , We shall take 2= pT  for 0,1,2,3,4,5=p . For 
the COS parameter a, we also apply the cumulant method given in [32]. We take  

  

1 2 4ˆ = + +a k L k k  where   ( )
0

log
=

= −
j

j
s

dk f is
dj

. We repeat 300 simulations,  

and compute empirical average relative errors and average absolute errors for 
( )φ̂ u . Which are defined by 

( ) ( )
( )

300

1

ˆ1 1Average relative errors :
# 300

φ φ

φ∈ =

−
∑ ∑


j

u j

u u

u
 

( ) ( )
300

1

1 1 ˆAverage absolute errors :
# 300

φ φ
∈ =

−∑ ∑
 j

u j
u u  

where ( )φ̂ j u  denote the jth simulation values of ( )φ̂ u . In Table 3 and Table 4, 
we present the empirical estimation errors for ( )φ̂ u  respectively for exponen-
tial and Erlang distributions. As expected, both the empirical average errors and 
empirical absolute errors are decreasing w.r.t. p which is due to that, as p in-
creases (or equivalently T increases), more sample can be used to estimate ( )φ̂ u . 
Again, we observe that the average relative errors are larger than the average ab-
solute errors. 

Finally, we plot 300 consecutive estimators (green curves) on the same picture 
together with the true curve (red curve) to illustrate variability bands and show 
the stability of the procedures. In Figure 1, we observe that the beams of esti-
mators are much closed to the true curves. In particular, it follows that the va-
riances for estimating ( )φ u  are very small for a large observation interval. We 
find that ( )φ u  is a decreasing function of the initial surplus u, which means 
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that the ruin is more likely to happen when u is small. At the same time, we can 
also observe that as T increases, the estimator tends to be stable and converges to 
( )φ u . We plot the corresponding curves. Again, we can observe that the esti-

mator becomes better as T becomes larger. 
 

Table 1. Approximation Errors for Gerber-Shiu function ( )uφ  based on EXP (1). 

q Empirical average relative errors Empirical relative absolute errors 

4 0.08763 0.001577 

5 0.01456 0.08598 

6 0.01423 0.0006745 

7 0.01367 0.0005797 

 
Table 2. Approximation Errors for the Gerber-Shiu function ( )uφ  based on Erlang (2, 

2). 

q Empirical average relative errors Empirical relative absolute errors 

4 0.7763 0.05377 

5 0.6556 0.05198 

6 0.4223 0.009745 

7 0.2367 0.005797 

 
Table 3. Estimation Errors Errors for the Gerber-Shiu function ( )uφ  based on EXP (1). 

T Empirical average relative errors Empirical relative absolute errors 

1000 0.13347 0.0811 

2000 0.13050 0.0811 

3000 0.120248 0.0749 

4000 0.114248 0.0646 

 
Table 4. Estimation Errors for the Gerber-Shiu function ( )uφ  based on Erlang (2, 2). 

T Empirical average relative errors Empirical relative absolute errors 

1000 0.15347 0.0861 

2000 0.14550 0.0831 

3000 0.141248 0.0799 

4000 0.112248 0.00726 
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(a)                                                   (b) 

 
(c)                                                   (d) 

 
(e)                                                   (f) 

Figure 1. Beams for estimating the Gerber-Shiu function ( )uφ : 300 estimators in green, and the true value in bold red. (a) q = 

1000; (b) q = 2000; (c) q = 3000; (d) q = 4000; (e) q = 5000; (f) q = 6000. 
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6. Conclusion 

In this paper, we have proposed a new estimator of the expected discounted pe-
nalty function in the perturbed compound Poisson risk model. Our estimator 
is based on the COS method. The COS coefficient is easily derived based on 
the Fourier transform of the Gerber-Shiu function which is useful when ap-
proximating the function by the COS method. Suppose we have the surplus flow 
level, the claim number, and the claim sizes over a long-term interval. Then, we 
construct our estimator based on the COS approximation we have derived, by 
replacing the different functions with their estimates. We have derived theoreti-
cal errors and presented some simulation results to show the effectiveness of our 
estimator. We have shown that our estimator has an accurate convergence rate. 
Since the COS method does not utilize the Fast Fourier transform algorithm, our 
estimator is easier to compute compared to the Fourier sinc method. Since this 
method and the Fourier sinc method use the Fourier transform of the Ger-
ber-Shiu, the comparison of the two methods could be future research. 
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