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Abstract 
We have developed a practical and elegant closed-form option pricing for-
mula for general GARCH models using a risk-neutral argument. To estimate 
the parameters, we propose a procedure and utilize Monte Carlo simulation 
to calculate the prices. Our formula has been successfully applied to S&P 500 
index options and Chinese SSE 50 ETF options, providing empirical evidence 
that it outperforms the Black-Scholes formula with constant volatility in both 
the U.S. and Chinese financial markets. While there may be other equivalent 
martingale measures in this setting, our formula serves as a useful reference 
for pricing options. 
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1. Introduction 

In this paper, we present a solution to the question posed by [1] regarding op-
tion pricing based on GARCH models. We achieve this by deriving a closed 
formula. 

The theoretical valuation formula for options was established by [2] and [3] 
using the geometric Brownian motion model for the return of the underlying fi-
nancial instrument. The work [4] provided a straightforward discrete model ap-
proach. Black-Scholes’ formula expresses the price of an option for a financial 
derivative instrument in terms of the underlying financial asset price, maturity, 
striking price, risk-free rate, and volatility of the underlying financial instrument. 
The only unknown variable in the option formula is the volatility of the financial 
asset, which is assumed to be constant in Black-Scholes-Merton’s model. There-
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fore, the theoretical valuation formula demonstrates the option price in terms of 
volatility, while the “implied” volatility provides a prediction of the option price 
in practice. 

Financial economists and practitioners are increasingly concerned with mod-
eling volatility in asset returns. The assumption of constant volatility in Black- 
Scholes-Merton’s model is unrealistic in actual financial markets, and volatility 
in real markets is often random. Engle’s autoregressive conditional heteroske-
dasticity (ARCH) model for time-varying volatility represented a significant 
breakthrough in the statistical modeling of volatility and option valuation. En-
gle’s revolutionary approach allows for the systematic explanation of volatility 
movements over time. Since the seminal work of [5], many extensions of ARCH 
models have been developed. The first significant generalization of ARCH mod-
els was the family of generalized autoregressive conditional heteroskedasticity 
(GARCH) models introduced by [6], which allows for a flexible lag length. 
Another significant development was the family of exponential GARCH (EGARCH) 
models proposed by [7]. These models recognize asymmetrical responses to past 
forecast errors. Many researchers have proposed generalizations of GARCH 
models, and there is now a wide range of ARCH models available for modeling 
volatilities. 

These GARCH models incorporate key features such as nonlinearity, asym-
metry, and long memory properties, making them essential for modeling and 
forecasting volatility. For further reference, readers may refer to papers such as 
[8] and others. For simplicity, we refer to these ARCH models as “GARCH” in 
what follows. 

GARCH models have been widely used in finance to measure time-varying 
volatility and forecast the future movement of an underlying financial asset. This 
is particularly important for investigating the trade-off between risk and return 
in financial markets. One notable model in this field is the GARCH-in-mean 
(GARCH-M) family, with a representative equation given by  

2 ,t t t tR c zµ σ σ= + +                        (1) 

where tR  represents the logarithm return of the asset, 2
tσ  is a GARCH process, 

and { }tz  denotes Gaussian white noise at discrete time t. The GARCH-M model 
was first introduced by [9]. The general form of a GARCH-M model is often 
written as  

21 ,
2t t t t tR zµ σ σ= − +                       (2) 

where tµ  may depend linearly or nonlinearly on past returns { }1 2, ,t tR R− −   
and volatility 2

tσ . For further details, refer to Section 2 below. 
A natural question is how to value option instruments based on GARCH 

models. Many researchers use the “plug-in” method to value options, which in-
volves evaluating options using the Black-Scholes pricing formula with the fore-
casting values of volatility, such as the average time-varying volatility of the un-
derlying security over the life of the option, in place of the constant volatility 
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2σ . In practice, Monte Carlo simulations of future price paths are applied, and 
the expected average per-period volatility 2

,ˆt Tσ  between the current time t and 
the expiration time T is estimated, then plugged into the Black-Scholes pric-
ing formula. Recently, the option pricing formula has been used by combin-
ing it with stochastic volatility models, such as those developed in [10]. The 
Hull-White price is equal to the expected Black-Scholes price integrated over the 
average instantaneous variance during the life of the option, which calculates the 
price as  

( )( )2
,

1

1 ˆ , , , ,
N

BS
t t T t

n
C C n S K r

N
σ

=

= ∑                 (3) 

where ( )2 , , ,BS
tC S K rσ  is the Black-Scholes price, and ( )2

,ˆt T nσ  is the average 
volatility per period for the nth Monte Carlo simulation of the future price paths. 
For further details, refer to [11] and other similar sources. 

Although the performance of these approaches for option pricing formulas 
may be good, they are not satisfactory, and we would like to ask what the theo-
retical option pricing formula is for general GARCH-M models. This is one of 
the questions raised by [1]. 

The work [12] was the first researcher to implement a local risk neutralization 
within the framework of GARCH models using a quadratic utility function of a 
representative agent’s risk preference. Subsequently, [13] [14] also adopted the 
risk neutralization approach for GARCH models, which we believe deserves fur-
ther investigation. 

In this paper, we present closed-form option pricing formulas (see Equations 
(14) and (21)) based on risk-neutral arguments. These formulas are both elegant 
and practical for applications, and lead to new insights, such as the relationship 
among the forecast of future volatility, the return rate, and the risk premia. Em-
pirically, the theoretical option prices based on GARCH models can also be eas-
ily applied in real financial markets. We also discuss the estimation problems for 
these models, and interested readers can refer to [15] [16] [17], and others for 
further details on statistical inference. 

We have evaluated the performance of our option pricing formula through 
numerical simulations and empirical applications to the S&P 500 composite 
stock price index and Chinese SSE 50 ETF. Our results have been compared to 
those obtained via Black-Scholes’ pricing formula. However, there is still much 
to be explored and developed in the realm of option pricing based on GARCH-M 
models. While there may be other equivalent martingale measures in this set-
ting, our formula serves as a useful reference for pricing options. In future work, 
we plan to investigate other equivalent martingale measures and option valua-
tion for high-frequency econometric data following a GARCH model. For in-
terested readers, we suggest referring to [18] [19], and [20] for some hints on this 
aspect. 

Our contribution extends previous work on option pricing with GARCH 
models, which relied on the “plug-in” method or stochastic volatility models. 
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The contributions of our proposed formula are that it leads to new insights such 
as the relationship among the forecast of future volatility, the return rate, and 
the risk premia. We have evaluated the performance of our formula through 
numerical simulations and empirical applications to real financial markets. It 
serves as a useful reference for pricing options, but there is still much to be ex-
plored and developed in the realm of option pricing based on GARCH-M mod-
els. 

The outline for the remaining sections of the paper is as follows. Section 2 
presents a pricing formula for general GARCH-M models. In Section 3, we ana-
lyze the option pricing behavior using empirical data from the daily S&P 500 
stock index for three GARCH-M type data-generating mechanisms. In Section 4, 
we evaluate the performance of our theoretical formula using real market prices 
of S&P 500 stock index options and Chinese SSE 50 ETF options with recent 
market data. We also compare these prices with those given by the Black-Scholes 
model. 

2. Option Pricing for GARCH-M Models 

In this section, we will present option pricing formulas for GARCH-M models. 
The first model we consider is described by the following equations  

21 , ,
2t t t tR z tµ σ σ += − + ∈                    (4) 

2 ~ GARCH type process,tσ                    (5) 

where 
1

log t
t

t

SR
S −

=  is the logarithm return of assets, µ  is the constant return  

rate, and { },tz t +∈  is Gaussian white noise. In this paper, we also call the 
conditional variance process 2

tσ  as “GARCH type” process. The model above 
is the simplest one in GARCH-M family, which is however a good representative 
of this family for option pricing. The important feature of this model is that the 
return on assets has stochastic volatility which is driven by GARCH processes. 
Based on risk-neutral arguments, we give the pricing formula in Section 2.1. 

Apart from the stochastic volatility in the above model, the return rate can al-
so be generalized such that it depends on the past returns and the volatility of 
the logarithm return of assets. The first family of generalized return models are 
the so-called AR(k)-GARCH-in-mean (AR-GARCH-M) models in which the 
return rate is given by the autoregressive process and the risk premia. That is, 
they are determined by the equations:  

( )2
0

1
,

k

t j t j t t t
j

R R V zγ γ σ σ−
=

= + + +∑                 (6) 

2 ~ GARCH type process,tσ                   (7) 

where ( )2
tV σ  is the risk-return relation/risk premia describing the trade-off 

between risk and return, for example, ( )2 2
t tV cσ σ= , ( )2log tc σ ,  

( )2 2
1 2 3sint tc c cσ ω σ+ +  etc. (see e.g. [15] for a discussion). Let  
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( )2 2
0

1

1 .
2

k

t j t j t t
j

R Vµ γ γ σ σ−
=

+ + +∑                  (8) 

Then the model can be rewritten as Equations (4) and (5). A closed form of 
the option pricing formula can be derived too by a similar method used for the 
first model. More generally, the return rate may depend (linearly or non-linearly) 
on the past returns and the volatility in a general functional form, that is,  

{ }( )2, .t s ts t
Rµ µ σ

<
=  

The option pricing Formula (21) in the following part is still valid. 

2.1. Option Pricing for GARCH-M Models  

Let us derive an option pricing formula based on GARCH-M models, described 
by Equations (4) and (5), where the stochastic volatility 2

tσ  belongs to GARCH 
family. 2

tσ  may be an ARCH (p), GARCH (p, q), or EGARCH type volatility 
process. That is,  

2 2 2
0

1
,

p

t j t j t j
j

zσ α α σ − −
=

= +∑                     (9) 

2 2 2 2
0

1 1
,

q p

t j t j j t j t j
j j

zσ α β σ α σ− − −
= =

= + +∑ ∑               (10) 

or  

( ) ( ) ( )2 2
0

1 1
ln ln ,

p q

t j t j j t j
j j

g zσ α α β σ− −
= =

= + +∑ ∑            (11) 

( ) ( ) ,t j t j t j t jg z z z zθ λ− − − −= + −                (12) 

respectively. In general, the stochastic volatility 2
tσ  is determined by the condi-

tional variance of the stochastic process t tzσ  given the information up to time 
1t − , that is,  

( )2
1Var | ,t t t tzσ σ −=                     (13) 

where the sigma field (information up to time t) { }( )1, ,t t tz zσ −=  . 
The option pricing formula for this discrete-time stochastic volatility driven 

by GARCH-M models is obtained by using the idea of arbitrage arguments. The 
derivation and proofs are given in Appendix A.  

Theorem 2.1. Let r be the one plus riskless interest rate on one period, T t−  
be time to maturity, and K be the striking pricing. Then, for the discrete-time 
GARCH-M Models (4) and (5), the pricing formula for European call option is 
given by  

( ) ( ) ( )1 2 ,T t
t t T t T tC S D Kr D− −

− −= Φ − Φ                (14) 

where tS  is the spot price of the underlying asset, ( )dΦ ⋅  is d-dimensional stan-
dard normal distribution function with independent components, i.e.  

( ) ( )
2

1
1
22 12 e d d .

d
jj

d u

d dD
D u u=−− ∑

πΦ = ∫ ∫   
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The integral domains D1 and D2 are defined as follows. Let ( )log rρ µ= − −  
and  

( ) ( ) ( )

( ) ( )

1 1
1

2
1

1

, , :

1log ,
2

T t
T t

T t t j j j
j

T t
t

t j jT t
j

D x x x x T t

S x
Kr

σ ρ

σ

−
−

− + −
=

−

+ −− −
=


= ∈ − −


 > − −  
 

∑

∑


 



 

then  

( ) ( ) ( )1 1 1
1

, , :T t
T t j j t j j

t j j

D u u u x x
x
ρ σ

σ
−

− + −
+ −

  = ∈ = − − 
  


 



 

and  

( ) ( )2 1
1

, , : .T t
T t j j

t j j

D v v v x
x
ρ

σ
−

−
+ −

  = ∈ = − 
  

 



 

In the above notation, ( )1t j jxσ + − , 2j ≥ , are obtained by substituting 

( )1 1, ,t j tz z+ − +  in the conditional heteroskedasticity  

( )1 1, , ; ,t j t j t j t tz z zσ σ+ + + − +=    with ( )1 1 1, ,j jx x x− −=
 , that is,  

( ) ( )1 1 1 1, , ; , , , 2, , ,t j j t j j t tx x x z z j T tσ σ+ − + − −= = −
    

and  

( ) ( )1 0 1 1, , .t t t tx z zσ σ+ + −≡
  

We call ( )1 , 1,2,t j jx jσ + − =
 , as the conditional volatility function evaluated 

at time t.  
The difficulty in the closed form of the option pricing Formula (14) is the 

computation of the integral domains D1 and D2. By specifying the GARCH sto-
chastic volatility 2

tσ , we may obtain more information about the option pricing 
formula theoretically. Let us see some classical examples.  

Example 1. Begin with the case in which the volatility is a constant, i.e. 2 2
tσ σ≡ . 

In this case, our formula coincides with Black-Scholes’ formula:  

( ) ( ) ( )1 2 ,T t
t tC S N d Kr N d− −= −                  (15) 

where  

( ) ( )2

1

1log
2 ,

t
T t

S T t
Krd

T t

σ

σ

− −
+ −

=
−

                 (16) 

( ) ( )2

2

1log
2 ,

t
T t

S T t
Krd

T t

σ

σ

− −
− −

=
−

                 (17) 

and ( )N ⋅  is standard normal distribution function. As we can see that the integral 
domain 1D  is a half hyperplane, that is,  

( ) ( ) ( )2
1 1

1

1, , : log ,
2

T t
T t t

T t j T t
j

SD u u u T t
Kr

σ σ
−

−
− − −

=

  = ∈ > − + −    
∑   
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then  

( ) ( )
( ) ( )

( )
2

1 1 1

1log
2 ,

t
T t

T t T t

S T t
KrD Z D Z N d

T t

σ

σ

− −

− −

 + − 
Φ = ∈ = > − = 

−  
 

   

where ( )~ 0,T t T t T tZ N I− − −  and ( ) ( )1

1: ~ 0,1T t j
T tjZ Z N

T t
−

−=
=

−
∑ . The integral 

domain D2 can also be obtained similarly.  
If the stochastic volatility 2

tσ  is modelled by a general GARCH process, we 
can also get some information on the integral domains.  

Example 2 When the stochastic volatility is an ARCH (1) process  
2 2 2

0 1 1 1 0 1, 0, 0,t t tzσ α α σ α α− −= + > ≥  

then the volatility process 2
tσ  has the following representation:  

11
2 2 2 2 2

0 0 1 1
1 1 1

, 1,
jj i

i j
t j t j t j t t

i
z z z jσ α α α α σ

−−

+ + − + −
= = =

= + + ∀ ≥∑ ∏ ∏
 

 

 

where the conventions that 0
1 : 0i= =∑ , 0

1 : 1i= =∏  have been used. The integral 
domains D1 and D2 in Theorem 2.1 are determined for this case by  

( ) ( ) ( )
1

2 2 2
1 0 1 1 0 1, , ,t t t t t tx z z zσ σ α α σ+ + −≡ = +

  

( ) ( )1 1 1 1

1
11 2

2 2 2 2
0 0 1 1

1 1 1

, , ; , ,

.

t j j t j j t t

jj i
i j

j j t t
i

x x x z z

x x z

σ σ

α α α α σ

+ − + − −

−−

− −
= = =

=

 
= + + 
 

∑ ∏ ∏
 

 


 

 

Example 3. 1) If the stochastic volatility 2
tσ  is the GARCH (1, 1) model, that 

is,  
2 2 2 2

0 1 1 1 1 1 0 1 1, 0, , 0.t t t tzσ α α σ β σ α α β− − −= + + > ≥  

Then the volatility process 2
tσ  has the following representation:  

( ) ( )( )
11

2 2 2 2 2 2
0 0 1 1 1 1 1 1

1 1 1
,

jj i

t j t j t j t t t
i

z z zσ α α α β α β α σ β σ
−−

+ + − + −
= = =

= + + + + +∑∏ ∏
 

 

 

and the integral domains 1D  and 2D  in Theorem 2.1 are determined by  

( ) ( ) ( )( )
1

11 2
2 2 2 2 2

1 0 0 1 1 1 1 1 1
1 1 1

.
jj i

t j j j j t t t
i

x x x zσ α α α β α β α σ β σ
−−

+ − − −
= = =


= + + + + + 
 

∑∏ ∏
 

 

  

2) For the GARCH (p, p) models  

2 2 2 2
0

1 1
,

p p

t j t j t j j t j
j j

zσ α α σ β σ− − −
= =

= + +∑ ∑  

the stochastic volatility 2
t jσ +  is given by  

( )
( )

1

1 1

1

1

1
2 2

0 0
1 1 1 1

2 2

1 1 1
.

q
i

j
q q

q

q
j

q

j p p i

t j k kt j k
i k k

jp p

k kt j k t j k
k k

z

z

σ α α α β

α β σ

=

= =

−

+ + −
= = = =

+ − + −
= = =

∑

∑ ∑

 
= + + 

 

+ +

∑ ∑ ∑∏

∑ ∑∏
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The models include all ARCH (p) processes by taking 0jβ ≡ . Substituting 

( )1 1, ,t j tz z+ − +  in the conditional heteroskedasticity  

( )2 2
1 1, , ; ,t j t j t j t tz z zσ σ+ + + − +=    

with ( )1 1 1, ,j jx x x− −=
 , we obtain the conditional volatility function ( )1t j jxσ + − , 

which determines the integral domains , 1,2iD i =  in Theorem 2.1.  
Example 4. For the EGARCH (p, q) models,  

( ) ( ) ( )2 2
0

1 1 1
ln ln ,

p p q

t j t j t j j t j j t j
j j j

z z zσ α α α β σ− − − −
= = =

′= + − + +∑ ∑ ∑  

then the representation of ( )2ln t jσ +  is  

( ) ( )

( )
1 2

1

1 2 1
1

2
0

1 1

1

1 1 1

2

1 1

ln

1

ln .

i
i

jj kk
j

p p

t j i t j i t j i i t j i
i i

j q q

i

q q

t j

z z zσ α α α

β β β

β β β σ
=

+ + − + − + −
= =

−

= = =

+ −
= =

∑

 ′= + − + 
 
 

× + 
 

+

∑ ∑

∑∑ ∑

∑ ∑

  

 

  



 

 

 



 

The conditional volatility function ( )1t j jxσ + −  follows.  
For other GARCH type processes, e.g. IGARCH, FIGARCH, IEGARCH, 

FIEGARCH etc. explicit computations on the condition volatility functions can 
be done too. Though the conditional volatility function ( )1t j jxσ + −  looks very 
complicated, but it is easy to be implemented iteratively by computer software, 
e.g. Matlab, Python and so on. 

Let us make some comments on the theoretical option valuation Formula (14) 
in Theorem 2.1. The first observation is the dependence of option price on the 
volatility. From our formula, we can see that the option price (at time t) depends 
on the future volatility of the underlying security i.e. 2 2 2

1 2, , ,t t Tσ σ σ+ +   through 
the option duration. Since the volatility is varying from one period to another period, 
the better forecast of the future volatility is made, the more accurate the option 
will be valued. The GARCH type time-varying volatility is thus a method to model 
and forecast the dynamics of volatility. The family of GARCH models is huge, so 
that one has a great number of choices to select an appropriate GARCH type process 
for a specific underlying security to make a better forecast of the future volatility.  

The second point we want to emphasize is that the return rate µ  appears in 
the theoretical option valuation Formula (14), which is quiet different from 
Black-Scholes’ option pricing Formula (15). However, by an informal analysis of 
sensitivity on the return rate, we find that there is a small impact on valuation of 
options for a large range of return rate. 

Figure 1 plots the relationship between daily return rate µ  and option price 
C computed from Formula (14). We find that for reasonable return rate µ , it 
has little impact on the option price. Table 1 shows daily return rates and their 
annualized ones. 
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Figure 1. The effect of daily return rate µ  on option price. 
Parameters are estimated from S&P 500 Index, see Model 1 
in Section C.2. The annualized riskless interest rate is taken 
to 2.5%, string price 0K S=  (i.e. at-the-money option), and 
time-to-maturity 30T =  days. 

 
Table 1. Daily and annualized return rate µ . 

1 day 10−5 10−4 5 × 10−4 10−3 5 × 10−3 10−2 10−1 

1 year 0.36% 3.65% 18.25% 36.48% 1.82 3.63 34.79 

 
The mathematical reason for appearance of return rate in our formula is that 

the martingale M̂  (M with drift) in Equation (38) under risk-neutral measure 
  is not same in law with the martingale M in Equation (35) under physical 
measure  , which is different from the “Brownian motion” case, i.e. Brownian 
motion with drift under measure   is still Brownian motion. In econometric 
words, for the GARCH-M case we are considering, the return innovation distri-
bution is changed to another distribution by changing physical measure   to 
risk-neutral measure  . This is different from the constant volatility case, in 
which the return innovation distribution keeps unchanged under the transforma-
tion of measures. 

Another point we want to explain is about the integral domains D1 and D2. 
The dimension of the integral domains changes according to time-to-maturity. 
When the volatility is constant, ( )T t iD−Φ  become ( )iN d , 1,2i = , due to the 
Gaussianity of linear combination of Gaussian/normal random variables. The 
integral domains of constant volatility case are always half planes with linear 
partition. However, for the GARCH type volatility, the borderline is no longer 
linear/flat but a curve/surface. A 2-dimensional example (with GARCH (1, 1) 
volatiltiy) may provide a heuristic knowledge of the shape. In Figure 2, we si-
mulated 100,000 points (all the colored points) with 2-dimensional standard 
normal distribution. According to the three-sigma rule of thumb, there are 99.73% 
of the values which lie within three standard deviations of the mean. So all the 
colored points cluster as shown in Figure 2. The red parts are the integral domains  

https://doi.org/10.4236/jmf.2023.132015


Z. M. Qian, X. C. Xu 
 

 

DOI: 10.4236/jmf.2023.132015 230 Journal of Mathematical Finance 
 

 

Figure 2. Integral domains D1 (the left panel) and D2 (the right panel) in dimension 2 space. 
 

D1 (the left panel) and D2 (the right panel). One can see very clearly the border-
line and the shape of domains from this figure. By the way, one can actually com-
pute out values of ( )T t iD−Φ , which are the ratio of numbers of red points to all 
colored points by Manto Carlo method. 

2.2. Option Pricing for AR-GARCH-M Models 

Now, we consider the more general AR(k)-GARCH-M models:  
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=  is the logarithm return of assets, { },tz t +∈  is the Gaus-

sian white noise, and 2
tσ  belongs to GARCH family. The return rate tµ  can  

be more general as long as tµ  is measurable with respect to 1t− . The riskless 
interest rate may depend on the time but should not be random. 

Then we have the following European call option pricing formula, the proof of 
which is given in Appendix B. (For simplicity, we still assume that the riskless 
interest rate is a constant.)  

Theorem 2.2. Let r be one plus riskless interest rate on one period, T t−  be 
time to maturity, and K be the striking pricing. Then, for the discrete-time 
AR(k)-GARCH-M models, the pricing formula for European call option is  
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where the integral domains D1 and D2 are defined as follows. Let  
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then  
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In the above notation, ( )1t j jxσ + − , 1,2, ,j T t= − , are conditional volatility 
functions evaluated at time t, and ( )1t j jxµ + − , 1,2, ,j T t= − , are conditional 
return rate functions evaluated at time t which are defined in the same way as 
conditional volatility functions.  

Consider as an example, the AR (1)-GARCH (1, 1)-M model:  

2
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2 2 2 2
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Theorem 2.2 gives the closed form of the theoretical option pricing formula 

tC  for this model, where the conditional return rate functions ( )1t j jxµ + − , 
1,2, ,j T t= − , can be computed explicitly. 

In fact, since 0 1 1t tRµ γ γ −= + ,  
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Substituting ( )1 1, ,t j tz z+ − +  in the return rate t jµ +  with ( )1 1 1, ,j jx x x− −=
 , 

we may obtain the conditional return rate function  
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where ( ){ }1t i ixσ + −  are the conditional volatility functions defined in Section 
2.1. 

For a general AR(k)-GARCH-M model given by  
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By replacing ( )1 1, ,t j tz z+ − +  in the return rate t jµ +  with ( )1 1 1, ,j jx x x− −=
 , 

and replacing conditional volatility t jσ +  with associated conditional volatility 
functions ( )1t j jxσ + − , we may calculate the conditional return rate function 

( )1t j jxµ + −  at time t. 
The risk-return relation can also be generalized such as linear or nonlinear de-

pending on 2
tσ . For example, ( )2 2

t tV cσ σ= , ( )2log tc σ , ( )2 2
1 2 3sint tc c cσ ω σ+ +  

etc. (see e.g. [15] and references therein) have been discussed. The AR(k)-GARCH- 
M models can be therefore generalized, such as  
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where ( )2
tV σ  is the risk premia describing the tradeoff between risk and re-

turn. We may define  
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so that the model is still described by Equations (18)-(20). 
Since tµ  is measurable with respect to 1t− , the option pricing Formula (21) 

in Theorem 2.2 still works for this generalized model, with the conditional vola-
tility functions ( )1t j jxσ + −  evaluated at time t as in Section 2.1. The conditional 
return rate  
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Like the conditional volatility t jσ + , the conditional return rate t jµ +  looks 
very complicated, it is in fact very easy to be implemented like t jσ +  by e.g. 
Matlab, Python and so on. The informal analysis for the sensitivity of theoretical 
valuation formula with respect to return rate µ  reveals little sensitivity in a 
large range. Thus, in real applications, we do not really need the calculation 
of these conditional return rate functions for the purpose of saving computation 
costs. 

Remark 2.3. We would like to point out that our option valuation formula in 
Theorem 2.2 is still valid for the following model:  

21 ,
2t t t t tR zµ σ σ= − +                     (28) 
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2 ~ GARCH type process,tσ                    (30) 

The return rate tµ  may depend on the past returns and the volatility linearly 
or both nonlinearly.  

3. Option Pricing 

In this section, we analysis the option valuation formula  

( ) ( ) ( )1 2
T t

t t T t T tC S D Kr D− −
− −= Φ − Φ  

for European call options on the S&P 500 index. The quantities ( ) , 1,2T t iD i−Φ = , 
are computed by Monte Carlo method. Since  
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by independently simulating a number of ( )T t− -dimensional standard normal 
random variables, one may obtain simulated values of ( )T t iD−Φ . 

In Appendix C, we provide details on our proposed procedure for estimating 
parameters. We utilize the three models specified in that section to investigate the 
pricing behavior given by our option valuation formula. The underlying asset is 
S&P 500 index. The present time t is the day on December 29, 2017. We consider 
at-the-money options for this moment, that is, the striking price ( )K S t= . The 
number of days to maturity T t−  varies from 1 to 60. The riskless annual con-
tinuously compounded interest rate 2.5%r = , i.e. 5e 1 6.85 10r tr ∆ −= = + ×  with 

1 365t∆ =  in our formula. The results are presented in Figure 3. We also in-
cluded the simulated prices calculated with the traditional Black-Scholes pricing 
formula (see [2]). The roughness of pricing lines in Figure 3 is caused by the er-
ror of Monte Carlo simulation. From the figure, we can see that, for these three 
GARCH (1, 1)-M models, the simulated prices based on our option valuation 
formula are almost same and higher than the celebrated Black-Scholes prices. 
Since the only difference of Model 1, 2 and 3 is the return rate, it reveals to some 
degree that there is little sensitivity with respect to the return rate models. 

 

 

Figure 3. Option prices as a function of maturity by different models. 
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4. Empirical Applications 

In this section, we show the performance of our theoretical option valuation for-
mula when applying it to S&P 500 index options, and SSE 50 ETF options traded 
on Shanghai Stock Exchange (SSE), China. 

4.1. S&P 500 Index Options 

Based on the in-sample analysis in the previous section, we shall compare our op-
tion valuation formula with the real financial market. We use GARCH-in-mean 
data-generating mechanism as Model 1 (with GARCH (1, 1) volatility) in Ap-
pendix C.2 for the underlying S&P 500 index. 

We randomly pick two heavily traded SPX call options expired on 2018. One 
option is issued on October 23, 2017, exercised on February 15, 2018 with strik-
ing price 2650K =  while another one is issued on April 26, 2017, exercised on 
March 15, 2018 with striking price 2700K = . All these historical data are pro-
vided by Bloomberg. The riskless interest rate r  over the life of the options is 
taken to be 2.5%, which is annual continuously compounded and approximately 
equals to the interest rate of US treasury bills at the same period. So the interest 

5e 1 6.85 10r tr ∆ −= = + ×  with 1 365t∆ =  in our theoretical valuation formula. 
As a remark, some informal analysis revealed little sensitivity to the choice of the 
riskless interest rate. 

For the first SPX call option C2650, we computed the model prices from De-
cember 1, 2017 to February 15, 2018 by Model 1 data-generating mechanism in 
Appendix C.2 using the rolling windows method, that is, the parameters of Model 
1 are estimated by the past one year daily data of the underlying index SPX be-
fore the date we are computing. We also compared the model prices calculated 
by the celebrated Black-Scholes option pricing formula. We showed the results 
in Figure 4. In this figure, the three prices—market prices, Black-Scholes model 
prices and GARCH-M Model 1 prices, of SPX call option C2650 are compared. 
For the other SPX call option C2700, we use the same approach to obtain the 
model prices from January 9, 2018 to March 15, 2018, which are shown in Fig-
ure 5. 

The GARCH-M Model 1 prices are clearly closer to the market prices than the 
Black-Scholes model prices for most of the trading days. It means that the fore-
cast of future volatility works better with our method. The performance of Mod-
el 1 is much better than the traditional method especially when the market vola-
tility is not pleasant, e.g. February 2018. For better performance, one can try to 
look for a better forecast of future volatility, for example, employing FIGARCH, 
EGARCH process to model the volatility rather than just using GARCH (1, 1) 
model. 

4.2. Chinese Financial Market  

In this subsection, we show results by applying our option valuation formula to 
China financial market. Options were introduced to the Chinese financial mar-
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ket in February 9, 2015. Chinese SSE 50 ETF option is the first and only standar-
dized option traded on Chinese market. The underlying asset is the SSE 50 ETF. 
All 50 ETF options are European options and are traded on the Shanghai Stock 
Exchange (SSE). For the underlying asset SSE 50 ETF, it is also traded on the 
Shanghai Stock Exchange and was the first ETF traded in China. This ETF tracks 
the SSE 50 index, which includes 50 of the most active and reputable stocks 
listed on the Shanghai Stock Exchange. It is one of the most heavily traded ETFs 
in China. 

The data of the underlying asset we use are the daily close prices of SSE 50 
ETF from September 1, 2016 through December 29, 2017. There are 324 prices 
in total. The dataset was provided by Wind Info, Inc. Figure 6 plots the price 
process and the associated logarithm return of SSE 50 ETF for this dataset. 

 

 

Figure 4. SPX option (C2650) prices from December 1, 2017 to February 15, 2018. 2.5%r = , 
2650K = , issued on October 23, 2017, exercised on February 15, 2018. 

 

 

Figure 5. SPX option (C2700) prices from January 9, 2018 to March 15, 2018. 2.5%r = , 2700K = , 
issued on April 26, 2017, exercised on March 15, 2018. 
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Our aim in this section is to compute the market prices with our option valua-
tion formula for Chinese financial market. We also compared the prices with the 
celebrated Black-Scholes option pricing formula as previous subsection. 

 

 

Figure 6. Prices and log-return of SSE 50 ETF (9/1/2016-12/29/2017). 
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Figure 7. SSE 50 ETF options’ prices from September 1, 2017 
to September 29, 2017. 3.9%r = , 2.70, 2.75, 2.80K = , issued 
on August 24, 2017, exercised on October 25, 2017. 

 
The market prices of these SSE 50 ETF options at the end of each day from 

September 1, 2017 to September 29, 2017 are available. There are 21 trading days 
in this month, and there are 9 striking prices for these options: 1 at-the-money, 4 
out-of-the-money and 4 in-the-money. We use three actively traded options, 
whose symbols are 10000993.SH, 10000994.SH and 10000995.SH. Both started 
on August 24, 2017, and were exercised on October 25, 2017. The exercise prices 
K are RMB 2.70, 2.75 and 2.80, respectively. We calculated the model prices of 
these options for every trading day of the whole of September by using estimates 
of the parameters of GARCH-M models based on past data of underlying asset 
SSE 50 ETF. The riskless annual continuously compound interest rate r  is taken 
to be 3.9%, which is the constant interest rate of Chinese bonds at the same pe-
riod. 

Standing on the date September 1, 2017, on which the price of SSE 50 ETF is 
RMB 2.76, we want to decide the option model price on September 1 by using 
the past one year’s daily prices of SSE 50 ETF, i.e. the data from September 1, 
2016 to September 1, 2017. By using these past one year’s data, we first obtain 
estimated parameters for GARCH-M models as Model 1 in Appendix C.2, then 
we can work out a model price with our option pricing formula. For the next 
trading day, we use the rolling windows method, we can compute a new option 
price for it. The results are shown in Figure 7. 

It is apparent to see that the GARCH-M Model 1 prices are between the mar-
ket prices and the Black-Scholes model prices for most of the time. 

5. Conclusions 

In this paper, we present option pricing formulas for general GARCH-M models 
based on risk-neutral arguments. These formulas are not only elegant, but also 
practical for real-world applications. We propose a parameter estimation proce-
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dure and use Monte Carlo simulation to evaluate the prices (see Appendix C). 
We demonstrate the pricing behavior of these theoretical formulas for S&P 500 
index options based on three data-generating mechanisms. Empirical evidence 
suggests that the performance of these theoretical pricing formulas is very good 
compared to real market prices, and better than the celebrated Black-Scholes 
pricing formula, in both the U.S. stock market and the Chinese financial market. 

However, our proposed formula has limitations. One challenge is the compu-
tation of the multidimensional Gaussian integral over non-standard domains D1 
and D2, while another is the lack of consideration for implied volatility, a crucial 
factor in option pricing. Additionally, it may be necessary to investigate other equiv-
alent martingale measures in this setting. 

Despite these limitations, our formula serves as a valuable reference for pric-
ing options. Further investigation into its properties and implications, as well as 
extending the empirical analysis to other stocks with appropriate GARCH-type 
stochastic volatility, would be beneficial for both research and real-world appli-
cations. 
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Appendix A. Proof of Theorem 2.1 

Assume that the riskless interest rate is constant, and let interest r denote one 
plus the riskless interest rate over one period. In risk-neutral world (the assump-
tions underlying the risk-neutral argument could be found in e.g. [2] [3]), the 
expected rate of return on the asset would be the riskless interest rate, so we want 
to find a risk-neutral measure   such that  

[ ]| , 1, 0.k
t k t tS r S k t+ = ∀ ≥ ≥                  (31) 

The price of an option for this underlying asset is then  
( ) [ ]| .T t

t T tC r C− −=                       (32) 
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  are discrete-time mar-

tingales. The question left is how to construct the risk-neutral measure  . 
For GARCH-M models, by Equation (31) we have  
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t k t k
i i ii t i tz k r

t k t
σ µ σ+ +

= + = ++ − −∑ ∑ 
= ∀ ≥ ≥ 

 

           (34) 

In the following, we are going to construct the risk-neutral measure   sa-
tisfying Equation (34). Define measure   as the distribution of Gaussian white 
noise { }, 0iz i ≥ , and  

0
1

,
t

t i i
i

M M zσ
=

+∑                     (35) 

( )
2

2
1 1

1exp , log .
2

t t

t i
i ii i

Z z rρ ρ ρ µ
σ σ= =

 
− = − − 

 
∑ ∑            (36) 

We can verify that tM  and tZ  are martingales under measure  . 
Let measure   be  

( ) ( ) , ,A t tA Z Aχ ∀ ∈ 

                  (37) 

with ( ) 1Aχ ω = , if Aω∈ , otherwise ( ) 0Aχ ω = , and  

( )0
1

ˆ log .
t

t t i i
i

M M t M z r tρ σ µ
=

− = + + −∑            (38) 

Lemma A.1. For any ,t k +∈ , if any random variable X is measurable in 

t k+ , then  

[ ] [ ]1| | .t t k t
t

X XZ
Z +=                   (39) 

Proof. For any tA∈ , by the definition of conditional expectation, we have  
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[ ] [ ]

[ ]
[ ]

1 | |

.

A t k t A t k t
t

A t k

A

XZ XZ
Z

XZ

X

χ χ

χ

χ

+ +

+

 
 =   

 
=

=





  



   





 

 

This concluded this lemma.  
Theorem A.2. Under measure  , stochastic processes ˆ

tM  and  

2

1

1ˆexp
2

t

t i
i

M σ
=

 − 
 

∑  

are t -martingales.  
Proof. 1) We show that ˆ

tM  is a  -martingale below. We first prove that 
ˆ

t tM Z  is a  -martingale. Since  

( )

( )

2
1 21 1

2 2
1 12 21 11 1

1
2

1 1 1 1

1 1
2 2

1 1

ˆ ˆ| e |

ˆ e | e | .

t
t t

t t
t tt t

z

t t t t t t t t

z z

t t t t t t t

M Z M z Z

M Z Z z

ρ ρ
σ σ

ρ ρ ρ ρ
σ σσ σ

σ ρ

σ ρ

+
+ +

+ +
+ ++ +

−

+ + + +

− −

+ +

 
   = + −   
 

   
   = + −
   
   

 

 

 

 

 

 

 

For the first term on the right hand side, as 2
1t tσ + ∈ , and 1tz +  is indepen-

dent of t  under  , thus  
2 2

1 12 21 1

1

1 1
2 2e | e 1.

t t
t t

t

z z
y y

t

y

ρ ρ ρ ρ
σ σ

σ

+ +
+ +

+

− −

=

   
   = =
   

  

    

For the second term, we have  

( )

( )

( )

( )
( )

2
1 21 1

2
1 2

1

2 2
21 1

2
12

1

2

2
1

1
2

1 1

1
2

1

1
2 2

1

1
2

1

2

2
1

e |

e

1e e d
2

1 e d
2

1 e d 0.
2

t
t t

t

t

t t

t
t

t

z

t t t

z
y y

t

y

xx

t

x

t

u

t

z

yz

x x

x x

u u

ρ ρ
σ σ

ρ ρ

σ

ρ ρ
σ σ

σ ρ
σ

σ

σ ρ

ρ

σ ρ

σ ρ

σ

+
+ +

+

+

+ +

+
+

+

−

+ +

−

+

=

− −∞

+−∞

− −∞

+−∞

−∞

−∞
+

 
 −
 
 
 
 = −
 
 

= −
π

=
π

π

−

= =

∫

∫

∫











 

Thus, we have shown that  

1 1
ˆ ˆ| , .t t t t tM Z M Z t+ + +

  = ∀ ∈ 
   

For any k +∈ ,  
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( )1

1 1

ˆ ˆ| | |

ˆ ˆ| .

t k t k t t k t k t k t

t k t k t t t

M Z M Z

M Z M Z

+ + + + + −

+ − + −

   =   

 = = =  

  



  



  


 

This means that ˆ
t tM Z  is a  -martingale. 

To prove that ˆ
tM  is a  -martingale, we apply Lemma A.1 and the results 

above, then get  

1ˆ ˆ ˆ| | .t k t t k t k t t
t

M M Z M
Z+ + +

   = =   
                (40) 

We concluded the first statement of this theorem. 

2) 2
1

1ˆexp
2

t
t iiM σ

=

 − 
 

∑  is also a  -martingale. In fact, by Lemma A.1,  

2 21 1
1 11 1

2
2 2 1 21 1 11 1 1

2
2 2 1 211

1

1 1ˆ ˆ
2 2

1

11 1ˆ 22 2

11 1ˆ 22 2

ˆ

1e | e |

e |

e e e

e

t t
t i t ii i

t tt i t t ti t t

t tt i ti

t

t

M M

t t t
t

zM z

t

zM yz y y y

y

M

Z
Z

e

σ σ

ρ ρ
σ σ ρ σ σ σ

ρ ρ
σ ρ

σ

+ +
+ += =

++ + += + +

++=

+

− −

+

−− + − −

−− − −

=

∑ ∑

∑

∑

   
=   

   
 
 =
 
 

 
 =
 
 

=

 





 





 



( )

2 2
2 2 21 11 1 1

2
2 2 1211 1 1

2
2 2 2211 11

11 1
22 2 2

11 1ˆ
22 2

1 1 1ˆ ˆ
22 2 2

2
1

1e e e d
2

1e e e e d
2

1e e e e d e .
2

t
i t ti t t

t tt i ti t t

t t
t i t t ii it

xxx

xM x

u
M Mu

t

x

x

u

ρ ρ
σ σ ρ σ σ σ

σ ρσ σ σ ρ σ

σ σ σσ

σ

+ += + +

++= + +

+= =+

−− − − −+∞

−∞

− −− − +∞ −

−∞

−− − −+∞

−∞
+

∑

∑

∑ ∑

=

= =

π

π

π

∫

∫

∫

 

For any k +∈ ,  
2 2

1 1

2
1

1 1ˆ ˆ
2 2

1

1ˆ
2

e | e | |

e .

t k t k
t k i t k ii i

t
t ii

M M

t t k t

M

σ σ

σ

+ +
+ += =

=

− −

+ −

−

∑ ∑

∑

    
=          

= =

  



    
 

Thus we have proved that 
2

1
1ˆ
2e

t
t iiM σ=− ∑

 is a  -martingale.  
Therefore,  

( ) 2
1 1

2 2
1 1

1log
2

1 1ˆ ˆ
2 2

e |

e | 1.

t k t k
i i ii t i t

t k t
t k i t ii i

z k r

t

M M

t

σ µ σ

σ σ

+ +
= + = +

+
+ = =

+ − −

   − − −   
   

∑ ∑

∑ ∑

 
 
 
 

= = 
  













 

That is, we have constructed a risk-neutral measure   satisfying Equation 
(34) for these GARCH-M models. Now we present the discrete-time option  

pricing formula for European call. Since , 0,1,2, ,t
t

C t T
r

 = 
 

  is a martingale 
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under risk-neutral measure  , then one pricing formula is  

( ) ( )
2

1 1
1
2e | .

T T
i i ii t i tz T t T t

t t tC S Kr
σ ρ σ= + = +

+
− − − − −∑ ∑  

 = −     

           (41) 

The option pricing formula can also be calculated under measure  , that is, 
by Lemma A.1,  

( ) ( )

2
2 1 1 21 1

11
22e e | .

T TT T ii t i ti i ii t i t i i
zz T t T t

t t tC S Kr
ρ ρ

σ ρ σ σ σ= + = += + = +

+
−− − − − −

∑ ∑∑ ∑
   = − ×     

   (42) 

Since  

( )1 1, , , , ,t j t j t j t tz z zσ σ+ + + − +=                   (43) 

they are correlated with { },tz t +∈ . The price of option tC  depends on 
attributes of the forecasting of the path followed by { }2 2 2

1 2, , ,t t Tσ σ σ+ +  . 
In the following, we give the proof of Theorem 2.1. 
Proof of Theorem 2.1. Actually, from the pricing formula in Equation (42), we 

have the following representation:  
( )

1 2 ,T t
t tC S N Kr N− −= −                    (44) 

where  

( ) ( ) ( )

( ) ( ) ( )

2
1 11 1

2
21 1 2 11 1

1
2

1

1
1

2
22 1

e

e 2 e d d ,

T t T t
t j j j t j jj j

T t T t
j T tj j

jjt j j t j j

x x T t x

D

x T t xx x
T t

N

x x

σ ρ σ

ρ ρ
σ σ

− −
+ − + −= =

− −
−= =
=+ − + −

− − −

− − −−
−

∑ ∑

∑ ∑
∑

=

π×

∫ ∫
 








     (45) 

( ) ( ) ( )
2

21 21 11 1

1
1

2
222 1e 2 e d d ,

T tT t
j T tj

jj jt j j t j j
x T t xx x

T tD
N x x

ρ ρ
σ σ

−
−

−=
= =+ − + −

− − −−
−

∑ ∑
∑

π= ∫ ∫




     (46) 

and  

( ) ( )1 0 1 1, , ,t t t tx z zσ σ+ + −=
  

( ) ( )1 1 1 1, , ; , , , 2, , ,t j j t j j t tx x x z z j T tσ σ+ − + − −= = −
    

and the domain  

( ) ( ) ( )

( ) ( )

1 1
1

2
1

1

, , :

1log ,
2

T t
T t

T t t j j j
j

T t
t

t j jT t
j

D x x x x T t

S x
Kr

σ ρ

σ

−
−

− + −
=

−

+ −− −
=


= ∈ − −


 > − −  
 

∑

∑


 



 

with ( )1, ,j jx x x=   and 0x =∅ . By some calculations, we further have  

( )( ) ( )

( )
( )( )

( )

( )
( ) ( )( )

( )

2
1 11 1

2
1

1 2
1

22
1 1

1 2
1

1
2
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2
2 1

2
2 1
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2 e d d

2 e d d
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T t x

T tD

N

x x

x x

σ ρ σ

σ ρ

σ

σ ρ σ

σ

− −
+ − + −= =

+ −−
=

+ −

+ − + −−
=

+ −

− −

−
−−

−
−

− −
−−

−
−

∑ ∑

∑

∑

=

π

π
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=

∫ ∫

∫ ∫

 





 







 

 

https://doi.org/10.4236/jmf.2023.132015


Z. M. Qian, X. C. Xu 
 

 

DOI: 10.4236/jmf.2023.132015 244 Journal of Mathematical Finance 
 

Define  

( ) ( )1
1

,j j t j j
t j j

u x x
x
ρ σ

σ + −
+ −

= − − 



 

we get  

( ) ( )
2

1

1

221 1 12 e d d ,
jT t

j
uT t

T t T tD
N u u D

−
=

− −−
− −

∑
= = Φπ∫ ∫   

with the domain D1 as stated in the theorem. 
Similarly, by defining  

( )1

,j j
t j j

v x
x
ρ

σ + −

= −


 

we have  

( )
( )

( )

( ) ( )

2
1

1 2
1

2

1

2

( )

2
22 1

22 1 2

2 e d d

2 e d d .

t j j jT t
j

t j j

jT t
j

x x
T t x

T tD

vT t

T t T tD

N x x

v v D

σ ρ

σ

+ −−
=

+ −

−
=

−
−−

−
−

− −−
− −

∑

∑

=

= = Φ

π

π

∫ ∫

∫ ∫





 

 

 

Thus, we concluded this theorem.  

Appendix B. Proof of Theorem 2.2 

As the above case in which the return rate µ  is constant, we can prove  

0
1

,
t

t i i
i

M M zσ
=

+∑                       (47) 

( )
2

2
1 1

1exp , log ,
2

t t
i i

t i i i i
i ii i

Z z rρ ρ
ρ µ

σ σ= =

 
− = − − 

 
∑ ∑            (48) 

are martingales under measure  . 
Let measure   be  

( ) ( ) , ,A t tA Z Aχ ∀ ∈ 

                     (49) 

and  

( )0
1 1 1

ˆ log .
t t t

t t i i i i i
i i i

M M M z rρ σ µ
= = =

− = + + −∑ ∑ ∑           (50) 

Proving line by line as the constant return rate case, we know that the stochas-
tic processes ˆ

tM  and  

2

1

1ˆexp
2

t

t i
i

M σ
=

 − 
 

∑  

are t -martingales under measure  . 
For the proof of Theorem 2.2, it is almost the same line-by-line with Theorem 

2.1. So we omit the proofs of these theorems here.  

Appendix C. Parameter Estimation 

We will describe one estimation algorithm for the models we have discussed in 
this paper. 
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C.1. Estimation Illustration 

Consider the first model GARCH-M with constant return rate, for example,  

21 ,
2t t t tR zµ σ σ= − +                      (51) 

2 2 2 2
0 1 1 1 1 1.t t t tzσ α α σ β σ− − −= + +                   (52) 

There are four parameters ( )0 1 1, , ,µ α α β  to be estimated. The iterated esti-
mation algorithm is suggested below. 

Step 1: Provide a set of initial parameters ( ) ( ) ( ) ( )( )0 0 0 0
0 1 1

ˆ ˆˆ ˆ, ,θ α α β=  and ( )0µ̂  
by fitting the data using a standard GARCH model with a nonzero mean, i.e.  

,t t tR zµ σ= +  
2 2 2 2

0 1 1 1 1 1.t t t tzσ α α σ β σ− − −= + +  

Step 2: Compute the conditional volatility process ( )2,ˆ i
tσ  for 1,2, ,t T=   by 

Equation (52) based on the parameters ( ) ( ) ( ) ( )( )0 1 1
ˆ ˆˆ ˆ, ,i i i iθ α α β=  obtained in the 

last step. 
Step 3: Update ( )ˆ iθ  and ( )ˆ iµ . That is, find ( )1ˆ iθ +  and ( )1ˆ iµ +  by the standard 

GARCH model with a nonzero mean  

( ) ( )2,1ˆ ˆ ,
2

i i
t t t t tR R zσ µ σ+ = +  

2 2 2 2
0 1 1 1 1 1.t t t tzσ α α σ β σ− − −= + +  

Step 4: Repeat Steps 2 and 3 for a finite fixed number of iterations or until 
convergence. 

More generally, for AR-GARCH-M models with linear risk premia, i.e.  
2 ,t t t tR c zµ σ σ= + +                      (53) 

and  

2
0

1
,

k

t j t j t t t
j

R R c zγ γ σ σ−
=

= + + +∑                  (54) 

with 2
tσ , for example, a GARCH (1, 1) process, the iterated estimation algo-

rithm is suggested below. 
Step 1: Provide a set of initial parameters ( ) ( ) ( ) ( )( )0 0 0 0

0 1 1
ˆ ˆˆ ˆ, ,θ α α β=  by fitting the 

data using a standard AR(k)-GARCH model  

0
1

.
k

t j t j t t
j

R R zγ γ σ−
=

= + +∑  

Step 2: Compute the conditional volatility process ( ){ }2,ˆ , 1,2, ,i
t t Tσ =   by 

Equation (52) based on the parameters ( ) ( ) ( ) ( )( )0 1 1
ˆ ˆˆ ˆ, ,i i i iθ α α β=  obtained in the last 

step. 
Step 3: Estimate ( ) ( ) ( ) ( )( )0 1ˆ ˆ ˆ ˆ, , ,i i i i

kγ γ γ γ=   and ( )ˆ ic  by the linear regression 
model  

( ) ( )2,
1 0

1
ˆ| .

k
i

t t j t j t
j

R R cγ γ σ− −
=

= + +∑                  (55) 
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Step 4: Update ( )ˆ iθ , and find ( )1ˆ iθ +  via the standard GARCH model  
( )ˆ ,i
t t tR zσ=  

2 2 2 2
0 1 1 1 1 1,t t t tzσ α α σ β σ− − −= + +  

where  

( ) ( ) ( ) ( ) ( )2,
0

1

ˆ ˆ ˆ ˆ ˆ .
k

i i i i i
t t j t j t

j
R R R cγ γ σ−

=

− − −∑  

Step 5: Repeat Steps 2, 3 and 4 for a finite fixed number of iterations or until 
convergence. 

For the estimation of the general model  

( )2, ,t t t tR R zµ σ σ= +                     (56) 

2 ~ GARCH type process,tσ                   (57) 

one should first present a semiparametric estimation for ( )2, tRµ σ , and then 
use iterated estimation procedure as suggested above. As our main aim of this 
work is not to present the estimation problems for these models, we refer to [15] 
[16] and references therein for the details of estimation and convergence prob-
lems. For the exact likelihood inference of these models, see e.g. [17], in which 
they suggested a Markov chain Monte Carlo algorithm to carry out the estima-
tion probelms.  

C.2. Empirical Example 

The data set analyzed here consists of daily prices on the Standard and Poor’s 
500 composite stock index from January 3 through December 29, 2017, for a to-
tal of 251T =  observations. The daily prices are denoted { }, 1,2, ,tS t T=   
and logarithm return as ( ) ( )1log logt t tR S S −= − . The time t subscript refers to 
trading days. 

Figure A1 plots the prices tS  on the left and the logarithm return tR  on 
the right for the whole year. Here we use three represented GARCH type models 
to fit these historical data. 

 

 

Figure A1. Prices and log-return of S&P 500 Index during 2017. 
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The first model (say, Model 1) is  

21 ,
2t t t tR zµ σ σ= − +  

2 2 2 2
0 1 1 1 1 1.t t t tzσ α α σ β σ− − −= + +  

The iterated estimation procedure above leads to identification of the follow-
ing model for ( ) ( )1log logt t tR S S −= − :  

( )
4 2

4

6.6488 10 0.5 ,

2.6145 10
t t t tR zσ σ−

−

= × − +

×
 

( ) ( ) ( )

2 7 2 2 2
1 1 1

7

8.753 10 0.05 0.9 .

8.9816 10 0.0176 0.0165
t t t tzσ σ σ−

− − −

−

= × + +

×
 

The numbers in the parenthesis are standard errors. 
The second model (say, Model 2) is  

2 ,t t t tR c zµ σ σ= + +  
2 2 2 2

0 1 1 1 1 1,t t t tzσ α α σ β σ− − −= + +  

which is specified to  

( ) ( )

4 2

5

5.8333 10 5.5693 ,

9.2205 10 5.4418
t t t tR zσ σ−

−

= × + +

×
 

( ) ( ) ( )

2 7 2 2 2
1 1 1

7

8.7397 10 0.05 0.9 .

8.9682 10 0.0175 0.0162
t t t tzσ σ σ−

− − −

−

= × + +

×
 

The third model (say, Model 3) is  
2

0 1 1 ,t t t t tR R c zγ γ σ σ−= + + +  
2 2 2 2

0 1 1 1 1 1.t t t tzσ α α σ β σ− − −= + +  

The specification for this model is  

( ) ( ) ( )

4 2
18.0621 10 0.1344 2.216 ,

0.0015 0.0632 31.7553
t t t t tR R zσ σ−

−= × − − +
 

( ) ( ) ( )

2 7 2 2 2
1 1 1

7

8.5598 10 0.05 0.9 .

8.7837 10 0.0174 0.0158
t t t tzσ σ σ−

− − −

−

= × + +

×
 

These results are standard in the literature. We show them as representative 
examples. For these three models, the parameters are robustly obtained by the 
iterated estimation procedure. Another fact is that the volatility processes in these 
three models are very stable. 
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