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Abstract 
In this paper, we consider perpetual American options under a fractional 
Brownian motion and give the closed-form solution for their value function. 
We discuss the pricing model when the underlying asset pays dividends con-
tinuously and derive the value functions. In order to get an analytical solu-
tion, we use the quadratic approximation method. By this approximation, we 
have Black-Scholes ordinary differential equation. Solving this equation with 
the boundary conditions, we get the value function and its optimal boundary. 
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1. Introduction 

In the Black-Scholes model, we suppose that the log return of the stock price is 
driven by geometric Brownian motion. However, there is a fat tail problem in 
this assumption. In order to solve this problem, Merton [1] considered that the 
stock price process has discontinuous points and derived a closed-form solution 
for perpetual American options. Kou and Wang [2] proposed that jump sizes 
have a double exponential distribution and Kou and Wang [3] presented the 
value function of perpetual American put options without a dividend for double 
exponential jump-diffusion processes. Rogers [4] pointed out that there is an ar-
bitrage in the fractional Brownian motion model using pathwise integration. On 
the other hand, Hu and Øksendal [5] showed that there is no arbitrage under 
this model by the Wick product and derived the pricing formula of a European 
call option. Elliott and Chan [6] gave the closed-form solution for perpetual Ameri-
can put option without dividend. Xiao et al. [7] presented the pricing formula of 
currency options under a fractional Brownian motion with jumps. Barone-Adesi 
and Whaley [8] derived the value of American options by quadratic approxima-
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tion and Barone-Adesi and Elliott [9] revised this approximation by the estimate 
for the error. In a fractional Brownian motion model literature, Funahashi and 
Kijima [10] examine an approximation for option pricing when the volatility 
follows a fractional Brownian motion. Guasoni, Nika and Rásonyi [11] studied 
the maximization of expected terminal wealth and Czichowsky et al. [12] showed 
the existence of a shadow price process.  

In this paper, we derive the value function of the perpetual American put op-
tion divided by quadratic approximation and optimal stopping boundary under 
the fractional Brownian motion model. This paper is organized as follows. In 
Section 2, we set up a pricing model under fractional Brownian motion. Section 
3 presents the value function of perpetual American call options with dividends 
and Section 4 gives numerical examples to verify analytical results. 

2. Fractional Brownian Motion Model 

Throughout this paper, let be { }( )0
, , , t t T

P
≤ ≤

Ω    a filtered probability space. 
In the following we consider the model for pricing option.  

Definition 2.1. Gaussian process ( )HB t  on the probability space is called 
fractional Brownian motion with Hurst index 0 1H< <  if  

1) ( )0 0HB = ; 
2) ( ) 0, 0HE B t t  = ≥  ; 

3) ( ) ( ) { }22 21 , , 0
2

HH H
H HE B t B s t s t s s t  = + − − ≥  . 

Remark 2.1. If 1
2

H = , fractional Brownian motion coincides with Brownian 

motion.  
Fractional Brownian motion has stationary increments and not independent 

ones. When 1
2

H > , ( )HB t  has the long distance memory. This means that 

covariance of ( )1HB  and ( ) ( )1H HB n B n+ −  satisfies  

( ) ( ) ( )( )
1

1 , 1 .H H H
n

Cov B B n B n
∞

=

+ − = ∞∑  

We describe the pricing model. The risk-free asset price ( )0S t  at time t is de-
termined by  

( ) ( ) ( )0 0 0d d ,  0 1,  0,S t rS t t S r= = >  

where r is risk-free interest rate and a positive constant. The risky asset price 
( )S t  at time t satisfies the stochastic differential equation  

( ) ( ) ( ) ( ) ( )d d d , 0 0,HS t S t t S t B t S xµ σ= + ◊ = >            (1) 

where µ  and σ  are positive constants, the mean of return and the volatility, 
respectively. ( ) ( )d HS t B t◊  represents wick product(See Hu and Øksendal 
[5]). 

Remark 2.2. Since fractional Brownian motion is not semi-martingale if the 

Hurst index 1
2

H ≠ , Therefore we cannot define the Ito-stochastic integral. See 
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Hu and Øksendal [5].  
By Girsanov theorem for fractional Brownian motion,  

( ) ( )H H
rB t B t µ δ
σ
− +

= +                      (2) 

is a fractional Brownian motion, where > 0δ  is dividend rate. By (2), we can 
rewrite (1) as  

( ) ( ) ( ) ( ) ( )d d .HdS t r S t t S t B tδ σ= − + ◊                (3) 

Solving (3), we have  

( ) ( ) ( )2 21exp .
2

H
HS t x r t t B tδ σ σ = − − + 

 
  

From Hu and Øksendal [5], it follows that the value function ( )( ),c t S t  of 
European call option with the exercise price 0K >  and the maturity T is given 
by  

( )( ) ( ) ( ) ( ) ( ) ( )1 2, e e ,T t r T tc t S t S t N d K N dδ− − − −= −             (4) 

where ( )N ⋅  is the cumulative standard normal distribution and  

( ) ( )( ) ( )2 2 2

1 2 2

1log
2 ,

H H

H H

S t
r T t T t

Kd
T t

δ σ

σ

+ − − + −
=

−
 

2 2
2 1 .H Hd d T tσ= − −  

If 1
2

H = , the value function ( )( ),c t S t  is equal to the Black-Scholes formu-

la. 

3. Perpetual American Options 

Let ( ),AV t x  and ( ),EV t x  be the value function of American and European op-
tions respectively. Since it holds ( ) ( ), ,A EV t x V t x≥ , we can see that  

( ) ( ) ( ), , , ,A EV t x V t x t xε= +  

where ( ), 0t xε >  is so-called early exercise premium. If the buyer does not ex-
ercise it, ( ),AV t x  and ( ),EV t x  satisfy the Black-Scholes partial differential equ-
ation. From this, Barone-Adesi and Whaley [8] obtained Black-Scholes ordinary 
differential equation by the quadratic approximation and gave the approxima-
tion of American options value. On the other hand, Elliott and Chan [6] derived 
the value function of perpetual American put option under a fractional Brownian 
motion model. Therefore, we give the value function of perpetual American call 
option with the dividend in this model. 

Theorem 3.1. The value function ( ),C t S  of perpetual American call option 
under fractional Brownian motion with the exercise price K is given by  

( )
2

2

, 0 ,
,

, ,

q
C

C
C

C

S S S S
C t S q S

S K S S

  
 < < =   


− ≥

                (5) 

where CS  is the optimal boundary for the buyer and is represented by  
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2

,11
C

KS

q

=
−

                          (6) 

and 2q  is the following.  

( ) ( )22 1 2 1 2 1
2 1 1 22 1

1 4 .
2

H H H
Hq M t M t t M

t
− − −

−

 = − − + − + 
 

      (7) 

Proof. The early exercise premium ( ),t xε  satisfies the Black-Scholes partial 
differential equation  

( )
2

2 2 2 1
2 0.Hr S H S t r

t S S
ε ε εδ σ ε−∂ ∂ ∂
+ − + − =

∂ ∂ ∂
            (8) 

We assume that the early exercise premium ( ) ( ) ( ), ,S A f S Aε τ τ= , then we 
have the following.  

( )
2

2 12
1 22

d d 1 d 1 d d1 0,
d d d dd

H f f A f AS T M S M f
S rA rf AS

τ
τ τ

−  
− + − + + = 

 
     (9) 

where 1 22 2, ,r rM M T t
H H

δ τ
σ σ
−

= = = − . If we have ( ) 1 e rA ττ −= − , we can 

write (9) as  

( ) ( )
2

2 12 2
1 22

d d d 1 0.
d dd

H M ff f fS T M S M A
S A AS

τ −− + − − − =        (10) 

We approximate the partial differential Equation (10) by the differential equa-
tion  

( )
2

2 12 2
12

d d 0.
dd

H M ff fS T M S
S AS

τ −− + − =              (11) 

The general solution of (11) is expressed as  

( ) 1 2
1 2 ,q qf S a S a S= +  

where 1q  and 2q  are two solutions of the quadratic equation  

( ) ( )( )2 1 2 12 2
1 0H H MT q M T q

A
τ τ− −− + − − − =  

and  

( )( ) ( )( ) ( )

( )

2 1
22 1 2 1 2

1 1

1,2 2 1

4

.
2

H
H H

H

T M
M T M T

Aq
T

τ
τ τ

τ

−
− −

−

−
− − − ± − − +

=
−

 

Since we consider call option, 1a  is equal to 0. Therefore, the value function 
of American call option ( ),C Sτ  is the following.  

( ) ( ) 2
2, , .qC S c S Aa Sτ τ= +                    (12) 

Let CS  be the optimal boundary. From (12), it follows that  

2 1
2 2 .

C C

q
C

S S S S

C c Aa q S
S S

−

= =

∂ ∂
= +

∂ ∂
 

Moreover, by smooth-pasting condition  
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2 1
2 21 ,q

C
c Aa q S
S

−∂
= +
∂

                     (13) 

and  

( )( )1e ,
C

C
S S

c N d S
S

δτ−

=

∂
=

∂
 

2a  is given by  

( )
2

1
2 1

2

1 e
.

T

q
C

N d
a

Aq S

δ−

−

−
=                      (14) 

Substituting (14) for value matching condition  

( ) 2
2, ,q

C CS K c S Aa Sτ− = +                   (15) 

we have  

( ) ( ){ }1
2

, 1 e .C
C C

SS K c S N d
q

δττ −− = + −               (16) 

Therefore, we can approximate the value function of America call option with 
the finite maturity by  

( ) ( ) ( ){ }
2

1
2

, 1 e , 0 ,
,

, .

q
C

C
C

C

S Sc S N d S S
C S q S

S K S S

δττ
τ

−
  
 + − < < =   


− ≥

     (17) 

When it goes to τ  as →∞  in (16) and (17), we get (5) and (6).        □ 
Similarly, we can obtain the value function of perpetual American put option 

with dividend. 
Theorem 3.2. The value function ( ),P t S  of perpetual American call option 

with the exercise price K is given by  

( ) 1

1

, 0 ,

,
, ,

P
q

P
P

P

K S S S

P t S S S S S
q S

− ≤ ≤


=  
− > 

 

              (18) 

where PS  is the optimal boundary for the buyer and is represented by  

1

,11
P

KS

q

=
−

                        (19) 

and 1q  is  

( ) ( )22 1 2 1 2 1
1 1 1 22 1

1 4 .
2

H H H
Hq M t M t t M

t
− − −

−

 = − − − − + 
 

       (20) 

In the following, we give numerical examples. We set parameters as 0.5t = , 
0.3H = , 0.2r = , 0.1δ = , 100K = , 100S = . Figure 1 and Figure 2 show that 

the optimal boundary from these figures, we can see that the optimal boundary 
is decreasing in the time t and concave function in Hurst index H. Figure 3 and 
Figure 4 demonstrate the value function of perpetual American option with the 
dividend. From these figures, we can recognize that ( ),C t s  is convex and increas-
ing function in stock price S and is decreasing in the time t. 

https://doi.org/10.4236/jmf.2023.132014


A. Suzuki 
 

 

DOI: 10.4236/jmf.2023.132014 218 Journal of Mathematical Finance 
 

 
Figure 1. Optimal boundary SC in t. 

 

 
Figure 2. Optimal boundary SC in H. 

 

 
Figure 3. The value function C in S. 
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Figure 4. The value function C in t. 

4. Concluding Remarks 

In this paper, we discussed perpetual American options with dividends under 
the fractional Brownian motion model. Moreover, we obtained the value func-
tion of them and also explored some analytical properties of the value function 
and the optimal boundaries, which are useful to provide an approximation of the 
finite-lived American option. We apply the results to the valuation of convertible 
bonds. A convertible bond is a hybrid security that permits the investor to con-
vert at any time until maturity. After the conversion, this bond has American call 
option features. We shall leave it as future work. 
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