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Abstract 
Although it has already been proven many times that the use of the risk pa-
rameter Financial Turbulence yields significant positive results in risk and 
portfolio management, there is currently no research regarding its predicta-
bility through the use of time series forecasting methods. Accurately fore-
casting the Financial Turbulence of a certain financial asset index or portfolio 
could be a great advantage for portfolio management for financial institutions 
given the positive results found by various research of the use of the Financial 
Turbulence in portfolio management. Therefore, this paper explores the pre-
dictability of the S&P 500 Financial Turbulence with the use of common time 
series forecasting methods, namely Autoregressive model (AR(p)), Moving 
Average model (MA(q)), Autoregressive Integrated Moving Average model 
(ARIMA(p, d, q)), and Normal Dynamic Linear Model (NDLM(k)). This pa-
per makes use of in-sample data (from November 2017 until November 2021) 
and out-sample data (from November 2021 until November 2022) to evaluate 
the forecasting performance of these forecasting methods in both quantitative 
and qualitative manners. The results of this study indicate that regarding the 
S&P 500 Financial Turbulence, AR(7) is the best forecasting method for 
one-step ahead forecast, whereas NDLM(7) is the best forecasting method for 
one business year forecast. 
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1. Introduction 

Understanding and predicting stock price developments and their causes has 
always been desirable in the financial world. Nowadays, most financial institu-
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tions make use of at least one type of forecasting method for their portfolio and 
risk management. Though Monte Carlo simulations with the use of Copulas 
may be the best way to have a full picture of all future possibilities, it does not 
provide the one-value results needed for planning ahead and showing fore-
casted results to ordinary investors without much knowledge about statistics. To 
achieve such one-value results, closed form forecasting methods are commonly 
used.  

Not only should financial institutions try to forecast stock price developments, 
but they should also try to forecast risk parameters to better understand their 
portfolio risk level, and in addition make use of these forecasted risk parameters 
to better forecast stock price developments. Presumably, the most used risk pa-
rameter in portfolio and risk management is stock volatility. Stock volatility is so 
influential that a big part of the existing financial literature was dedicated to 
examining its predictability using various forecasting methods [1]-[8]. 

Nonetheless, in the last decade two new promising risk parameters were dis-
covered [9] [10]. These are Financial Turbulence (FT) and Absorption Ratio 
(AR). FT is given by Equation (1), whereas AR is given by Equation (2): 

( ) ( )1
td − ′= − −t ty yµ µΣ                      (1) 

where, 

td  = turbulence for a particular time period t (scalar) 

ty  = vector of asset returns for period t (1 × n vector) 
µ  = sample average vector of historical returns (1 × n vector) 
Σ  = sample covariance matrix of historical returns (n × n matrix) 
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where, 
AR  = Absorption Ratio 

2
iEσ  = variance of the i-th eigen vector, sometimes called eigenportfolio 

2
Ajσ  = variance of the j-th asset 

n  = number of eigenvectors used to calculate AR 
N  = number of assets 
Salisu, Demirer & Gupta [11] showed that the use of these new financial indi-

cators can indeed improve out-of-sample predictive performance of stock mar-
ket volatility models over both the short and long time-horizon. Their use also 
extends to portfolio management [12] [13] [14]. 

Despite the potential of FT and AR, there is still no research regarding their 
predictability through the use of forecasting methods in the scientific literature, 
which is not the case for other economic and financial indicators for which 
many similar papers to this paper exist [15]-[26]. Similarly to the stock volatility, 
forecasting FT and/or AR can be a great advantage for portfolio and risk man-
agement [11] [12] [13] [14]; and thus, knowing how to best forecast these risk 
parameters is crucial for the success of financial institutions that would like to 

https://doi.org/10.4236/jmf.2023.131007


H. G. Souto 
 

 

DOI: 10.4236/jmf.2023.131007 114 Journal of Mathematical Finance 
 

exploit these new risk parameters. As a result, this paper is dedicated to explore 
FT of the famous S&P 500 index predictability with the most common quan-
titative forecasting methods, namely Autoregressive model (AR(p)), Moving 
Average model (MA(q)), Autoregressive Integrated Moving Average model 
(ARIMA(p, d, q)), and Normal Dynamic Linear Model (NDLM(k)). Since this 
would be the first time a paper is covering this topic, the results of this paper will 
give financial institutions and individual investors the answers for the current 
questions regarding the predictability of the FT for the S&P 500 index through 
the use of common forecasting methods: 

1) What is the best time series forecasting method for the short-term forecast 
of the S&P 500 FT among the most common time series forecasting methods? 

2) How accurate and reliable is the best time series forecasting method for the 
short-term forecast of the S&P 500 FT? 

3) What is the best time series forecasting method for the long-term forecast 
of the S&P 500 FT among the most common time series forecasting methods? 

4) How accurate and reliable is the best time series forecasting method for the 
long-term forecast of the S&P 500 FT? 

Unfortunately, due to time constraints, it was not possible to perform the 
same research with AR; yet, this paper’s author strongly encourages the scientific 
community to do the same research with AR, and with FT but with different fo-
recasting methods or stock indexes. 

2. Data and Methodology 

2.1. Data 

The data set used in this research was retrieved from Yahoo Finance through the 
use of the Python library yfinance. The time horizon was 4 years for the in-sample 
data and 1 year for the out-sample data. The in-sample is from 01/11/2017 until 
31/10/2021, and the out-sample is from 01/11/2021 until 01/11/2022.  

Due to the long-time horizon used in the in-sample, a few stocks that were 
present in the S&P 500 on 01/11/2022 do not have the historical data for the 
whole timeframe of the in-sample data. For the in-sample data, the stocks that 
did not have data throughout the whole time frame are 1) CARR, 2) CDAY, 3) 
CEG, 4) CTVA, 5) DOW, 6) FOX, 7) FOXA, 8) MRNA, 9) OGN, 10) OTIS, 11) 
VICI. Together they represent 2.19% of the total number of S&P 500 stocks and 
only 1.32% of the total S&P 500 market cap. Therefore, it can be concluded that 
their absence in the calculations would not have a significant effect on the final 
results of this research; and thus, they were excluded from the calculations to 
make the calculations more coherent given the need for the covariance matrix in 
the FT equation (Equation (1)). 

2.2. Methodology 

As already stated, four quantitative forecasting methods were used, namely 
AR(p), MA(q), ARIMA(p, d, q) and NDLM(k). AR(p) explores the fact that 
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many time series phenomena linearly depend on their own previous values and 
on a time series process [27], where “p” is the number of previous values consi-
dered to predict the value of the next time step. AR(p) is given as: 

1t i t i t
p
iY Yϕ −=

= +∑                           (3) 

where,  

tY  = value of the next time step 

iϕ  = model parameters 

t iY −  = previous values 

t  = white noise 
The parameters that affect the prediction accuracy of AR(p) are “p” and iϕ . 
MA(q), on the other hand, explores the fact that various time series processes 

have their value of the next time step cross-correlated with a non-identical to it-
self random-variable [27]. That is, the next time step value linearly depends on 
the time series mean and the past errors, where “q” designates the number of 
previous errors that are considered. MA(q) is given by Equation (4): 

1t i t i ti
qY µ θ −=

= + +∑                         (4) 

where,  

tY  = value of the next time step 
µ  = mean of tY  

iθ  = model parameters 

t i−  = previous errors 

t  = white noise 
The parameters that affect the prediction accuracy of MA(q) are “q” and iθ . 
There is even the possibility of combining these two models to create the 

ARMA(p, q) model, Yet, the big limitation of AR(p), MA(q), and ARMA(p, q) is 
that they only work well with linear stationary processes. Yet, some time series 
processes are non-stationary processes. In order to address this issue, ARIMA(p, 
d, q) models are frequently used [27], where “d” is the number of times that the 
original series has to be differentiated to result in a stationary series (“d” is also 
known as order of homogeneity) [27]. ARIMA(p, d, q) is given as: 

( ) 1 11 pd
t i t t ii

q
i i tiB Y Yϕ θ− −= =

− = + +∑ ∑                  (5) 

where, 
( )1 d

tB Y−  when 1d = : 1t tY Y −− , and when 2d = : ( ) ( )1 1 2t t t tY Y Y Y− − −− − − , 
and so on. 

The parameters that affect the prediction accuracy of ARIMA(p, d, q) are “p”, 
“d”, “q”, iϕ  and iθ . 

In order to estimate p, q, and d of AR(p), MA(q), and ARIMA(p, d, q), Akaike 
information criterion (AIC) was used as the criterion selection. Afterwards, to 
estimate iϕ  and iθ , maximum likelihood estimation (MLE) was used. For both 
aforementioned processes, the arima function in R was used [28]. 

Lastly, NDLM(k) can be used for both stationary and non-stationary series 
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[29]. This is the case since it makes use of a polynomial trend equation to ac-
count for the time series process trend and a Fourier form representation to ac-
count for the seasonality present in the time series [29] [30] [31]. Moreover, “k” 
would be the number of parameters in the model, and NDLM(k) makes use of 
Bayesian inference to find the most likely parameters [29] [30] [31]. NDLM(k) 
can be represented with the following equations: 

( ), ~ 0,t t t t t tY N vν ν′= +Fθ                     (6) 

( )1 ~ 0,,t t t t t tN−= +G Wθ θ ω ω                    (7) 

( ) ( )0 0 0 0| ~ ,ND m Cθ                       (8) 

where, 

tY  = value at time step t 

t′F  = transposed vector of dimension k composed by 1’s and 0’s 

tθ  = parameters vector of dimension k 

tν  = observation noise 

tv  = observation variance 

tG  = k × k Jordan matrix 

tω  = system noise vector 

tW  = system covariance matrix 

0θ  = conjugate prior distribution for the k parameters 

0m  = prior mean vector 

0C  = prior covariance matrix 

tD  = all information about 0:tY  
NDLM(k) is implemented by updating priors to obtain posteriors using a se-

quential approach. The posterior distribution is obtained through the Bayes 
theorem: 

( ) ( ) ( )1 1| | | ,t t t t t t tP P P Y− −∝D D Dθ θ θ                 (9) 

The forecasting function of this model is give as: 

( ) ( )|h
t t t t tf h E′= F G Dθ                      (10) 

where, 
( )tf h  = forecasted value for h time steps ahead 

This model is usually represented as { }, , ,t t t tvF G W . The assumptions for the 
use of this model in this research were that the observation variance was known 
and constant over time, tv v= , that tF  and tG  were also constant over time, 

t =F F  and t =G G , and that the system covariance matrix was unknown. 
Under the assumption that the system covariance matrix is unknown, the fol-
lowing equations hold: 

( )|t t tVar =D Rθ                         (11) 

( ]1 0,1t t t
t δ

δ
− ′

= ∈
G C GR with                    (12) 

*
1

1
t t t t

δ
δ −
− ′∴ =W G C G                      (13) 
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In order to find the most suitable δ, we maximize the following mean stan-
dard equation MSE(δ): 

( ) ( )
1

MSE
T

t t

t

Y f
T

δ
δ

=

−
=∑                    (14) 

Finally, the forecast function can be generalized thanks to the superposition 
principle into: 

( ) ( ) ( )k mp
t t tf h P h F h= +                    (15) 

where,  
( )k

tP h  = forecast function of the polynomial trend model of order k 
( )mp

tF h  = forecast function of the Fourier form representation with m used 
subperiods and with p being the period basis for the Fourier form representation 

Furthermore, the time series process trend of the S&P 500 FT was captured by 
the polynomial trend model, where for k = 1 there is no trend, for k = 2 there is a 
linear trend, for k = 3 there is a quadratic trend, and so on. Regarding the seaso-
nality of the S&P 500 FT, the Fourier form representation was used, where p is 
the period after which the seasonality seems to repeat itself and m is the best 
number subperiods within p that explains the seasonality without adding too 
much noise. The subperiods, λ, were determined by the equation: 

2 for 1, , , when odd

2 for 1, , 1, when even and
j

p

j j m p
p

j j m p
p

λ
λ π

π = ≡=  π = − ≡ ⇔ =






     (16) 

Additionally, it is important to notice that for ( )mp
tF h , there is a difference in 

the aforementioned structure for NDLM(k). This difference being: 

( ) ( )( )
( ) ( )( )

2 1 2 1

2 1 2 1

blockdiag 1, , , 1, , when odd

blockdiag 1, , , 1, , 1 , when even
m

t
m

p

p

λ λ

λ λ
−

−

≡

− ≡

= 


J J
G

J J





    (17) 

( ) ( ) ( )
( ) ( )2

cos sin
1,

sin cos

j j
j

j j

λ λ
λ

λ λ

 
 =
 − 

J  

The parameters that affect the prediction accuracy of NDLM(k) are “k”, tF , 

tG , tv , tW  (or δ  if tW  is unknown). For more details about NDLM(k)’s 
use, structure and variations, see [29] [30] [31]. 

Determining the optimal k for the polynomial trend model is not very chal-
lenging. Yet, it cannot be said the same about determining the optimal m and p 
for the Fourier form representation [29] [30] [31]. Usually, qualitative analysis is 
needed to better understand the time series seasonality of the studied time series 
process, and thus determine the optimal k and m for the Fourier form represen-
tation [30] [31]. 

Information gathered from ARIMA(p, d, q) and a qualitative analysis of the 
S&P 500 FT time series development were used to make an educated guess about 
the optimal k for the polynomial trend model and optimal m and p for the 
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Fourier form representation. Afterwards, the R functions dlmModPoly and 
dlmModTrig were used to estimate the model matrices and update the posterior 
parameters for the in-sample data for respectively the polynomial trend model 
and the Fourier form representation [32] [33]. Thereafter, the algorithm that can 
be found here was used to estimate the posterior parameters for the out-sample 
data and to forecast the out-sample values. 

In order to measure the efficacy of the studied forecasting methods, two fore-
casting tasks were used. The first one is a one-step ahead forecast and the second 
one is a full one business year (252 steps ahead) forecast. For the one-step ahead 
forecast, a rolling forecast was used, and the parameters and the matrices of 
NDLM(k) were updated at every time step. The parameters for the model AR(q), 
MA(q) and ARIMA(p, d, q) were also updated at every time step. The one busi-
ness year forecast, on the other hand, had the parameters and matrices of 
NDLM(k) estimated with only the in-sample data and the parameters and ma-
trices remained unchanged for the whole forecasted business year. The parame-
ters for the model AR(q), MA(q) and ARIMA(p, d, q) also remained unchanged 
for the whole forecasted business year. On top of that, t iY −  and t i−  used for 
AR(p), MA(q) and ARIMA(p, d, q) were respectively replaced by the forecasted 
value ( tf ) and the function: 

1 1t t i i
q

tif µ θ− −=
= − −∑                       (18) 

where,  
µ  = mean of in-sample tY  

1tf −  = forecasted value at time step 1t −  
To evaluate each forecasting method performance, the Root-mean-square er-

ror/residual (RMSE) and Error/residual standard deviation (RSD) were used. 
Their equations are given by: 

( )2
1RMSE t tt

T f Y
T

=
−

=
∑                     (19) 

( )2
1RMSE

RSD t tt
T f Y

T
=

− −
=

∑                 (20) 

where,  

tY  = value at time step t 

1tf −  = forecasted value at time step t 
T  = number of business days in the out-sample data (252 in this research) 
Under the assumption that the residuals follow a normal distribution, 95% 

and 99% confidence intervals (CI) were calculated and used in the performance 
evaluation of each forecasting method. Lastly, a qualitative assessment was per-
formed by visually evaluating the similarity between the actual stochastic devel-
opment in the out-sample period and the forecasted values.  

3. Results 

The time-series development for the in-sample data can be found in Figure 1. 
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With this graph, one can confidently affirm that the S&P 500 FT is stationary, 
though its variance temporally increased in 2020 due to COVID-19.  

In Figure 2 and Figure 3, the in-sample Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) can be found. It can be seen that the 
S&P 500 FT has a high autocorrelation, even after 40 lags there is still a signifi-
cant autocorrelation (i.e. an autocorrelation higher than 0.1). Therefore, it is a 
priori expected that MA(q) will have a high number of parameters. Regarding 
the PACF, the partial autocorrelation stops having a significant value (i.e. greater 
than 0.1) after 7 lags. Thus, AR(p) will presumably have seven parameters.  

In Table 1 the optimal p, q, and d of AR(p), MA(q), and ARIMA(p, d, q) giv-
en the in-sample data can be found and their respective log-likelihood and AIC. 
 

 
Figure 1. The S&P 500 FT in-sample time-series development. 

 

 
Figure 2. In-sample ACF. 
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Figure 3. In-sample PACF. 

 
Table 1. Optimal p, q, and d. 

AR(7) MA(1) ARIMA(4, 1, 2) 

Log-likelihood = −7489.97 Log-likelihood = −7852.22 Log-likelihood = −7500.21 

AIC = 14997.94 AIC = 15710.44 AIC = 15014.42 

 
AR(7) has both the lowest AIC and the highest log-likelihood, showing that it 

has the most potential out of these three models. However, d equals 1 for the 
ARIMA(p, d, q) model showing that the S&P 500 FT might be non-stationary, 
and thus that AR(p) and MA(q) are not suitable to forecast the S&P 500 FT. Yet, 
most probably the ARIMA(p, d, q) model estimated that the S&P 500 FT is 
non-stationary due to the temporary increase in variance in 2020 caused by an 
extremely short and strong economic recession during the COVID-19 lockdown.  

In Table 2 the optimal parameters values, given the in-sample data, for AR(7), 
MA(1), and ARIMA(4, 1, 2) and their respective standard errors (S.E.) can be 
found. Needless to say, these parameters changed at every time step for the 
one-step ahead forecast. The only striking result from this table is that the S.E. of 

1ϕ  in ARIMA(4, 1, 2) is almost two times greater in magnitude than the 1ϕ  
value, showing a great uncertainty in this parameter estimation. 

Regarding NDLM(k), it was chosen to use an one-order polynomial trend 
model and Fourier form representation with p = 12 and k = 3. These values were 
chosen given the stationarity of the S&P 500 FT and the fact that the business 
year has 12 months (i.e. after 12 months it repeats itself). On top of that, it was 
chosen to only use the first three periods of the Fourier form representation in 
order to respectively represent the annual, quadrimester and trimester seasonal-
ity and avoid noise from shorter periods. As a result, k equals 7 and NDLM(7) 
was used. Needless to say, one could have made different choices and perhaps  
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Table 2. Optimal parameters values for AR(7), MA(1), and ARIMA(4, 1, 2). 

AR(7) MA(1) ARIMA(4, 1, 2) 

1ϕ : 0.5207 
S.E: 0.0281 

1θ : 0.5818 
S.E: 0.0180 

1ϕ : −0.0683 
S.E: 0.1304 

2ϕ : 0.1166 
S.E: 0.0317 

µ : 496.1970 
S.E: 5.6002 

2ϕ : −0.6444 
S.E: 0.0717 

3ϕ : 0.0649 
S.E: 0.0315 

 3ϕ : −0.3381 
S.E: 0.0396 

4ϕ : 0.1329 
S.E: 0.0313 

 4ϕ : −0.1558 
S.E: 0.0454 

5ϕ : 0.1862 
S.E: 0.0316 

 1θ : −0.3868 
S.E: 0.1281 

6ϕ : −0.0522 
S.E: 0.0319 

 2θ : 0.5010 
S.E: 0.0891 

7ϕ : −0.0863 
S.E: 0.0283 

  

 
have taken the business cycle into account, thus having a higher p. Yet, given the 
stationarity of the S&P 500 FT in the in-sample period, and out-sample period 
length (12 months), the choice of using an one-order polynomial trend model 
and Fourier form representation with p = 12 and k = 3 was considered the best 
choice. 

Below the priors for NDLM(7) can be found. Most of them are non-informative, 
besides the first term of 0m  and the range for δ. The first term of 0m  was 
chosen based on a slightly lower value of the in-sample mean to account for the 
extreme event of the COVID-19 lockdown. The range from 0.7 until 1 for δ was 
chosen because according to the scientific literature, δ lies between this range in 
the great majority of cases [30] [32]. 

Priors 

10v =  

[ ]0.7,1δ ∈  

( )0 488,0,0,0,0,0,0 ′=m  

0 710=C I  

Given the in-sample data, the posteriors for NDLM(7) were estimated, which 
can be seen below. Naturally, the posteriors changed at every time step for the 
one-step ahead forecast. Nevertheless, it is important to mention that for the 
one-step ahead forecast, it was assumed that δ was equal to 0.81 at every time 
step. 
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Posteriors 

( )1,1,0,1,0,1,0=F  

1 0 0 0 0 0 0

0 cos sin 0 0 0 0
6 6

0 sin cos 0 0 0 0
6 6

0 0 0 cos sin 0 0
3 3

0 0 0 sin cos 0 0
3 3

0 0 0 0 0 cos sin
2 2

0 0 0 0 0 sin cos
2 2

 
 
 π π   

   
   

 π π    −        

 π π   
    =    
 π π    −        

 π π   
    

   
 π π    −         

G





















 

( )514.64,72.58, 97.68,44.33, 33.63, 70.92,4.18T
′= − − −m  

1197.55 48.22 899.90 318.76 365.76 319.57 46.18

48.22 2071.19 383.74 409.42 998.73 609.11 186.05

899.90 383.74 2684.23 760.62 239.31 355.65 109.85

318.76 409.42 760.62 2028.40 44.90 366.92 610.46

365.76 998.73 239.
T

− − −

− − −

− −

− − − −= −C

31 44.97 2578.48 954.20 52.33

319.57 609.12 355.65 366.92 954.20 1980.65 208.99

46.18 186.05 109.85 610.46 52.33 208.99 2013.25

 
 
 
 
 
 
 
 − − − 
 − − − − − − 
 − − − 

 

0.81δ =  

*

280.81 95.71 188.40 36.90 107.61 10.83 74.93

95.71 599.52 107.24 113.78 264.66 24.90 165.39

188.40 107.24 515.55 112.55 57.95 44.12 0.81

36.90 113.78 112.55 563.24 61.12 60.94 236.79

107.61 264.66 57.95 61.12 517.01 130.10 37.
T

− −

= −

−

W

36

10.83 24.90 44.12 60.94 130.10 472.08 49.00

74.93 165.39 0.81 236.79 37.36 49.00 464.43

 
 
 
 
 
 
 
 
 
 − − 
 
 

 

In Table 3 the forecasting quantitative performance results for the one-step 
ahead forecast can be found. Similarly, one can find the forecasting quantitative 
performance results for the one business year forecast in Table 4. As already ex-
pected from the log-likelihood and AIC values, AR(7) had the best results for the 
one-step ahead forecast, followed by ARIMA(4, 1, 2), MA(1), and finally  
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Table 3. Forecast performance quantitative results (1 day). 

AR(7) MA(1) ARIMA(4,1,2) NDLM(7) 

RMSE: 97.23 RMSE: 113.62 RMSE: 99.49 RMSE: 135.92 

RSD: 58.17 RSD: 70.96 RSD: 61.01 RSD: 83.27 

95% CI: 
≤ ≤0 213.56  

95% CI: 
≤ ≤0 255.53  

95% CI: 
≤ ≤0 221.50  

95% CI: 
≤ ≤0 302.46  

99% CI: 
≤ ≤0 247.18  

99% CI: 
≤ ≤0 296.55  

99% CI: 
≤ ≤0 256.76  

99% CI: 
≤ ≤0 350.60  

 
Table 4. Forecast performance quantitative results (1 year). 

AR(7) MA(1) ARIMA(4,1,2) NDLM(7) 

RMSE: 145.40 RMSE: 139.89 RMSE: 184.77 RMSE: 132.52 

RSD: 91.16 RSD: 90.59 RSD: 94.53 RSD: 71.60 

95% CI: 
≤ ≤0 327.72  

95% CI: 
≤ ≤0 321.07  

95% CI: 
≤ ≤0 373.82  

95% CI: 
≤ ≤0 275.72  

99% CI: 
≤ ≤0 380.43  

99% CI: 
≤ ≤0 373.43  

99% CI: 
≤ ≤0 428.46  

99% CI: 
≤ ≤0 317.11  

 
NDLM(7). Given that the S&P 500 FT ranged from roughly 200 to 1100 from 
2017 until 2022, AR(7) results were positive. This is the case since on average 
AR(7) would wrongly predict FT values by roughly 10% of its observed interval. 
On top of that, AR(7) would not give a false high or low FT (i.e. it gives a high 
forecasted FT and the next day a low FT occurs) within 99% of the time. How-
ever, it would not be recommended to use this forecasting method for financial 
models that depend on the precise magnitude of the S&P 500 FT values. Re-
garding the one business year forecast, NDLM(7) surprisingly had the best re-
sults, even better results than its results for the one-step ahead forecast, followed 
by MA(1), AR(7), and ARIMA(4,1,2). Anew, NDLM(7) were positive, but less 
than AR(7) for the one-step ahead forecast. This is the case since on average it 
would wrongly predict FT values by roughly 15% of its observed interval. Once 
again, it would not be recommended to use this forecasting method for financial 
models that depend on the values of the S&P 500 FT. 

In Figure 4 to Figure 11 the graphical comparison between the forecasted 
values for both the one-step ahead and one business year forecast can be found 
for each model. There are no surprises in these graphs besides the evidence of 
NDLM(7)’s clear forecasting superiority against MA(1), which cannot be ob-
served with only the forecast quantitative performance results. 
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Figure 4. FT forecasting: 1-day AR(7). 
 

 
Figure 5. FT forecasting: 1-day ARIMA(4, 1, 2). 
 

 
Figure 6. FT forecasting: 1-day MA(1). 
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Figure 7. FT forecasting: 1-day NDLM(7). 
 

 
Figure 8. FT forecasting: 1-year AR(7). 
 

 
Figure 9. FT forecasting: 1-year ARIMA(4, 1, 2). 
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Figure 10. FT forecasting: 1-year MA(1). 
 

 
Figure 11. FT forecasting: 1-year NDLM(7). 

4. Conclusions  

The aim of this research was to evaluate the S&P 500 FT predictability through 
the use of common forecasting methods, namely AR(p), MA(q), ARIMA(p, d, q), 
and NDLM(k). The results of quantitative and qualitative evaluation methods 
show that for the out-sample period (from November 2021 until November 
2022), AR(7) was the best forecasting method for the S&P 500 FT one-step 
ahead forecast, whereas NDLM(7) was the best forecasting method for the S&P 
500 FT one business year forecast. AR(7) would on average wrongly predict FT 
values by roughly 10% of its observed interval for the S&P 500 FT one-step 
ahead forecast. NDLM(7), on the other hand, would on average wrongly predict 
FT values by approximately 15% of its observed interval for the S&P 500 FT one 
business year forecast. 

Despite the positive results of both models, it would not be recommended to 
use them for financial models that depend on the values of the S&P 500 FT, un-
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less there is no other alternative. Instead, it would be better to use those fore-
casting models to have a good idea about whether the market will likely be tur-
bulent (i.e., with high volatility) or not on a certain day or at a certain period. 

Given quantitative limitations of AR(7) and NDLM(7) for financial models 
that depend on the values of the S&P 500 FT, the author of this paper invites the 
scientific community to perform a similar study as this one, using other fore-
casting methods. The scientific community is also encouraged to perform simi-
lar studies using other financial asset indexes, periods, and even considering AR 
instead of FT. 
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