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Abstract 
In 2010 a new financial risk measure was discovered, namely Financial Tur-
bulence. Although it has been studied by other papers, its statistical distribu-
tion study is still missing. Knowing a financial phenomenon distribution is of 
importance when performing risk and portfolio management, especially when 
estimating parametric Value-at-Risk with Copulas and performing Monte Car-
lo simulations. Therefore, this paper explores the S&P 500 Financial Turbu-
lence to determine its best distribution fit by making use of various residual 
measures and goodness-of-fit tests. Additionally, it makes use of in-sampling 
and out-sampling in the period between 01/11/2012 and 01/11/2022. The re-
sults of this research indicate that the Generalised Hyperbolic distribution 
describes the S&P 500 Financial Turbulence the best. 
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1. Introduction 

Understanding stock price fluctuations and their causes has always been a topic 
of interest in the field of finance. With the development of mathematical and 
statistical finance, the interest in this topic has only grown. Nowadays, it would 
be unimaginable for a financial organisation to invest without making use of the 
numerous existing portfolio and risk models. However, the use of inaccurate 
models can lead portfolio managers to overstate their portfolio robustness 
against risk [1]. This overstatement can result in unexpected losses and even so-
cial disbelief in financial mathematical techniques. A perfect example of such 
disbelief is the book “A Random Walk Down Wall Street: The Time-Tested 
Strategy for Successful Investing” by Burton G. Malkiel [2], where a clear and 
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fair critique of the use of mathematical financial models by financial institutions 
can be found. 

Presumably, the most famous risk parameter for financial mathematical 
models is stock volatility. It is a crucial input for many models related to port-
folio management, risk mitigation and financial assets pricing, such as options. 
Stock volatility is so important that a large part of the existing financial litera-
ture was dedicated to examine its predictability using both univariate and mul-
tivariate forecasting models utilising a range of financial and economic indica-
tors [3]-[10]. 

However, there exist two risk parameters that still require further exploration 
by the scientific community. These are Financial Turbulence (FT) and Absorp-
tion Ratio (AR). The first was devised by Kritzman & Li [11], and the second by 
Kritzman, Li, Page & Rigobon [12]. FT was derived from Mahalanobis distance 
and is given as: 

( ) ( )1
t t td y yµ µ− ′= − Σ −                       (1) 

where, 

td  = turbulence for a particular time period t (scalar) 

ty  = vector of asset returns for period t (1 × n vector) 
µ  = sample average vector of historical returns (1 × n vector) 
Σ  = sample covariance matrix of historical returns (n × n matrix) 
AR, on the other hand, makes use of the stocks covariance matrix eigenvectors 

in order to estimate their systemic risk, and its formula is given as: 
2
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where, 
AR = Absorption Ratio 

2
iEσ  = variance of the i-th eigen vector, sometimes called eigenportfolio 

2
Ajσ  = variance of the j-th asset 

n  = number of eigenvectors used to calculate AR 
N  = number of assets 
Salisu, Demirer & Gupta [13] showed that the use of such financial indicators 

can indeed improve out-of-sample predictive performance of stock market vola-
tility models over both the short and long horizons. Their use also extends to 
portfolio management [14] [15]. 

However, there is currently no distribution analysis of FT and AR, unlike 
many other financial phenomena [16]-[21]. Even though one can make use of 
the Central Limit Theorem (CLT) in their analysis and portfolio management 
and/or risk management to compensate this lack of knowledge, there are many 
occasions in the financial field in which it is not possible to use this theorem, for 
instance when performing Value-at-Risk (VaR) analysis, Copulas, and Monte 
Carlo simulations. In addition, the misuse of the CLT can lead to problems, such 
as the underestimation of risk and extreme events possibility [22] [23] [24]. 
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Needless to say, such a misuse can result in social disbelief in financial mathe-
matical techniques. 

Therefore, this study was performed to close this knowledge gap and improve 
the current financial models used in research and by financial institutions. Non-
etheless, due to time and resource constraints, this paper author performed a 
thorough distribution analysis of only the FT of the famous S&P 500 index. Yet, 
the author strongly encourages the scientific community to do the same with 
AR, as well as with other indexes and markets. 

This paper is structured as the following: Data and Methodology, Results, 
Conclusion, Bibliographical references. In the chapter “Data and Methodology”, 
the data selection procedure, in-sample and out-sample division and methodol-
ogy used to perform the distribution analysis of the S&P 500 FT can be found. 
The chapter “Results” shows and discusses the results of the S&P 500 FT distri-
bution analysis. Additionally, in the chapter “Conclusion, one can find the con-
clusion the S&P 500 FT distribution analysis results and their implications. Last-
ly, the chapter “Bibliographical references” lists the sources used in this research. 

2. Data and Methodology 

The data set used in this research was retrieved from Yahoo Finance through the 
use of the Python library y finance. The time horizon was 5 years for both the 
in-sample and out-sample data. The in-sample is from 01/11/2017 until 
01/11/2022, and the out-sample is from 01/11/2012 until 01/11/2017. Although 
having the out-sample set be further in the past than the in-sample set appears to 
be an unusual choice, it was made deliberately, in order to mitigate bias in the 
research. This is the case since the author has a better memory of the S&P 500 
price and volatility development in the past 5 years than in the out-sample pe-
riod. However, in theory the choice of having the in-sample period before or af-
ter the out-sample period ought to have no impact on the results of a distribu-
tion analysis since the goal of such an analysis is to find the distribution that best 
describes the random variable (in this case the S&P 500 FT) in any time period. 
That is, the results of the distribution analysis should not depend on time, oth-
erwise its results are meaningless since one cannot be sure about the accurate-
ness of their model results if they use the “best distribution” retrieved from the 
distribution analysis for a model that predicts future outcomes.  

Due to the long time horizons used in the in-sample and out-sample, a few 
stocks that were present in the S&P 500 on 01/11/2022 do not have the historical 
data for the whole time-frame of both the in-sample and out-sample data. For 
the in-sample data, the stocks that did not have data throughout the whole time 
frame are 1) CARR, 2) CDAY, 3) CEG, 4) CTVA, 5) DOW, 6) FOX, 7) FOXA, 8) 
MRNA, 9) OGN, 10) OTIS, 11) VICI. Together they represent 2.19% of the total 
number of S&P 500 stocks and only 1.32% of the total S&P 500 market cap. 
Therefore, it can be concluded that their absence in the calculations did not have 
a significant effect on the final results of this research; and thus they were ex-
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cluded from the calculations to make the calculations more coherent given the 
need for the covariance matrix in the FT equation (Equation (1)). For the 
out-sample data, the stocks that did not have data throughout the whole time 
frame are 1) CARR, 2) CDAY, 3) CEG, 4) CTVA, 5) DOW, 6) FOX, 7) FOXA, 8) 
MRNA, 9) OGN, 10) OTIS, 11) VICI, 12) ABBV, 13) ALLE, 14) ANET, 15) 
CFG, 16) CTLT, 17) PAYC, 18) PYPL, 19) QRVO, 20) CDW, 21) SEDG, 22) 
SYF, 23) WRK, 24) ZTS, 25) CZR, 26) ETSY, 27) FTV, 28) HLT, 29) HPE, 30) 
HWM, 31) INVH, 32) IQV, 33) IR, 34) KEYS, 35) KHC, 36) LW, 37) NWS, 38) 
NWSA, 39) NCLH. Together they represent 7.95% of the total number of S&P 
500 stocks and 3.99% of the total S&P 500 market cap. Again, it can be con-
cluded that their absence in the calculations did not have a significant effect in 
the final results of this research; and thus they were excluded from the calcula-
tions to make them more coherent given the need of the covariance matrix in 
the FT equation (Equation (1)). 

The methodology below was used for the in-sample and out-sample data. 
The in-sample data was used to determine the best distribution(s), whereas the 
out-sample data was utilised to test the results. For the calculation of the S&P 
500 FT, Equation (1) was used. Moreover, the programming language Python 
was used to create the algorithm for this calculation. This algorithm, as well as 
all calculations used for this research, can be found here. 

After the S&P 500 FT calculation, the Python library Fitter was used to analyse 
the goodness-of-fit of the empirical data with 109 different distributions (those 
can be found in Appendix 1). This library estimates each distribution’s parame-
ters through the use of Log Maximum Likelihood Estimation (Log MLE). 

Furthermore, to determine the goodness-of-fit of each distribution, this Py-
thon library made use of residual sum of squares (RSS), Equation (3), Akaike 
information criterion (AIC), Equation (4), and Bayesian information criterion 
(BIC), Equation (5). It used the following criterion: the lower the first measure 
and the higher the absolute value of the other two measures, the better good-
ness-of-fit a certain distribution has. 

( )( )2

1
RSS

n

i i
i

y f x
=

= −∑                       (3) 

where, 

iy  = empirical data point 
( )if x  = predicted data point using the distribution and its respective para-

meter(s) 

( )ˆAIC 2 2lnk L= −                        (4) 

where, 
k  = number of estimated parameters 
L̂  = maximized value of the likelihood function for the distribution 

( ) ( )BIC ln 2l ˆnk n L= −                      (5) 

https://doi.org/10.4236/jmf.2023.131005


H. G. Souto 
 

 

DOI: 10.4236/jmf.2023.131005 71 Journal of Mathematical Finance 
 

where, 
k  = number of estimated parameters 
n  = number of observations (sample size) 
L̂  = maximized value of the likelihood function for the distribution 
It is important to notice that the Fitter library follows the following rule to 

make its code more efficient: if a certain distribution takes more than 30 seconds 
to converge, it is assumed that it is not a good fit for the empirical data and thus 
the given distribution is skipped. For high performance computers, this is not an 
issue since the probability that those skipped distributions indeed have a bad fit 
is virtually 100%. Nonetheless, for ordinary computers this could create the risk 
of skipping a distribution that could potentially have a good fit. The computer 
used for this code was a moderate-high performance one, namely Lenovo 
ThinkPad T470s | i7-7600U | 24 GB RAM | 512 GB | SSD. Yet, to further miti-
gate this risk, this code was run 4 times, each time after restarting the computer 
in order to have full CPU and RAM capacity. 

After the use of the Fitter library, the 5 best distributions based on the meas-
ures RSS, AIC and BIC were further studied using the following measures and 
tests: 1) Root-mean-square error/deviation (RMSD), 2) Error/residual standard 
deviation (Sres), 3) Kolmogorov-Smirnov test (KS test), 4) Anderson–Darling test 
(AD test), 5) Cramér-von Mises test (CM test), and 6) Kuiper’s test (K test). In 
order to integrate the Probability Density Function (PDF) of the further-studied 
distribution for the aforementioned goodness-of-fit tests, the Python library 
Scipy Stats was utilised. 

RMSD, Equation (6), was used to determine the extent to which the use of 
each distribution is accurate to predict the likelihood of a certain value given its 
empirical likelihood. On the other hand, Sres, Equation (7), was used to deter-
mine the variation in the residuals of the predicted likelihoods. For both meas-
ures, the lower the value the better. 

( )2
1 ˆ

RMSD
T
t t ty y

T
=Σ −

=                      (6) 

where, 
ˆty  = predicted value 

ty  = empirical value 
T  = number of observations or observed times 

( )2
1 ˆRMSD ΣT

t t t
res

y y
S

T
=− −

=                   (7) 

where, 
ˆty  = predicted value 

ty  = empirical value 
T  = number of observations or observed times 
The KS test, AD test, CM test and K test were used to determine the good-

ness-of-fit of each distribution as well as the probability that its deviations come 
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through randomness (through the use of the p-value). For each statistical test, 
the null hypothesis (H0) was that the certain distribution and the empirical data 
come from the same distribution. Consequently, the alternative hypothesis (H1) 
was that the certain distribution and the empirical data do not come from the 
same distribution. The KS test is presumably the most famous test among the 
tests used in this research and its equations are given as: 

( ) ( )ˆsupn n
x

K n F x F x
∈

≡ −


                     (8) 

( )2exp np K= −                           (9) 

where, 
n  = number of observations 
sup = supremum 

( )n̂F x  = empirical cumulative distribution function (CDF) 
( )F x  = theoretical CDF 

p  = estimated p-value 
The AD test, on the other hand, gives more weight to the distribution tails 

than the KS test in such a way that the test is as sensitive in the tails as at the me-
dian [25]; and its equations are given as: 

2AD N S= − −                          (10) 

( ) ( )( )1
1

2 1 ln ln 1
N

i N i
i

iS x x
N − +

≡

−
= + −∑                 (11) 

21.2937 5 709 0.0186e if 0.6AD ADp AD− ⋅ += ≥                 (12) 

where, 
N  and n  = number of observations 

ix  = predicted likelihood value from the theoretical CDF 
The K test also gives more weight to the distribution tails as the AD test, yet it 

also makes itself invariant under cyclic transformations of the independent va-
riable [26]. Its equations are given as: 

( )i
iD F x
n

+ = −                         (13) 

( ) 1
i

iD F x
n

− −
= −                        (14) 

( ) ( )( )max maxV D D n+ −= +                  (15) 

( ) 2 22 2 2

1
2 4 1 e t V

t
p t V

∞
−

=

= −∑                    (16) 

where, 
( )iF x  = theoretical CDF 

n  = number of observations 
Presumably the least well-known of all these tests, yet very powerful, the CM 

test equations are given as: 
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( )
2

1

1 2 1
12 2

n

i
i

iT F x
n m=

− = + − 
 

∑                   (17) 

2 1
45

σ ≈  

TZ
σ

=                            (18) 

where, 
( )iF x  = theoretical CDF 

n  = number of observations 
Z  = z-score to be used in the two tail T-test in order to estimate the p-value 
Lastly, to account for the fact that many trials were performed to find the best 

distribution, an adjusted Bonferroni correction was used. The classical Bonfer-
roni correction is given by Equation (19) and states that there is a linear rela-
tionship between the number of trials and the significance level (this is proven 
by Equation (20)). 

αα
κ

∗ =                           (19) 

0 0
2

0
1 1

FWER
i

k k

i i
i i

P p P P k
k k k
α α α α

= =

       = ≤ ≤ ≤ = ≤     
      

∑

      (20) 

where, 
α  = original significance level 
α∗  = new significance level 
k  = number of trials 

ip  = p-value 
Nevertheless, given that all tests H0 is that the certain distribution and the em-

pirical data come from the same distribution, the use of the original Bonferroni 
correction would not be optimal. This is the case since the original Bonferroni 
decreases the Type-I error. However, for these goodness-of-fit tests, the Type-II 
error should be decreased because we are interested in the best fit for the empir-
ical data and our main concern is to avoid the acceptance of the H0 when H1 is 
true. In other words, our main interest is to find the best distribution for the 
empirical data. As a result, the following formula was devised by the author: 

ˆ pp
k

=                             (21) 

p̂  = new estimated p-value of the certain distribution at a certain test 
p  = estimated p-value of the certain distribution at a certain test 
k  = number of trials (distributions) used 
As a consequence, the p-values thresholds of every goodness-of-fit test are 

maintained and only the estimated distribution p-value is changed. That is, if 
our p-value threshold for KS test was 5%, it will continue to be 5% after this ad-
justed Bonferroni correction. 

The mathematical proof thereof is given below: 
Given Bonferroni’s H0 evaluation equation: 
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p
k
α

≤                            (22) 

where, 
p  = estimated p-value of the certain distribution at a certain test 
α  = confidence interval/p-value threshold 
k  = number of trials (distributions) used 
Let ip  and α  be constant. Given that k  is used in Equation (22) to re-

duce the Type-I error and that there exists a negative linear relationship between 
Type-I error and Type-II error, then the only manner to decrease Type-II error 
by modifying Equation (22) is: 

pp k
k

α α≤ ⇔ ≤  

The use of such a methodology with nine different goodness-of-fit measures 
plus the use of the adjusted Bonferroni correction provides a very thorough and 
solid method to assess the goodness-of-fit of various distribution in a certain 
random variable. This is the case since although all goodness-of-fit measures 
have their advantages, disadvantages and flaws, the combination of all of them 
compensate their disadvantages and flaws and thus gives a very complete picture 
of reality. For instance, the KS test is relatively more sensitive to values close to 
the mean, whereas the AD test is relatively more sensitive to the values in the 
tails [25], but the combination of both would give one a very good picture of all 
percentiles. 

3. Results 

The time-series development of the S&P 500 FT in the in-sample period can be 
found in Figure 1. As already expected, there is an exceptional rise in March and 
April 2020 (due to the first COVID lockdown in most countries in the world). In 
Figure 2 one can find the histogram for the in-sample data. A right skewness 
and some excess kurtosis, when compared to the Gaussian distribution, can be 
easily spotted. This is confirmed in Table 1. 
 
Table 1. S&P 500 FT in-sample basic statistics. 

S&P 500 FT in-sample basic statistics 

Count 1257 

Mean 492.00 

Median 465.49 

Standard Deviation 161.95 

Minimum 112.95 

Maximum 1146.71 

Skewness 0.82 

Excess Kurtosis 1.13 
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Figure 1. S&P 500 FT in-sample time-series development. 

 

 
Figure 2. S&P 500 FT in-sample histogram. 

 
Given the results above, distributions that allow asymmetry should presuma-

bly be the ones to be studied in-depth. In Figure 3, the results of Python library 
Fitter can be found. 
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Figure 3. Fitter library 4 tests results. 
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The distributions that appear in Figure 3 are: 1) Generalised Hyperbolic dis-
tribution (GH), 2) Exponential Weibull distribution (EW), 3) Right-skewed Gum-
bel distribution (RG), 4) Inverse Weibull distribution (IW), 5) Normal-inverse 
Gaussian distribution (NIG), 6.Skew normal distribution (SN). Clearly, the re-
sults of each test converge; showing that the distributions presented in Figure 3 
are quite probably the best fit for the in-sample data. However, in the last test, 
there is a presence of a new distribution, namely the SN. This has probably oc-
curred due to the 30-second safety rule of the algorithm that skipped the EW in 
this test. The striking result is that the GH was always the best fit in all tests. 
Despite this result, all distributions were further studied by passing through the 
aforementioned goodness-of-fit tests and error measures. 

The respective parameters of each distribution for the in-sample data can be 
found in Table 2. 

When performing their respective PDFs integrations with the Scipy Stats li-
brary, it was noticed that the integral of the GH PDF is probably divergent, or 
slowly convergent, given its respective parameters. Thus, as proposed by Ham-
merstein [27], the GH PDF could be approximated by Variance-Gamma distri-
bution (VG) given its parameters. The mathematical proof thereof is given as: 

Given λ > 0 and the following norming constant (Equation (25)) obtained 
through the GH Lebesgue density (Equation (24)) given the GH’s definition 
(Equation (23)): 

 
Table 2. Distributions parameters. 

GH 

λ = 2.7694 
α = 2.9027e−06 
β = 1.3036e−06 

δ (scale) = 0.1466e−3 
μ (location) = 334.6479 

EW (as given [29]) 

a = 1823.9813 
c = 1.5987 

λ (scale) = 465.4781 
μ (location) = −1222.1413 

RG 
β (scale) = 136.0440 

𝜇𝜇 (location) = 417.0094 

IW (as given [30]) 
c = 197203461.6252 

λ (scale) = 26809877229.5768 
μ (location) = −26809876812.6089 

NIG 

α = 4.7712 
β = 2.9777 

δ (scale) = 246.4199 
μ (location) = 295.1719 

SN 
α = 2.9635 

ω (scale) = 244.9482 
ξ (location) = 308.1676 
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( ) ( ) ( )2 2GH , , , , : , GIG , ,N y y aλ α β δ µ µ β λ δ β= + +        (23) 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )

2 2, , , , , , ,
0

0.5
2 22 22

1
2

d

, , , , e

GH N y y GIG a

x

d x d x d y y

a x K x

λ α β δ µ µ β λ δ β

λ
β µ

λ
λ α β δ µ δ µ α δ µ

∞

+  + 
 

−
−

−

=

= + − + −

∫
   (24) 

( )
( )

( )
2 2 2

1
2 22

, , , ,
2π

a
K

λ

λ λ
λ

α β
λ α β δ µ

α δ δ α β
−

−
=

−
            (25) 

Then: 

( )
( )

( )

2 2

1
12

, , , , ~ if 0 or
2π 2 Γ

a
λ

λ λ

α β
λ α β δ µ δ β α

α λ
− −

−
→ →  

Given the GH δ , α , and β  values, this could be considered a good ap-
proximation. Also, given that 0δ → , then in Equation (23), we can conclude: 

( )22 x xδ µ µ+ − → −  

Adding this to Equation (23), we get: 

( ) ( )
( )

( )
( ) ( )

( )

2 2
0.5

1, , , , 10
1 22

, , ,

lim e
2π 2

:

x
GH

VG

d x x K x

d

λ

λ β µ
λ α β δ µδ λλ λ

λ α β µ

α β
µ α µ

α λ

− −

→ −− −

−
= − −

Γ

=

 

Due to the fact that Scipy Stats library does not support the VG, the algorithm 
proposed by Laptev [28] was utilised. Yet, anew it was noticed that the integral 
of the VG PDF is probably divergent, or slowly convergent, given the parame-
ters. Therefore, a numerical integration was performed by the author by using a 
loop for the GH PDF from 0 to 2000 with step = 1, followed by a calculation of 
the respective CDF value for each data point in the in-sample. 

With the theoretical CDFs of each distribution and the empirical distribution 
of the in-sample, their respective RMSD and Sres were calculated and can be 
found in Table 3. 

As already expected, the GH had the best results and the SN the worst ones. 
Nevertheless, the NIG yielded interesting results. Assuming ( )2~ ,N µ σ  
(where   = residual/error), then the NIG had even more precision than the 
EW. 

In Table 4 one can find all results of the aforementioned goodness-of-fit tests, 
with their respective p-values and adjusted Bonferroni corrected p-values (pb), 
where k = 6 distributions. For the H0 and H1 evaluation, the following p-value 
thresholds (PVT) to not reject the H0 shall be used: 1) Conservative: p-value ≥ 
10%, 2) Moderate: p-value ≥ 5%, 3) Relaxed: p-value ≥ 1%. 
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Table 3. Distributions RMSD and Sres. 

GH 
RMSD = 0.49337% 

Sres = 0.2580% 

EW 
RMSD = 0.73304% 

Sres = 0.4078% 

RG 
RMSD = 0.90224% 

Sres = 0.5024% 

IW 
RMSD = 0.89799% 

Sres = 0.5009% 

NIG 
RMSD = 0.741877% 

Sres = 0.3616% 

SN 
RMSD = 0.96481% 

Sres = 0.4902% 

 
Table 4. Goodness-of-fit tests results. 

 
KS test AD test K test CM test 

GH 
Kn = 0.435 
p = 82.75% 
pb = 13.79% 

AD = 0.54 
p = 17.08% 
pb = 2.85% 

V = 0.857 
p = 95.23% 
pb = 15.87% 

T = 0.03 
p = 83.46% 
pb = 13.91% 

EW 
Kn = 0.641 
p = 66.29% 
pb = 11.05% 

AD = 0.90 
p = 2.22% 
pb = 0.37% 

V = 1.201 
p = 53.39% 
pb = 8.90% 

T = 0.07 
p = 65.48% 
pb = 10.91% 

RG 
Kn = 0.741 
p = 57.78% 
pb = 9.63% 

AD = 1.17 
p = 0.48% 
pb = 0.08% 

V = 1.386 
p = 28.67% 
pb = 4.78% 

T = 0.10 
p = 48.35% 
pb = 8.06% 

IW 
Kn = 0.739 
p = 57.92% 
pb = 9.65% 

AD = 1.16 
p = 0.49% 
pb = 0.08% 

V = 1.379 
p = 29.41% 
pb = 4.90% 

T = 0.10 
p = 48.70% 
pb = 8.12% 

NIG 
Kn = 0.603 
p = 69.53% 
pb = 11.59% 

AD = 0.74 
p = 5.39% 
pb = 0.90% 

V = 1.092 
p = 69.76% 
pb = 11.63% 

T = 0.07 
p = 64.42% 
pb = 10.74% 

SN 
Kn = 0.739 
p = 57.95% 
pb = 9.66% 

AD = 0.93 
p = 1.87% 
pb = 0.31% 

V = 1.280 
p = 41.95% 
pb = 6.99% 

T = 0.11 
p = 45.11% 
pb = 7.52% 

 
As expected, the GH had the best results once more, passing all tests consi-

dering the Conservative PVT besides the AD test with the pb where it only 
passed this test considering the Relaxed PVT. This can be interpreted as the fol-
lowing: the GH represents the in-sample data with high accuracy, yet when 
looking at its tails, the GH fails to adequately represent it. Again, the NIC had 
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better results than all the other distributions, something striking given its scores 
in the Fitter library tests. Another interesting result is that the SN outperformed 
the RG and IW in the AD and K tests and had similar results in the KS test. In 
conclusion, for the in-sample data, the GH was by far the best fit. However, to 
test these results, this whole process will be repeated for the out-sample data. 

The time-series development of the S&P 500 FT in the out-sample period can 
be found in Figure 4. As already expected, there is no exceptional rise as the 
one in March and April 2020. In Figure 5 one can find the histogram for the 
out-sample data. Again, a right skewness and some excess kurtosis can be spot-
ted, albeit less than the in-sample data. This is confirmed in Table 5. 

 
Table 5. S&P 500 FT out-sample basic statistics. 

S&P 500 FT out-sample basic statistics 

Count 1258 

Mean 464.00 

Median 447.31 

Standard Deviation 137.22 

Minimum 130.26 

Maximum 923.21 

Skewness 0.51 

Excess Kurtosis 0.14 

 

 
Figure 4. S&P 500 FT out-sample time-series development. 
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Figure 5. S&P 500 FT out-sample histogram. 

 
In Figure 6, the results of Python library Fitter for the studied distributions 

can be found: 
The results show a less accurate fit of the distributions than the in-sample. 

However, the GH is still high classified. The respective parameters of each dis-
tribution for the out-sample data can be found in Table 6. This time, it was 
possible to integrate all PDFs through the use of the Scipy Stats library given 
their respective parameters. With the theoretical CDFs of each distribution and 
the empirical distribution of the out-sample, their respective RMSD and Sres were 
calculated and can be found in Table 7. 

As already predicted, all distributions besides the SN had more inaccuracy 
than the in-sample. However, the GH still has the best results when disconsider-
ing the SN. 

In Table 8 on the other hand, one can find all results of the aforementioned 
goodness-of-fit tests, with their respective p-values and adjusted Bonferroni 
corrected p-values (pb), where k = 6 distributions. For the H0 and H1 evaluation, 
the same PVT to not reject the H0 was used as in the in-sample part. 

Anew, all distributions besides the SN had worse results. Yet, GH had the best 
results again when not considering the SN. It passed all tests considering the 
Conservative PVT besides the AD tests. Considering the “normal” p-value, it did 
not pass the AD test only when considering the Conservative PVT. On the other 
hand, regarding the pb it only passed the AD test considering the Relaxed PVT. 
This can be interpreted as the following: the GH also represents the out-sample 
data accurately, yet when looking at its tails, the GH fails to represent it prop-
erly. Again, the NIC had better results than EW, RG and IW. Finally, in the 
out-sample data, the SN overperformed all distributions. 
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Figure 6. Fitter library results. 
 
Table 6. Distribution parameters. 

GH 

λ = 5.814779919765607 
α = 0.0766758193638856 
β = 0.03225410918556625 

δ (scale) = 2.350218464596915 
μ (location) = 281.80398210965654 

EW (as parametrized by [29]) 

a = 36.7987564428992 
c = 2.510118936749314 

λ (scale) = 671.2349848193721 
μ (location) = −712.507095588652 

RG 
β (scale) = 120.41477425095212 

μ (location) = 398.7084109936449  

IW (as parametrized by [30]) 
c = 208417228.78456452 

λ (scale) = 25247906954.219852 
μ (location) = −25247906555.182213 

NIG 

α = 20.070176743758395 
β = 14.574033088198112 

δ (scale) = 351.29588934780935 
μ (location) = 92.97049346881448 

SN 
α = 2.377525133892676 

ω (scale) = 202.40715218591686 
ξ (location) = 315.1567034804059 
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Table 7. Distributions RMSD and Sres. 

GH 
RMSD = 0.68313% 

Sres = 0.4209% 

EW 
RMSD =0.85291% 

Sres = 0.4687% 

RG 
RMSD = 1.42144% 

Sres = 0.6330% 

IW 
RMSD = 1.41006% 

Sres = 0.6422% 

NIG 
RMSD = 0.820871% 

Sres = 0.4543% 

SN 
RMSD = 0.63393% 

Sres = 0.3445% 

 
Table 8. Goodness-of-fit results. 

 
KS test AD test K test CM test 

GH 
Kn = 0.640 
p = 66.38% 
pb = 11.06% 

AD = 0.67 
p = 7.96% 
pb = 1.33% 

V = 1.153 
p = 60.64% 
pb = 10.11% 

T = 0.06 
p = 69.79% 
pb = 11.63% 

EW 
Kn = 0.693 
p = 61.85% 
pb = 10.31% 

AD = 0.80 
p = 3.76% 
pb = 0.63% 

V = 1.237 
p = 48.07% 
pb = 8.01% 

T = 0.09 
p = 54.71% 
pb = 9.12% 

RG 
Kn = 1.020 
p = 35.31% 
pb = 5.89% 

AD = 1.57 
p = 0.05% 
pb = 0.01% 

V = 1.898 
p = 1.99% 
pb = 0.33% 

T = 0.26 
p = 8.10% 
pb = 1.35% 

IW 
Kn = 1.016 
p = 35.65% 
pb = 5.94% 

AD = 1.58 
p = 0.05% 
pb = 0.01% 

V = 1.931 
p = 1.61% 
pb = 0.27% 

T = 0.25 
p = 8.73% 
pb = 1.45% 

NIG 
Kn = 0.669 
p = 63.90% 
pb = 10.65% 

AD = 0.79 
p = 4.13% 
pb = 0.69% 

V = 1.207 
p = 52.49% 
pb = 8.75% 

T = 0.08 
p = 57.62% 
pb = 9.60% 

SN 
Kn = 0.541 
p = 74.65% 
pb = 12.44% 

AD = 0.64 
p = 9.76% 
pb = 1.63% 

V = 1.021 
p = 79.59% 
pb = 13.27% 

T = 0.05 
p = 73.92% 
pb = 12.32% 

 
In conclusion, it can be affirmed with quite some confidence that at least in 

the past 10 years, the S&P 500 FT followed a GH, though there may exist some 
deviations from this distribution in high and low quantiles. This result is not 
remarkable given the fairly common presence of the GH in the financial research 
field [31] [32] [33] [34]. 
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4. Conclusions 

The objective of this study was to determine the best distribution for the S&P 
500 FT such that researchers can further study this financial phenomenon as 
well as allow asset or risk managers from financial institutions to make a more 
accurate use of this financial phenomenon in their risk and portfolio perfor-
mance analyses. This objective was achieved through the use of the various sta-
tistical measures and tests. These being: 1) RSS, 2) AIC, 3) BIC, 4) RMSD, 5) Sres, 
6) KS test, 7) AD test, 8) CM test, and 9) K test. Additionally, the use of 
in-sample and out-sample data as well as an adjusted Bonferroni correction was 
made in order to increase the reliability of the results. 

As a result of these methods, it was found that the GH was the best distribu-
tion to describe this financial phenomenon for the S&P 500. It has remarkably 
lower prediction errors than the other studied distributions (EW, RG, IW, NIG 
and SN) when both the in-sample and out-sample results are considered. Fur-
thermore, for both the in-sample and out-sample, the GH passed all good-
ness-of-fit tests considering the Conservative PVT, besides the most AD tests 
where it only passed considering the Moderate and/or Relaxed PVT. Thus, it can 
be confidently concluded that the GH was the best distribution for the S&P 500 
FT in the last 10 years. Furthermore, if the future American financial market 
does not change to a great extent, the GH will theoretically continue to be the 
best distribution for the S&P 500 FT. 

In conclusion, researchers and financial institutions can assume that the S&P 
500 FT follows the GH with quite some precision when making use of this risk 
parameter in their studies, simulations or analyses. Nevertheless, they should not 
forget that the S&P 500 FT behaviour could theoretically change in the future 
due to major changes in the American and global economy or financial market. 
Consequently, the GH might not be the best fit distribution for the S&P 500 FT 
anymore. Therefore, ideally researchers and financial institutions should pe-
riodically (e.g. every 5 years) perform a best fit distribution study as the one 
performed in this paper in order to have the most accurate results in their stu-
dies, simulations or analyses. On top of that, as Zhao and Li [35] (unfortunately 
after the devise of this paper’s methodology) showed that the use of modified 
goodness-of-fit tests with the use of best linear unbiased scale (BLUS) could po-
tentially provide more accurate results. Therefore, one could also use BLUS in 
their future best fit distribution studies. 

Lastly, the author would like to again encourage the scientific community to 
perform a similar study as this one with the use of BLUS for other indexes and 
markets FT, and as well as for the other aforementioned risk parameter, Absorp-
tion Ratio. 
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Appendix 1 

[“_fit”, “alpha”, “anglit”, “arcsine”, “argus”, “beta”, “betaprime”, “bradford”, 
“burr”, “burr12”, “cauchy”, “chi”, “chi2”, “cosine”, “crystalball”, “dgamma”, 
“dweibull”, “erlang”, “expon”, “exponnorm”, “exponpow”, “exponweib”, “f”, 
“fatiguelife”, “fisk”, “foldcauchy”, “foldnorm”, “gamma”, “gausshyper”, “genex-
pon”, “genextreme”, “gengamma”, “genhalflogistic”, “genhyperbolic”, “geninv-
gauss”, “genlogistic”, “gennorm”, “genpareto”, “gibrat”, “gilbrat”, “gompertz”, 
“gumbel_l”, “gumbel_r”, “halfcauchy”, “halfgennorm”, “halflogistic”, “half-
norm”, “hypsecant”, “invgamma”, “invgauss”, “invweibull”, “johnsonsb”, 
“johnsonsu”, “kappa3”, “kappa4”, “ksone”, “kstwo”, “kstwobign”, “laplace”, 
“laplace_asymmetric”, “levy”, “levy_l”, “levy_stable”, “loggamma”, “logistic”, 
“loglaplace”, “lognorm”, “loguniform”, “lomax”, “maxwell”, “mielke”, “moyal”, 
“nakagami”, “ncf”, “nct”, “ncx2”, “norm”, “norminvgauss”, “pareto”, “pearson3”, 
“powerlaw”, “powerlognorm”, “powernorm”, “rayleigh”, “rdist”, “recipinvgauss”, 
“reciprocal”, “rice”, “rv_continuous”, “rv_histogram”, “semicircular”, “skew-
cauchy”, “skewnorm”, “studentized_range”, “t”, “trapezoid”, “trapz”, “triang”, 
“truncexpon”, “truncnorm”, “truncweibull_min”, “tukeylambda”, “uniform”, 
“vonmises”, “vonmises_line”, “wald”, “weibull_max”, “weibull_min”, “wrap-
cauchy”] 
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