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Abstract 
This paper considers the solution of the equations for ruin probabilities in fi-
nite time. Using the Fourier Transform and certain results from the theory of 
complex functions, these solutions are obtained as complex integrals in a 
form which may be evaluated numerically by means of the inverse Fourier 
Transform. 
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1. Introduction 

The ruin probability in infinite time has been extensively studied. Indeed it can 
be formulated in several cases. The same does not hold in finite time. [1] was the 
first to consider this problem; [2] considers the general case, which is difficult to 
compute, and [3] which is slightly less so. An extensive survey is found in [4]. 

This paper is focused on exact solutions, or general solutions which do not 
involve series computations. The ruin problem can be examined under a variety 
of conditions: with investment income, dividends, or time dependent claims dis-
tributions. For example, [5] discusses the situations where the reserve before 
ruin is different after ruin (but restricted to Erlang and Lindley distributions, say, 
due to investment income). 

An integrated, general and computable approach would be useful, without the 
use of series expansions. This paper follows the philosophy of [6]. 

2. Basic Equations 

Consider a risk business involving the following parameters: 
• P is the rate of premium received per unit time; 
• ζ  is the stochastic variable measuring the amount of claim (given that a 
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claim has occurred) with probability density function ( )p ζ ; 
• u is the reserve held at any time; 
• ( ),u tψ  is the probability of ruin of the business within time t, where the ini-

tial reserve was u at time 0t = ; 
• ( ),u tϕ  is the corresponding probability of survival, with 1ψ ϕ+ = .  

It will be seen that, since claim amount ζ  is part of the change in reserve u, 
the symbols ζ  and u will be used interchangeably. The framework is that of 
[6]. 

We define ( )1L R  as the space of Lebesgue integrable functions with finite 
norm 

( )1 d .f f ζ ζ= < ∞∫  

Throughout this paper all integrals are taken to be defined in the sense of Le-
besgue unless otherwise specified. We also consider later (in connection with the 
inverse Fourier Transform) the space of square integrable functions ( )2L R  
with norm. 

If ( )1f L R∈  and f is bounded, then it is clear that ( )2f L R∈ . 
In general we require that the claim amount density ( )p ζ  satisfy the condi-

tions 0p ≥  for 0ζ ≥ , and 0p =  for 0ζ < . In addition we require that the 
claim amount density satisfy 

( ) ( ) ( ) ( )2 1, , .p p p L Rζ ζ ζ ζ ζ ∈  

These conditions are to ensure that the probability density of claims is sensible, 
and that it has a finite mean and variance. Additional restrictions on ( )p ζ  will 
be imposed as required. 

Without loss of generality we may scale the claim amount ζ  so that the 
mean claim is 1 and 

1 1fζ = . In practice this means that we take always the 
gross premium rate 1P > . 

We now consider how the method of [6] for deriving the survival probability 
ψ  in infinite time may be extended to the finite time case, which satisfies: 

.t uP pϕ ϕ ϕ ϕ= − ∗+  

This may be expressed in terms of the ruin probability ψ  as follows:  

( )1 1t uP p pψ ψ ψ ψ= − − ∗ − + ∗                   (1) 

with 

( ) ( )1 1 d say,
u

p p v v g u
∞

∗ − = = −∫  

and the FT of uψ  by integration by parts is 

( )
0

ˆ ˆe d e

ˆ , say

iuz iuz
u u u iz

t iz

ψ ψ ψ ψ

ψ

∞
= = −

= −Λ −

∫  

where ( ) ( ),0t tψΛ =  introduces the role of time. 
There are two approaches to the finite time problem. One is the classical of [3], 
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the other is that of differential equations, relying on the FT wrt u the other on t.  
Taking the FT of 1 wrt u:  

ˆ ˆ ˆt g Pψ ηψ= + − Λ                         (2) 

where 
ˆ 1p izPη = − −                          (3) 

This may be written as 

( ) ( ) ( )ˆ ˆe et t g z P t
t

η ηψ− −∂
= − Λ  ∂

                  (4) 

Integrating over ( ),t ∞  we get  

( ) ( )
ˆ

ˆ e e dt s

t

g z
izP s sη ηψ

η

∞
−= − Λ∫                   (5) 

Now we can express and take the inverse FT: 

( ) ( ) ( )
ˆ

, e e e d diuz t s

t

g z
u t izP s s zη ηψ

η

∞
− − 

= − Λ 
 

∫ ∫            (ift) 

We show that ( ),u tψ  is Hermitian in u: 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

ˆ
, e e e d d

ˆ
, e e e d d

iuz t s

t

iuz t s

t

g z
u t izP s s z

z

g z
u t izP s s z

z

η η

η η

ψ
η

ψ
η

∞

∞

 −
= + Λ 

−  
 −

= = + Λ 
−  

∫ ∫

∫ ∫
           (6) 

The first term in is easily dealt with: 

( )
ˆ 1

ˆ
e d e d

ˆ 1
ˆe 1 d

ˆ 1
ˆe 1 d

ˆ 1

e 11 dˆ 1 1

iuz iuz

iuz

iuz

iuz

p
g z izz z

p iPz
p iPz iPz z

iz p Pz
p iPz iPz z

iz p iPz

z
piz
iPz

η
− −

−

−

−

−

=
− −

− − +
=

− −

− − +
=

− −

 
 

= + − −
 

∫ ∫

∫

∫

∫

 

( )

e 1 11 d
1

e 1 d
1

iuz

iuz

iz P P z
iz P iz

iP z
iz P iz
z iδ

−

−

− + + − = + − − 
− =  − − 

=

∫

∫           (7) 

where ( )zδ  is the Dirac delta function. Thus the finite time probability rests 
on computing: 

( ) ( )e e d dz siuz

t

s s zη
∞

− −− Λ∫                          (8) 
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Since ψ  is bounded we know that ψ̂  exists for z C+∈ , but not necessarily 
for z∈ . The order in which the time derivative ( )ˆ ˆ ttψ ψ=  is written is im-
material, as is seen by taking the time derivative as a limit and applying the 
dominated convergence theorem. 

3. An Exponential Example 

We have 

( ) ( ) ( )
ˆ

, e e e d diuz t s

t

g z
u t izP s s zη ηψ

η

∞
− − 

= − Λ 
 

∫ ∫             (9) 

with 

( )ˆ 1 .p izP tη = − − Λ  

In this case the FT wrt u becomes ( ) 11ˆ 1e
u

Pg z P
Pη

 − − 
 −

= . We need to compute 

( )ˆ
e diuz g z

z
η

−  
 
 

∫ . This can be accomplished, with ( ) ( ) 1ˆ 1
ˆ

i
p z i zg z i

iz iz

−− += = = . 

Further, 

( )

( )
( )

( )
( )

1 1

1

1

1
1

1

1
1

z

i iPz
i z

i z
z Pz iPz

i z
z Pz iPz
A B
z P iPz
A P iPz Bz

z P iPz

A P iPz Bz
z P iPz

η
=

− −
+

+
=
− + −

+
=

− +

= +
− +

− + +
=

− +

− + +
=

− +

                    (10) 

so that 
iA
P

=  

1

1

iB i P
P

P

= − Λ
Λ

= + Λ
 

so that 

1 2
1

i P
zP izη

= +
−

 

and we have the following general FTs: 

1 e d
2

izu

f z
izα

=
+π ∫                        (11) 
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( ) 1 eˆ d
2

izuizf u z
izα +π

= ∫                       (12) 

Hence 

( ) ( )1e e e
2

au izu auf u
u

α δ
π

∂
= =

∂ ∫                  (13) 

so that since 

( )

( )

ˆ

1 1

1 e au

f f

sign u
z i

H u
a iz

−

π

+

                      (14) 

( ) ( ) eˆ
e d 1 2 e diuz g z

z i P z
η

Λ− −   = + +    
∫ ∫               (15) 

( )e eau auf h uα =                        (16) 

( ) ( ) ( )
ˆ

, e e e d diuz t s

t

g z
u t izP s s zη ηψ

η

∞
− − 

= − Λ 
 

∫ ∫            (17) 

Remark 1 Generalized functions are also known as functionals, or distribu-
tions in the sense of Schwartz are readily discussed [7] [8].  

4. Conclusion 

In this paper we have attempted to demonstrate how complex function theory 
enables an integrated approach to the solution of ruin probability problems. This 
has involved a heavy application of the Cauchy theorem for analytic functions. It 
might be noted that the solutions obtained are complex, but computable. If de-
sired, Appendices A and B provide proof of ( )tΛ  as in [1], but this may be 
omitted on first reading. 
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Appendix A 

Equation (17) is a PDE of the first order in two dimensions, u and t, so should be 
solvable under boundary suitable conditions. The natural condition for u is that 
( ),0 0tψ = . 
Letting 0θ ↓  in (17) and using the boundary condition ( )ˆ 0ψ ψ θ= = Λ =  

for 0t = , we immediately get ( )ˆ ˆ0,P z gλ χ= = . Hence it may be written as  

( ) ( )
ˆ ˆˆ , .P gz
z i
λχ θ

η θ
−

=
+

                      (18) 

The function χ̂  must be finite at least for all , z Cθ +∈ . This follows from 
the fact that ψ  must be bounded by 1, for it to have any physical significance. 
From Appendix B we know that for all Cθ +∈  there exists a unique Cω +∈  
such that ( )iθ ω= . 

From the property of FTs we deduce that 

( )ˆˆ g
P
ω

λ =                           (19) 

whenever ( )i Cθ η ω += ∈ . 
This last result immediately gives us ( ) ( )1,u L Rψ ∞ ∈ , as was required in the 

solution of the infinite time case. For ( ) 1ˆ 0
P

λ =  is implied by 19, whence  

( ) ( )
( ) ( ) ( )
ˆ1

ˆ ˆ ˆ0, ,
g z

z z z
z

χ ψ ψ
η
−

= = ∞ =  

This is a bounded function at 0z = , so that ( ) ( )ˆ ˆ, 0,z zψ ψ∞ = < ∞ . 
Remark 2 Equations (18) and (19), expressed as Laplace Transforms, are at-

tributed to [3]. The difficulty with these equations is that they depend implicitly 
on the relation ( )i zθ η= , which is required to be solved in order for the inverse 
FT to be applied. However it will be seen that Cauchy’s theorem permits us to 
write these equations in a form which is more amenable to the inverse FT.  

In Figure 1 the contour of η  passes through the origin since ( )0 0η = . As 
the parameter θ →∞  we have z →∞ , since p̂  is bounded for z C+∈ . 
For large z we have approximately:  

( )ˆ 1i p iPz i Pzθ ψ= − − ≈ − +  

since ˆ 0p →  as z →∞  by the property of FTs. Thus 
iz

P
θ+

=  for large θ . 

This gives ( ) 1z
P

ℑ =  as an asymptote to Γ , as depicted above. 

As a consequence of the asymptotic property of r above, we have  
( ) ( )2ˆ L Rλ θ ∈ , since ( ) ( )2ĝ z L R∈ . This ensures that we can employ inverse 

FTs, at least for ( )2L R , in what follows. The solution for ψ  in finite time is 
now discussed for two distinct cases of interest. The first case corresponds to 
using the inverse FT to obtain ( ),0tψ  from (19); the second case to obtain 
( ),t uψ  for 0u > . These cases need to be handled separately because of the 

discontinuity of ψ  at 0u = . 
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Figure 1. η for values of z. 

 
Taking the inverse FT we then get:  

( ) ( ) ( )

( )

ˆ ˆ 01 1 e d
2

1 1 1 ee d d
2 2

i t

i t
i

t
P i

z Pz
P P z P i

θ

θ
η

λ θ λ
θ

θ
η

θ
θ

−

−

Γ Γ

−
Λ = −

′
+

π
−

−

π

=
π

∫

∫ ∫
             (20) 

where we have used the result in (20) and made the transformation ( )i zθ η= . 
Both integrals above exist as improper integrals; the second is evaluated along 
the real axis, whilst the first is evaluated along the contour C+Γ ⊂ , paramete-
rized by ( )i z Rθ η= ∈ . 

We show that the Γ  integral appearing in (20) may be replaced by an 
integral along the real axis R. For this purpose we consider integration of the  

function ( ) ( )ei z
k z

z
η η′=  along the closed contour bounded by the contour Γ ,  

the vertical lines z X= ± , and the horizontal line ( ){ }:R z zε ε= ℑ = , for small 
0ε > . 

Now apply Cauchy’s theorem to the integrand ( )k z , which is analytic for 
z C+∈ . Let εΓ  denote that section of Γ  cut off by Rε , at the point with real 
part x. As X →∞  the contribution along the vertical lines vanishes, as may be 
seen from the bounds ˆ 1p ≤ , ˆ 1p′ ≤  for all z C R+∈ ∪ . Hence we get:  

( ) ( )d d
R

k z z k z z
ε εΓ

=∫ ∫  

where the integral on Rε  is taken over ( )z xℜ > . 
As 0ε ↓  the left hand side of the above equality approaches the improper 

integral for Γ . It is also easy to show that the right hand side approaches the 
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real line improper integral ( )dk z z∫  by means of the dominated convergence 
theorem. 

This implies that ( )tΛ  may be written solely in terms of real line integrals 
as: 

( ) ( )1 1 1 ee d d
2 2

1 1 1 d 1 ee e d d
2 d 2

iPtz
i

iPzt
i iPtz

z Pt z z
P P z P iz

z z
P P z z P iz

η

η

η −

Γ Γ

−
−

Γ Γ

′ −
Λ = + −

 = + π
+

π π

π
−

∫ ∫

∫ ∫
 

Then integrating by parts, and noting that e ei iPtz

z

η −−  is bounded at 0z = , 

we get finally  

( )
( )ˆ 1

2

1 1 e 1e d .
2

i tp
iPzt tt z

P Pt izz

−
−  −

Λ = + + 
  π ∫  

This last expression leads to the formula for ruin, with zero reserve, attributed 
to [9] by [3]: 

Proposition 3 The finite time probability for zero reserve is equal to:  

( ) ( )1,0 , d d
Pt x

t f t x
Pt

ψ ζ ζ
∞ ∞

= ∫ ∫  for 0t >              (21) 

where ( ),f t ζ  is the probability density of total claim amount ζ  in a finite 
time interval ( )0, t .  

Proof. To prove the equivalence of the equality for ( )tΛ  in (20) and the ex-
pression above, we show that the appropriate FTs are the same. Since two func-
tions having the same FT must be equal (almost everywhere) this would then 
prove that the expressions are equal if they are both continuous. Using a well 
known result for generating functions [1], the FT of ( ),f t ζ  is given as ( )ˆ 1et p−  
for Poisson distributed claim frequency with parameter 1. The FT, with respect 
to u, of the function  

( ) ( )1 , , d
x

f t u f t ζ ζ
∞

= ∫  

is thus 
( )ˆ 1e 1t p

iz

− − , which has the value t at 0z = . The FT, with respect to u, of 

the function  

( ) ( )2 1, , d
x

f t u f t ζ ζ
∞

= ∫  

is thus given as 
( )ˆ 1

2

e 1t p t
izz

− −
− − , which is precisely the integrand appearing in 

the expression for ( )tΛ  in §5.l3, after putting u Pt= .  

Appendix B 

Proposition 4 (a) For any C Rθ +∈ ∪  the equation ( )i zθ η=  has a unique 
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solution z C+∈ . 
(b) If p̂  can be analytically continued to a neighborhood of 0z = , then 

there exists a root of ( )zη  with z C−∈  and ( ) 0zℜ = . In addition this root 
has the smallest modulus of all roots in C− .  

Proof. (a) We first demonstrate the proposition for 0θ = . The function η  
clearly has a root at 0z = . To show that it is unique in C+  define the function  

( ) ( ) ( )1d
u

g z p v v L R
∞

= ∈∫                     (22) 

We have 
1 1g =  and ĝ =  so that:  

ˆ 1 1pg P
z
−

= ≤ <  for z C R+∈ ∪ , 

from which the result follows. 
If Cθ +∈  then the circle γ  lies completely within C+ , whereas if Rθ ∈  

then it touches the real axis at x re
P
θ

= . In either case, ˆ 1p ≤  for z C R+∈ ∪  

the property of FTs, so that ( )zη  cannot have a zero outside γ . 

In the case of Cθ +∈  it is clear that a closed curve C+Γ ⊆  may be con-
structed surrounding γ , on which holds the inequality:  

ˆ 1 1 .p iPz iθ≤ < + −  

Hence by Rouché’s theorem ([10], §8,2), the function 1 iPz iθ+ −  has precisely 
the same number of zeros within Γ  as ˆ1 iPz i pθ+ − − . But it is easily shown 
that the former function has precisely one such zero, from which the result fol-
lows for Cθ +∈ . (Note that this also gives the proof where Rθ ∈ , but only if  

ˆ 1p
P
θ  < 

 
.) 

In the case of Rθ ∈  we use a continuity argument to establish the existence 
of a root of ( )z iη θ= . Let { }, 1, 2,3,ni C nθ +∈ =   be a sequence such that 

nθ θ→ . Then from the previous case, there exist { }nz  such that ( )n nz iη θ= . 
Now the sequence { }nz  is bounded and hence must have a limit point z with 
z C R+∈ ∪ . If necessary we can construct a convergent subsequence so that 

nz z→  say. Since the function η  is continuous, we have ( )z iη θ= , which 
proves existence of a root. To show uniqueness, let ω  be another zero, so that 
we have:  

( ) ( ) ( )ˆ ˆ .p z p iP zω ω− = −  

Using the same argument as for the proof of part (a), we consider in place of 
( )p u  the function ( ) ( )1eiu p u L Rω ∈  and the related function  

( ) ( ) ( )1e d .iv

u

g u p v v L Rω
∞

= ∈∫  

We have 
1

ˆ 1g ≤ , which yields the inequality:  

( ) ( )ˆ ˆ < .p z p z P zω ω ω− ≤ − −  
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This implies that z ω=  and thus uniqueness of the zero in the case Rθ ∈ . 
(b) It is important to note that not all functions p satisfy the condition stated, 

for example the Pareto distribution ( ) 49
8

p u u−=  for 3 2u >  does not1 

The FT ( )p̂ z  for ( ) 0re z = , Cθ +∈  corresponds to the moment generat-
ing function of p; it may be shown by considering the derivative of ( )zη  at 

0z =  [11] that an appropriate root z iξ=  for 0ξ <  exists. Part of this proof 
demonstrates that the inequality  

( )ˆ 1p iy Py< −  

holds for 0yξ < < . It is clear the same inequality applies to z x iy= +  since  

( ) ( )ˆ ˆ 1 1 .p z p iy Py iPz≤ < − ≤ +  

Thus η  has no roots in the region ( ) 0zξ ≤ ℑ ≤  apart from 0 and iξ . 
 
 

 

 

1In fact a necessary and sufficient condition for p̂  to be analytically continued at the origin 0z =  

is that the moments ( )dn
nM u p u u= < ∞∫ , and that 

1 n
nM

n
 is uniformly bounded for 0n ≥ . In 

this sense p is short-tailed, as it must converge to 0 sufficiently fast u →∞ . 
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