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Abstract 
Asset-based lending companies and other loan providers are exposed to risk 
of loan defaults by borrowers. To reduce this risk, these companies acquire 
credit insurance. Thus when the borrower defaults in payment, the insurance 
company covers a percentage of the outstanding balance which generates a 
way to lessen and spread credit risk that the lender incurs. Therefore there are 
a number of methods put in place such as frequency-severity and hazard rate 
models used to value credit insurance. Valuing of credit insurance for as-
set-based lending companies is a challenging task especially in Kenyan mar-
ket, where in the case of a borrower’s default, the process for recovering of the 
collateral will last a longer period of more than a year and where data on the 
borrower’s behavior of payment is of poor quality or generally unavailable. 
The existing methods do not consider the time to repossession of the colla-
teral in case of loan default. Our proposed model takes into account time to 
repossession of the collateral and can be used in emerging market economies 
where other available methods may be either unsuitable or are too complex to 
implement due to lack of enough data. Therefore, this paper incorporates a 
continuous time model to forecast loss reserves in credit insurance for as-
set-based lending companies. First, we establish a discrete-time model to de-
scribe delinquency of credits in loan insurance product. Martingale proper-
ties, Replicating of asset portfolio strategy and Itô’s calculus are used to ob-
tain results on expected values of future losses of credit insurance products. 
Secondly, we used the Black-Scholes model to develop a continuous-time 
model to forecast future losses in credit insurances. This is constructed by 
linking the latter from the discrete-time (Binomial) model using the methods 
of stochastic calculus. We estimated the loss reserves by applying the Geome-
tric Brownian Motion on data of outstanding balances of 30% of 100 loanees 
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from car loan business with assets valued at between 1 million and 10 million, 
to predict the probability of default of the borrower. 
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1. Introduction 

Credit Insurance is used to pay out a loan balance or to postpone debt payments 
on the customer’s behalf in the event of disability or job loss. Credit insurance 
can be purchased to insure all kinds of consumer loans including car loans, loans 
from finance companies, and home mortgage borrowing. Credit insurance is as 
a result of credit risk. In this paper, we model credit risk and estimate default 
probabilities which will help us come up with the final reserve. [1] investigated 
the default probabilities and their comparative statics (default Greeks) in the 
Merton framework using the objective or real probability measure. [2] used 
Black-Scholes formula for European call option to find the probability of default 
of a firm. In their paper, they also describe the factors that affect the default 
probability using Black-Scholes model for European call option by the help of 
some examples. Structural models pioneered by [3] employ modern option 
pricing theory in corporate debt valuation. Merton model Black and Scholes was 
the first structural model and has served as the cornerstone for all other struc-
tural models. Structural approach, led by Merton model has a very nice feature 
of connecting credit risk to underlying structural variables. It provides both an 
intuitive economic interpretation and an endogenous explanation of credit de-
faults, and allows for applications of option pricing methods. As a result, struc-
tural models not only facilitate security valuation, but also address the choice of 
financial structure. In 1973, Merton developed the contingent claims model that 
provides the motivation for the behavior of the borrower using the options 
theory Black and Scholes. Most studies initially used this approach in the valua-
tion of mortgages by focusing on default and prepayment as individual risks. For 
example, [4] used the Black-Scholes option-pricing model to value the risk of 
default by considering the default risk as a put option sold by the FHA and pur-
chased by the buyer of a home for the protection of risk of default to the lender. 
[5] presented the idea of hedging and pricing by arbitrage in the discrete-time 
setting by binary trees. The key probabilistic concepts of conditional expectation, 
martingales, change of probability measure and representation are all introduced. 
They also presented the concepts of expectation pricing versus arbitrage. [5] also 
brought to table the idea of hedging and pricing by arbitrage in the continuous 
time setting. Brownian motion is brought out as well as the Itô calculus needed 
to manipulate it culminating in a derivation of the Black Scholes formula. Pric-
ing of an individual asset subject to credit risk has been extensively studied in 
the literature we refer to [6] for the survey of such pricing models. They pro-
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posed another model in which the payoffs are discounted by an interest rate that 
is adjusted so as to reflect the effect of default risk. Among them, [7] assumed 
that the payoffs upon default are expressed as an exogenous fraction of the claim 
and they showed, under some regularity conditions, the price is given by the ex-
pected discounted payoffs under the risk neutral probability measure. The 
Health-Jarrow-Morton type model of defaultable term structures with multiple 
ratings was proposed by [8] and [9]. Bardhan et al., (2006) in their Journal of 
Real Estate Finance and economics [10] developed a new option-based method 
for valuation of mortgage insurance contracts in closed economy where agents 
are risk neutral. As an application, they priced a typical Serbian government 
backed mortgage insurance contract. [11] used the concept of Geometric Brow-
nian to describe the random behaviour of the asset price St over time. In our case, 
we examine the random behaviour of the delinquency index Yt. 

Asset-based lending companies and other loan providers are exposed to risk 
of loan defaults by borrowers. To lessen this risk, these companies acquire credit 
insurance. Therefore when the borrower defaults in his or her credit payment, 
the insurance company covers a percentage of the outstanding balance and the 
rest of the balance is taken care of by the insured lender through repossession of 
the collateral. Although data might be available, the pricing of credit insurance 
for asset based lending companies is a challenging task and is even more chal-
lenging in the case of emerging markets like Kenya, where, in the case of a bor-
rower’s default, the process of repossession of loan collateral may last a longer 
period of time of more than a year and where data on payment behavior is gen-
erally unavailable or of poor quality. The current valuation methods do not con-
sider the time to repossession of an asset in case of loan default. 

In this paper we propose a continuous time (Black-Sholes) model to forecast 
loss reserves in credit insurance for asset-based lending companies. This model 
takes into account the time to repossession of the collateral which is not ac-
counted for in frequency severity and hazard rate models.  

Instead of replacing currently used models, this will also present an alternative 
method for insurers looking for a reasonable check for their reserves and pre-
miums levels. Our proposed projection techniques can be applied in any market, 
especially in emerging market economies where other existing methods may be 
either unsuitable or are too difficult to use due to inadequate significant data.  

Using our continuous time model, all insurers in Kenya even those with ab-
sence of resident Actuaries can use historical data from existing insurers and 
their office experience data to accurately value credit insurance contracts. This 
will in turn grow the number of credit insurance companies hence bringing for-
ward healthy competition and improved services. Financial institutions will be 
protected from the risk of loan defaults. 

Oscar Perez et al., in his study, applied Stochastic Calculus techniques to esti-
mate loss reserves in mortgage insurance. He focused on mortgage backed se-
curities in Mexico [12]. 

In this study, we extensively extend this knowledge to valuation in credit in-
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surance for the case of asset-based lending companies. 

2. Methodology 
2.1. Credit Risk Modeling 

Here, we model credit risk and present Insurance function in order to obtain the 
expected present value of the payments of the Insurance. This will be done by 
applying the binomial model (discrete model). Consider a borrower with a loan 
term of N months given by a financial institution. Let a stochastic process Y 
represent the number of defaultable periods (delinquency index) as of time t. 
Then,  

( ) ( ), for 0,1,2, , 1t t T
Y Y T N

∈
= = −  

Under certain circumstances, the value of Yt can be negative. In such scenarios 
we treat Y as absolute value. Let pi represent the probability that the borrower 
fails to make his credit payment for time i. Denote a function ( )tf Y  which is a 
function that depends on the delinquency index. Consider cash bond Bt to be 
another stochastic process to represent the time-value of money. Assume a con-
stant risk-free rate r. Thus 0ert

tB B=  with condition that B0 = 1. We thus ana-
lyze the simple case of the process Yt by applying binomial trees. That is, when N 
= 1 we can represent the compensation by the insurer ( )tf Y  of the delinquen-
cy index at time 1 as follows:  
 

 
 

From the above figure, we can obtain the expected present value of the com-
pensation by the insurance using the following formula:  

 ( ) ( ) ( ) ( )0 0e 1r
tE E f Y p f u p f d−   = = ∗ + − ∗           (2.1) 

where; 
( )f u  represents compensation paid by an Insurance company in which the 

borrower defaults payment; and 
( )f d  represents compensation paid by an Insurance company in which the 

borrower pay the corresponding payment of his credit. 
Thus by Kolmogorov’s strong law of large numbers, if the insurance company 

has a large number of portfolio, then that company can expect a loss given by 
formula (2.1).  
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2.2. Generalization of the Binomial Model 

We use the binomial tree of two steps to generalize the binomial model. In this 
case we will do our analyzation by considering the case when N = 2, (t = 0, 1, 2) 
under the probability measures   and  . 

Where N is the loan term.  
 

 
 

Based on the diagram above we can name the outcomes of the delinquency 
index and its proportion of upward and downward movement based on the path 
followed by the process, for example, ud shows the outcome when the process 
had an upward movement in the first time and then a downward movement in 
the second step. 

In our generalization and considering the methods in the previous section, we 
can calculate the expected present value of the possible losses of the insurance 
company which issues f(.) as follows. At time 0, we can estimate the expected 
present value of the losses of the company at time as follows;  

 { } ( ) { } { } ( ) { }( )1 0 0 01 1,2 1,3e | 1 e 1r rE E f Y p E p E− −= = = + −        (2.2) 

We now apply the method of replicating asset portfolio in order to make 
change of probability measure. This enables us find another way of expressing 
the expected present value of the losses to the insurance company. 

Suppose an insurance company wishes to match its losses by using the fol-
lowing portfolio:  

( )1t t t t tC a A Y b B+= +  

where A(Yt) is an asset whose value depends on the delinquency index Yt and Bt 
is a cash bond that has the risk-free rate r. 

Then the above portfolio Ct should replicate the losses of the insurance com-
pany. Thus we have;  

 ( ) ( )1 0 1| e |r
t t t t t ta A Y b B f Y+ ++ =                 (2.3) 

From Equation (2.2) we have;  

 ( ) ( )1 0 1| e |r
t t t t t ta A Y b B f Y+ +

+ ++ =                  (i) 
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and  

 ( ) ( )1 0 1| e |r
t t t t t ta A Y b B f Y− −

+ ++ =                 (ii) 

solving Equations (i) and (ii) simultaneously, we obtain;  

( ) ( )
( ) ( )

1 1

1 1

| |

| |
t t t t

t
t t t t

f Y f Y
a

A Y A Y

+ −
+ +

+ −
+ +

−
=

−

 

 
 

( ) ( ) ( )
( ) ( ) ( )1 1

1 1
1 1

| |1 | |
e | |

t t t t
t t t t tr

t t t t t

f Y f Y
b f Y A Y

B A Y A Y

+ −
+ ++ +

+ ++ −
+ +

  −
  = −
  −  

 
 

 
 

where; t
+  is the filtration at time t when in the last path of that filtration there 

was a rise in the value of the delinquency index, and t
−  is the filtration at time 

t when in the last step of that filtration there was a decrease in the value of the 
delinquency index. If we substitute at and bt in Ct we obtain:  

( ) ( ) ( )1 1e | 1 |r
t t t t t t tC q f Y q f Y− + −

+ +
 = + −    

We thus can be able to change the probability measure from   to   and 
the following is now the generalization of the results.  

( ) ( )
( ) ( )

1

1 1

e |

| |

r
t t t

t
t t t t

A Y A Y
q

A Y A Y

−
+

+ −
+ +

−
=

−



 
 

( ) ( ) ( ) ( )
( ) ( )

1 1

0
1

e | 1 e |

e | e

r r
t t t t t t t

r
t t t

A Y q A Y q A Y

E A Y A Y

− − − −
+ +

−
+

= + −

 = = 

 


 

This is a very significant result that will be used in the following section.  

2.3. The Continuous Model 
2.3.1. Brownian Motion 
Let’s modify the binomial tree shown in the previous sections. If we take changes  

in time to correspond to 1
N

 where N is the term of the loan (asset-based) and 

suppose that the borrower can increase or decrease its “delinquency index” 

1y
N

=  with probability 1
2

p = . Let xi be a random variable:  

11 with probability
2

11 with probability 1
2

i

p
X

p

 == 
− − =


 

Therefore the delinquency index at time t can be written down as: 

1 2 3 1 3
1 1 1

t t tY x y x y x y x y x x x
N N N

= + + + + = + + +   

Based on the central limit theorem: ( )~ 0,tY N t . 
The unconditional probability density function which follows ( )~ 0,tY N t  at 

a fixed time t for Wiener process (Brownian Motion process) is given by;  
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( )( )
2

21 e
2

x
t

tf W x
t

−

π
=  

The expectation is zero,  

( ) 0tE W =  

[ ]2 2 20t t tE W E W E W t   = − = =     

Thus  

( )~ 0,tY N t  

2.3.2. Geometric Brownian Motion 
It’s a continuous time stochastic process in which the logarithm of the randomly 
varying quantity follows a Brownian Motion with drift. Thus a stochastic process 
is said to follow a Geometric Brownian Motion if it satisfies the following sto-
chastic differential equation;  

d d dt t t tY Y t Y Wµ σ= +  

where tW  is a Wiener process (Brownian Motion) and ( µ  the drift) and (σ  
the volatility) are constants. The expression of this diffusion is  

 
d

d dt
t

t

Y
W t

Y
σ µ= +                       (2.4) 

We can solve this stochastic differential Equation (2.4) by applying Itô’s lemma 
(shown below); This model is very important in the formulas developed further.  

2.3.3. Itô’s Lemma 
Assume that Y has a stochastic differential given by  

 d d dt t t tY t Wµ σ= +                       (2.5) 

where µ  and σ  are adapted processes. Define the process Z by ( ),t tZ f t Y= . 
Then Z has a stochastic differential given by  

 ( )
2

2
2

1d , d d
2t t

f f f ff t Y t W
t y yy

µ σ σ
 ∂ ∂ ∂ ∂

= + + + 
∂ ∂ ∂∂ 

         (2.6) 

Proof. Taking Taylor expansion including second order terms, we obtain;  

( ) ( )
2 2 2

2 2
2 2

1 1d d d d d d d
2 2

f f f f ff t Y Y t t Y
t y t yy t

∂ ∂ ∂ ∂ ∂
= + + + +
∂ ∂ ∂ ∂∂ ∂

 

Squaring Equation (2.5) we obtain;  

 ( ) ( ) ( )2 2 22 2d d 2 d d dY t t W Wµ µσ σ= + +              (2.7) 

Substituting Equation (2.5) and (2.7) into the Taylor expansion taking into ac-
count the following conditions,  

( )2d 0t =  

d d 0t W× =  

( )2d dW t=  
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We obtain the result (2.6).                                          □ 
We can obtain the solution to the Geometric Brownian Motion SDE shown 

above by applying Itô’s lemma as follows;  

 ( ) ( ) ( ) ( )21d ln ln d ln d
2t t t t tY Y Y Y Y′ ′′= +             (2.8) 

( )2
2

d 1 1 d
2

t
t

t t

Y
Y

Y Y
= −                      (2.9) 

where ( )2d tY  is the quadratic variation of the SDE  

( ) ( ) ( ) ( )2 2 222 2 2 2d d 2 d d dt t t t t tY Y t Y W t Y Wµ σ µ σ= + +  

Assuming;  

( )2d 0t =  

d d 0t W⋅ =  

( )2d dW t=  

Thus ( ) ( )2 22d dt tY Y tσ= .  
Substituting the value of d tY  and ( )2d tY  in Equation (2.9) we obtain;  

( ) 21d ln d d
2t tY t Wµ σ σ = − + 

 
 

Written in the integral form, this leads to 2
0

1ln exp
2t tY Y t Wµ σ σ  = − +    

 

Thus this equation can also be written as;  

 
( ) ( )2

00

0

1
2e

t tW W t t

t tY Y
σ µ σ − + − − 

 =                   (2.10) 

2.4. Credit Insurance and Reserving 

In this study we are looking at credit insurance in the case of asset-based lending 
where a borrower borrows money to buy a car. Thus the definition for credit 
insurance becomes; a financial tool for transferring credit risk of a credit from a 
financial institution to an insurance company. The financial institution has to 
pay a premium and the insurance company will pay a percentage of the out-
standing balance of the loan plus interests if there is a default. In this case Credit 
insurance will pay the benefit only when the borrower defaults in their payments 
and the financial institution takes over or recover the underlying car (collateral) 
for that loan. 

Therefore if we denote the loss reserve at time t as OCRt, X the random varia-
ble representing the losses, and t  the filtration of the delinquency index we 
can write  

( ) ( )|t t tOCR g E X= =   

We can say that this OCRt exhibits markovian property. We can build it further 
in the following sections.  
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2.5. Black-Scholes Estimations 

Assume that the delinquency index can be modeled as a geometric Brownian 
motion, we will have;  

 
d

d dt
t

t

Y
W t

Y
σ µ= +                       (2.11) 

 
( ) ( )2

00

0

1
2e

t tW W t t

t tY Y
σ µ σ − + − − 

 ⇔ =                  (2.12) 

( )0
0 0

| e t t
t t tE Y Y Y µ −  =   

Consider cash bond Bt as the stochastic process that give the risk-free rate, that 
is:  

 ( )0
0

d
d er t tt

t t
t

B
r t B B

B
−= ⇔ =                 (2.13) 

Rememeber we need an asset that depends on the delinquency index whose 
present value is a martingale. Denote that asset as A(Yt) and we suppose that its 
linearly proportional to the delinquency index as follows;  

( )t t tA Y A Y= ∗  

Let’s also denote D = (Dt) t ≥ 0 to be the stochastic process representing the 
present value of At:  

( )1 1
t t t t t tD B A Y B AY− −= =  

when we apply ltô’s lemma to Dt we get:  

 ( )d
d dt

t
t

D
W r t

D
σ µ= + −                   (2.14) 

Proof. Recall that d d dt t t tY Y t Y Wµ σ= +  

( )1d dt t t tD B AY−=  

( ) ( )1exp expt tB rt B rt−= = −  

( )d exp dtB r rt t=  

( )1d exp dtB r rt t− = − −  

 ( ) ( )
1 1 1

1 1

1 1 1

d d d d

d d

d d d

t t t t t t t t t t

t t t t t t t t

t t t t t t t t t t

D B A Y B Y A B Y A

B A Y t Y W Y A rB

B A Y t B A Y W Y A rB t

µ σ

µ σ

− − −

− −

− − −

= + +

= + + −

= + −

        (2.15) 

But 1
t t t tD B AY−= . 

Thus Equation (2.15) becomes;  

( )d
d d as abovet

t
t

D
r t W

D
µ σ= − +                 □ 

Based on the construction of asset portfolio strategy we were able to make 
change of probability measure. This implied the present value of the asset which 
depends on the delinquency index was a martingale. Therefore, we will make a 
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change in probability measure from   to   on the process Dt in order to 
make Dt to be a martingale. Based on the Cameron-Martin-Girsanov theorem, 
for each probability measure   equivalent to   and if we have a previsible 
process ( )tγ γ=  then: 

0

t
t t sW W γ= + ∫  is also   Brownian motion with  

d d dt t tW W tγ= + . 
Substituting in (2.14) we have: 

( )d
d dt

t t
t

D
W r t

D
σ µ γ σ= + − −  

for Dt be a martingale we need ( ) 0trµ γ σ− − =  since drift equals 0. The solu-
tion of this equation is the Market price of risk;  

 t
rµγ

σ
−

=                         (2.16) 

But Dt is a martingale;  

 
d

dt
t

t

D
W

D
σ=                         (2.17) 

Considering the concepts shown so far, the delinquency index under the proba-
bility measure   is:  

d
d dt

t
t

Y
W r t

Y
σ= +  

Proof. Recall  

 
d

d dt
t

t

Y
W t

Y
σ µ= +                      (2.18) 

But d d dt t tW W tγ= −  

and from t
rµγ

σ
−

=  

tr µ σγ= −  

Thus Equation (2.17) becomes  

( )

( )

d d d

d d d

d d

d d

t t

t t

t t

t

W t t

W t t

W t

W r t

σ γ µ

σ σγ µ

σ µ σγ

σ

= − +

= − +

= + −

= +









 

as above.                                                         □ 
Thus under the probability measure   the drift of the delinquency index is 

the risk-free rate. Solving this stochastic differential equation, we can have esti-
mate of the delinquency index;  

 
( ) ( )2

00

0

1
2e

t tW W r t t

t tY Y
σ σ − + − − 

 =
 

                 (2.19) 

This is an important result which will enable us forecast future losses of a credit 
insurance which pays f(T):  
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 ( )
0

1 |t u tOCR E B f T− =  

                 (2.20) 

where: 
OCRt is the reserve at time t given information of the filtration 

0t
 . 

Bt = Is cash bond which give the risk-free rate r. 
T t u= +  and u T t= − . 
f(T) = Is the compensation by the insurance company. T is the random varia-

ble that represents the time to paying the sum insured. Remember, the credit 
insurance pays claims when the car is taken over. In the case the outstanding 
loan balance upon default is more than the value of the collateral, the insured 
lender will exercise the right to sell the collateral at the outstanding loan balance. 
This is achieved by the lender receiving from the insurer the difference of the 
outstanding loan and the market value of the car at the time of default. The con-
tract is therefore settled by the difference. 

In this case, the total cost of the policy holder will be the premium paid and 
the value of the collateral upon default. In addition to the time of valuation, t we 
must consider another random variable u representing the time to repossession 
of the car and thus T = t + u as denoted above. 

The time to repossess a car is not certain, it can take more than a year. That’s 
why we use the random variable u. Moreover, the financial institutions which 
insure itself with the insurance company have delays in giving out the informa-
tion of the delinquency index and this gives the reason for use of t0 which is 
about one month or two. Based on these reasons, we are going to forecast the 
future losses of credit insurance at time t, with the information given by the fi-
nancial institution at time t0 with the filtration 

0t
 . We can see that 0t t T< < . 

Consider t0 to be independent of t, we can develop Equation (2.19). Consider f(T) 
to be the function that represents compensation by the insurance company (as-
suming that the car is recovered after R months defaultable period). It will be 
defined as a percentage of the outstanding balance at time of recovering the car 
if the delinquency index is greater than R. Where R is the delinquency index 
threshold. That is:  

( ) ( ) ( )
% for

%
0 for 0 t

T t
T Y

t

Cov OB I Y R
f T Cov OB I I R

Y
∗ ≥= = ∗ ∗ ≥
<

 

%Cov = Is the percentage of the covered outstanding balance by the insurance 
company. 

( ) TOB I  = Is the outstanding balance of the credit at time T.R is the delin-
quency index threshold. 

tYI  = Is an indicative random variable:  

1 if event occurs
0 if event does not occurt

t
Y

t

Y
I

Y


= 


 

Then, we have;  

( ) ( )
0 0

1 1| % |
tt u t u T Y R tOCR E B f T E B Cov OB I I− −
≥   = = ∗ ∗ ∗       
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Since tY  is modelled as Geometric Brownian motion, it conforms to a diffusion 
process, and it thus possess the Markovian property. Consequently we can reor-
ganize the terms in the above equation as:  

 
( )
( )

0

0

1

1

% |

% |
t

t

t u T Y R t

u T Y R t

OCR E B Cov OB I I

E B Cov OB I I Y

−
≥

−
≥

 = ∗ ∗ ∗ 
 = ∗ ∗ ∗ 






          (2.21) 

( )
( )

0

0

1
0

1

% | |

% |
tt u T t Y R t

u T t t

OCR Cov E B OB I Y E I Y

Cov E B OB I Y R Y

−
≥

−

  = ∗ ∗ ∗   
  = ∗ ∗ ∗ ≥   

 





     (2.22) 

Since tY  is a Geometric Brownian Motion, we have;  

( ) ( ) ( )
( )

2 2
0 0 00

0 0

1 1
2 2e e , with ~ 0,1

t tW W r t t t t r t t

t t tY Y Y N
σ σ σ ε σ

ε
   − + − − − ∗ + − −   
   = =

 

 

( )
0

2
0 0

1ln ln ln
2t t tY R Y Y t t r t t Rσ ε σ ≥ ⇔ = + − ∗ + − − ≥ 

 
 

( )
( )

0 2
0

0

1ln
2 , ~ 0,1

tY
r t t

R N
t t

σ
η ε η

σ

 + − − 
 = − ≤

−
 

Taking the notation of the Black-Scholes we have;  

( )0 2
0

2
0

1ln
2

tY
r t t

Rd
t t

σ

σ

 + − − 
 =

−
 

2d  captures the idea of credit risk in the Merton Model. It denotes the probabil-
ity of default. Formula (2.22) turns into:  

 
( )
( ) ( )

0

1
2

1
2

% |

%

t u T t

u t u

OCR Cov E B OB I d Y

Cov E B OB I d

η−

−
+

  = ∗ ∗ ∗ ≤   
 = ∗ ∗ ∗Φ 







        (2.23) 

We thus have managed to obtain the formula to forecast loss reserves in credit 
insurance if we know just the percentage of outstanding balance covered by the 
insurer, the value of the delinquency index, a risk-free rate, and the distribution 
of the random variable u. We can write Equation (2.23) as:  

 ( ) ( )( ) ( )20
% e d

n t ru
t t uOCR Cov OB I p u u d

− −
+= ∗ ∗Φ∫        (2.24) 

where:  
p(u) is the probability density function of u. 
n is the loan term. 
( ) t uOB I +  is the outstanding balance of the loan at time t plus interest at the 

rate c:  

( ) ( ) ( )1 u
t u tOB I OB I tc+ = ∗ +  

We can simplify this calculation by taking u as a constant:  

 ( ) ( )2% e ru
t t uOCR Cov OB I d−

+∗ ∗ Φ∗=             (2.25) 

Since this formula was obtained under the probability measure   we have a 
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replicating portfolio tP , which matches the future losses of the insurance com-
pany. Thus:  

 ( )t t t t t t t t t tP A Y B AY Bφ ψ φ ψ= + = +                  (2.26) 

d d dt t t t t tP A Y Bφ ψ= +                        (2.27) 

where; tφ  denotes number of units of ( )tA Y . 

tψ  denotes number of units of the cash bond. Let tG  be the process 
representing the present value of the portfolio:  

 1
t t t t t tG B P Dφ ψ−= = +                        (2.28) 

Considering the following equation and applying Itô’s lemma we have;  

( ) ( )
0

1, % |
tt u t u Y R tOCR h t x E B Cov OB I I Y x−

+ ≥ = = ∗ ∗ ∗ = 

 

( ) ( )( )

( ) ( )( )

( )
2
2

2

2

2

d % e
d

d% e
d

1% e e
2

ru
t t t u

t

ru
t u

t

d
ru

t u

A Cov OB I d
Y

Cov OB I d
Y

Cov OB I

φ −
+

−
+

−
+

= ∗ ∗ ∗Φ

= ∗ ∗ ∗ Φ

= ∗ ∗
π

∗

 

tψ  can be obtained from (2.28). We’ve therefore found an alternative method 
for projecting losses in credit insurance products and a replicating portfolio to 
match them. 

3. Main Results 

We simulated the outstanding balances of 30 loanees by considering a case 
where we can have a car loan business with assets valued between 1 million and 
10 million. We did this so that we can be able to explain our model. The result of 
the future loss was estimated by considering the following assumptions (Table 
1). 

u is a random variable representing the time to recover the collateral while c is 
a simple interest and t is the time of valuation. Since most car loan businesses 
have a loan term of 5 years, we assumed this in our estimation (Table 2). 

 
Table 1. Table showing the assumed constants. 

Assumed Constants Values 

Risk Free Rate (Annual) 9.195% 

Volatility (Monthly) 12% 

Risk Free Rate (Monthly) r 0.0883% 

Initial Delinquency (Monthly) 6 months 

u 5 months 

tc 12% 

% Coverage 25% 
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Table 2. Estimates of the delinquency index (Yt).  

( ) ( )
0

~ 0,1t tW W N−   log return (
1

t

t

Y
Y −

) Estimate of (Yt) Time ( 0t t− ) 

0.930 0.048 6.297 10 

−1.162 −0.437 3.878 47 

0.062 −0.163 5.096 27 

1.980 0.142 6.921 15 

−2.382 −0.614 3.246 52 

−0.566 −0.137 5.230 11 

 
The estimates of the delinquency index were estimated as follows: (Table 2) 

( )( ) ( )0

2
0

1

1 2t
t t

t

Y
r t t W W

Y
σ σ

−

= − − + −   

( ) ( )2
00

0

1
2e

t tW W r t t

t tY Y
σ σ − + − − 

 =
 

 

d2 was obtained using the following formula: (Table 3) 

( )0 2
0

2
0

1ln
2

tY
r t t

Rd
t t

σ

σ

 + − − 
 =

−
 

The tOCR  was obtained as: ( ) ( )2% e ru
t t uOCR Cov OB I d−

+= ∗ ∗ ∗Φ  (Table 4). 
An increase in the value of the probability of default increases the value of the 

reserve estimated depending on the value of the outstanding balance of the bor-
rower. We can therefore deduce that a borrower with higher chances of default 
will make the insurance company to have longer reserve requirements. Despite 
this, it’s also possible to have shorter reserve requirements. This means that a 
borrower with lower chances of default, will result to lower levels of reserve (see 
Figure 1). An increase in the loan term or the time to maturity of the payment 
of the insurance has the effect of reducing the probability of default by the bor-
rower. This will result to shorter reserve requirements by the insurance compa-
ny. 

The number of defaultable periods (delinquency index) has the effect of in-
creasing the estimate of future reserve by the insurance company. Therefore if an 
insurance company insures policies with a large number of defaultable periods, 
it will have longer reserve requirements otherwise it will have shorter reserve 
requirement (see Figure 2). 

A longer loan term or time to maturity of the payment of the insurance re-
duces the value of the delinquency index. This has the effect of reducing the val-
ue of the final reserve estimate. 

The delinquency index which is modeled as Geometric Brownian Motion is 
controlled by trend. If we do hundreds of simulations of the delinquency index, 
most of the graphs will be heading towards a certain direction with some devia-
tion. The volatility factor and the random noise of the Wiener process, will make  
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Table 3. Estimate of default probability d2. 

Yt Monthly d2 ( )2dΦ  Time ( 0t t− ) 

6.297 −0.039 0.484 10 

3.878 −0.892 0.186 47 

5.097 −0.535 0.296 27 

6.921 0.103 0.541 15 

3.246 −1.09 0.138 52 

5.23 −0.51 0.302 11 

 
Table 4. OCRt Estimates. 

( )2dΦ  ( ) t uOB I +  tOCR  Time ( 0t t− ) 

0.484 10655530.20 826743.89 10 

0.186 4302346.59 367103.35 47 

0.296 1120095.03 73176.88 27 

0.541 7263327.35 492791.52 15 

0.138 7280272.26 311157.83 52 

0.302 13466898.73 1321563.40 11 

 

 

Figure 1. Graph of tOCR  against default probability ( ( )2dΦ ). 

 
the graphs to have different shapes in the simulations. When we change the con-
stant risk free rate of interest (r) and volatility rate factor σ in our calculations, 
we will have an insight on how these inputs affect the final prediction value. We 
thus expect that for any given value r and σ, there is an interval of range for 
which the final prediction value falls into. If we find this interval range, we can 
have a rough idea about how the value of our delinquency index and reserve will 
be in future despite of the random fluctuations that affect the delinquency index. 
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Figure 2. Graph of tOCR  against delinquency index ( tY ). 

4. Conclusion 

Based on the above calculations and results we can see that some methods of 
stochastic calculus can be used in the prediction of losses for credit insurance for 
asset-based lending companies. Our discrete-continuous time model allows the 
adjustment of loss reserve forecasting using the replicating of asset portfolio 
strategy (free arbitrage and asset liability matching point of view). A very signif-
icant result is that this technique outputs specific formulas for forecasting loss 
reserves because it considers time to repossession of the collateral by the lending 
institution. It’s possible to have shorter reserve requirements depending on the 
outstanding balances, delinquency index and default probabilities. A very rele-
vant result of this project is that the continuous model permits removal of the 
Markovian approach used currently.  

Recommendations 

Based on the results of our project and the above conclusions, we propose the 
following recommendations: 

The credit insurers for asset-based lending companies already using other 
valuation methods to adopt our discrete-continuous time model as a reasonable 
check for their reserve levels. Proper attention must be paid in the assumptions 
of normality that the continuous model imply. Further research and analysis 
should be done to provide a wider view of the accuracy of our continuous model. 
This can be done by extending the final results of our continuous model to the 
common methods of insurance modeling to predict premiums to be paid the 
policy holder. 
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