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Abstract 
Generalized Beta-G family of distributions proposed has alternative distribu-
tions to unbounded distributions for modeling price returns. In contrast to 
Gaussian and other unbounded distributions that take values from ( ),−∞ ∞ , 

Generalized Beta-G family of distributions takes values from [ )0,∞ so as to 

properly contain only positive valued observations like that of price returns. 
In line with this, Nine (9) befitting candidates of the Generalized Beta-G 
family of distributions were proposed and subjected to monthly prices of 
cereals. Chen distributional random noise outstripped other candidates of 
the Generalized Beta-G family of distributions to produce minimum monthly 
standard deviations of 0.2686 (26.86%), 0.2572 (25.72%), 0.2404 (24.40%), 
0.2267 (22.67%), 0.2257 (22.57%), 0.2544 (25.44%), 0.2343 (23.43%), 0.2391 
(23.91%), 0.2273 (22.73%) and 0.2465 (24.65%) for prices of Rice, Maize, 
Sorghum, Millet, G-corn, Cowpea, Groundnut, Beans, Wheat and Cassava re-
spectively. Chen and Loglogistic distributional random noises are the leading 
candidates among the Generalized Beta-G family of distributions in modelling 
price returns of the cereals, followed by Fréchet, Weibull and Birnbaum- 
Saunders random noises in order of significant. Lomax and Linear Failure 
Rate (LFR) are the ineffective random noises in modeling the price returns. 
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1. Introduction 

Over the past few years, generalization of statistical distribution has attracted 
much attention. The attention can be classified based on range of values the dis-
tribution (s) and subjected matter (s) is/are defined for. When the range of val-
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ues defined for a distribution and the dataset are positively continuous, that is, 
values taken within +ℜ , distributions like Life Failure Rate (LFR), Lognormal 
etc. could be employed so as not to fall the victim of over-parameterization 
(problem of parsimony). However, when the range of values defined for the dis-
tribution and dataset takes range of values from [ ]0,1  or ( )0,1 , distributions 
like Beta distribution might be the ideal candidate of generalization. In a similar 
vein, when the range of values for both distribution and dataset takes values on 
the real number line, that is, ( ),−∞ ∞ , distributions like Gaussian, Gumbel, Stu-
dent-t, and skew-normal etc. [1]. 

These distributional generalizations do not only provide robust families of 
distributions that integrate pliable Probability Density Functions (PDFs) or Prob-
ability Mass Functions (PMFs), but also provide ductile functions like, survival 
& lifetime analysis functions (both for hazard rate function), reshaping functions 
(like shape, rate, location, scale, skewness) and quantile function. Each function’s 
candidates have their usefulness, for instance, the location parameter of the re-
shaping function usually influences the acceptance of a model (that is, the notion 
of location parameter brings about a better fit), while its absence usually makes a 
model quite appropriate [2]. 

Based on studies, generalizations of distributions via some of their mentioned 
ductile functions do provide bathtub, bathtub-shaped, upside-down bathtub [3]. 
Among the recently introduced generalized distributions with different appea-
lingness for datasets and users are the new families of distributions. These dis-
tributions are Beta exponential-G family introduced by [4], Beta-G family in-
troduced by [5], Generalized Beta-G family by [6], Exponentiated exponential 
Poisson-G family introduced by [7], Exponentiated-G family introduced by [8], 
Exponentiated Kumaraswamy-G introduced by [9], Gamma1-G family intro-
duced by [10], Generalized transmuted-G introduced by [11], odd log-logistic-G 
introduced by [12] among others. Each member of the family of distributions 
has their own candidates of statistical distributions for statistical modeling or 
applications to different real life datasets, reliability studies, and importance. 
Most of these families of distributions are known for modeling lifetime issues, 
failure rate, time-varying series, price of a commodity, climate change data etc., 
though simulation studies can also be carried-out so as to estimate probability 
density function, cumulative distribution function, quantile function, generate ran-
dom numbers and measures of inference (like Maximum likelihood estimates, 
Alkaike information criterion, Cramer-von Misses statistic, Anderson-Darling 
statistic) for each candidate of the distribution that belong to each families of 
distributions. Each member of the family of the distributions has their own pecu-
liar attributes to applications to datasets. In this research, we shall be narrowing 
down our scope to Generalized Beta-G family of distributions because of its ability 
to model failure time events, time remission of bladder cancer patients, climate 
change agents, flood data, uniform and non-uniform time-varying series like price, 
stock returns among others. Among the Generalized Beta-G family of distribu-
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tions is Birnbaum-Saunders, Chen, Weibull, Fréchet, F, Life Failure Rate (LFR), 
Log-logistic, lognormal and Lomax [13]. 

Among the few applications of the members of the Generalized Beta-G family 
of distributions to real life events was the application of the extended Birnbaum- 
Saunders distribution (Otherwise known as Marshall-Olkin extended Birnbaum- 
Saunders distribution) to reliability studies and fatigue failure times by [14]. 
Reference [15] also introduced a modified Burr III distribution called Beta-Burr 
III distribution and highlighted is importance in modeling problems related to 
actuarial science and survival analysis. They did not only derive the distribu-
tion’s docile attributes like the moments (including its moment generating func-
tion), reliability, entropies and quantile functions, but also applied it to a surviv-
al data of acute myelogeneous Leukaemia of thirty-three (33) patients suffering 
from the disease. 

Reference [16] propounded Beta Gumbel distribution and highlighted its abil-
ity to model accelerated life testing problems through earthquakes, flood fre-
quency analysis, rainfall, sea currents, and wind speeds. Reference [17] extended 
the work of Reference [16] and introduced Beta modified Fréchet distribution 
called Beta Fréchet (BF) distribution as an extrapolation of Fréchet and Expo-
nentiated Fréchet (EF) distributions. They applied the proposed BF distribution 
to two sets of data: the uncensored dataset that consist of hundred (100) obser-
vations of breaking stress of carbon fibres (in Gba); and used dataset by [18], the 
dataset that consist of strengths of 1.5 cm glass fibres measured at the National 
Physical Laboratory, England. They adopted the Maximum Likelihood method 
of estimation, and they were able to estimate the four embedded parameters with 
95% confidence level that the BF distribution is an adequate model for modelling 
the two set of fibres. It is to be noted that Gumbel and Fréchet are two out of the 
three distributions of the Extreme-Value-Distributions (EVDs). The only nota-
ble application of Beta distribution to financial returns was when [19] presented 
a skewed distribution known as modified Beta distributions and applied it to 
Standard & Poor’s/International Finance Corporation global daily price indices 
in United States dollars for South Africa with some inferences made. The statis-
tical properties of the distributions were derived as well as the parameter esti-
mation of the embedded parameters via Maximum Likelihood estimation tech-
nique. In light of this, none of the related members or real members of the Ge-
neralized Beta-G family of distributions has been applied to stock returns or 
price indices. The Generalized Beta-G family of distributions is a family of dis-
tributions that takes only positive values on the real number line against un-
bounded distributions that have been used in modeling price indices. The no-
velty of this work is the first ever application of the Beta-G family of distribu-
tions to financial returns of price of commodities, in contrast to its known ap-
plication to survival analyzes and reliability studies. However, this piece of work 
will focus on the application of Generalized Beta-G family of distributions to 
wholesale prices of cereals in Kano state, Nigeria. The wholesale prices of the 
edible grains to be considered will be from 2007 to 2019. The members of the 
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family of the Generalized Beta-G distributions to be considered are Birnbaum- 
Saunders, Burrxii, Chen, Gamma, Lognormal, Log-Logistic, Lomax, Weibull and 
Fréchet. 

2. Mathematical Pro-Forma of Price Framework 

Let 0p  denote the initial price for any commodity/stock returns assuming fur-
ther that the evolution or time varying for such prices is via the horizon p = one 
year or p = one month. If the price of such commodity at p is denoted by tp , a 
random variable, such that, 

( )
( ) ( ) ( )0

0

ln
ln ln

ln
t

t

p
p p p

p
= = −                    (1) 

The p in Equation (1) is also known as growth rate. 
Assuming G is a well-defined function on +

  with Cumulative Distribution 
Function (CDF). Let F be another well-defined CDF positioned on G to be the 
sphere of an increasing function in an enclosed Beta function in the following 
form: 

( ) ( )( ),F p B G p= Ω                       (2) 

Such that [ ] [ ]: 0,1 0,1B →  and Ω  being the parameter space of the well- 
defined G function. The CDF and Probability Density Function (PDF) of the 
Generalized Beta-G family of distributions can then be defined as: 
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for “r” in the range of ( ),g p Ω , 0 1r≤ ≤ ; ( )TT, , ,a b cΘ = Ω  is the universal 
parameter space of the Generalized Beta-G family of distributions with induced  
shape of 0, 0, 0a b c> > > . Ω  is the parameter space of the ( ),G p Ω  distribu-

tion ∋  ( ),g p Ω  is its pdf. ( ) ( )
1
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denotes the incomplete beta function ratio. According to [5] and [20], among 
the few candidates of the Generalized Beta-G family of distributions, that is, the 
number of independent and identically distributed random variables whose PDF 
follows ( ),g p Ω  are: 

Weibull: 

( )
1

, exp
r rr p pg p

s s s
µ µ−  − −   Ω = −    

     
              (6) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, rate, and location pa-
rameters respectively. 
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F: 

( )
2 21, , 1

2 2

r r s
r s r pg p B r

s s
µ

+ − 
 − −    Ω = +    

    
            (7) 

B is stands for the Beta function defined above, for 0p > , p µ> ,  
{ }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, scale and location parameters respectively. 

Linear Failure Rate (LFR): 

( ) ( )( ) ( )2

, exp
2

p
g p r s p rp

µ
µ

 − Ω = + − − − 
  

            (8) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, rate and location pa-
rameters respectively. 

Chen: 

( ) ( ) ( )( ) ( )( ){ }1, exp exp exp 1r r rg p rs p p s pµ µ µ−  Ω = − − − − −  
    (9) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  scale, shape and location pa-
rameters respectively. 

Birnbaum-Saunders: 

( ) ( )
,

2

s p p s
p s s p

g p
r p r

µ µ
µ µ

φ
µ

 − −
+ − 

− − Ω =  −
  
 

         (10) 

For 0p > , ( ).φ  is the pdf of the standard Gaussian, p µ> , { }T, ,s rµΩ =
∋  +Ω∈ℜ ∀  scale, location and shape parameters respectively. 

Fréchet: 

( )
1

, exp
r rr p pg p

s s s
µ µ− − − − −    Ω = −    

     
            (11) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, scale and location pa-
rameters respectively. 

Log-logistic: 

( ) ( )
2

1, 1r
r

r pg p p
ss
µµ

−
−  −  Ω = − +    

              (12) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, scale and location pa-
rameters respectively. 

Lomax: 

( ) ( )( ) ( ) 2
1 log1, 2 exp

2
p r

g p s p
s
µ

π µ
−  − − 

 Ω = − −  
   

       (13) 

For 0p > , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, rate and location pa-
rameters respectively. 

Log-normal: 

https://doi.org/10.4236/jmf.2021.114036


R. O. Olanrewaju 
 

 

DOI: 10.4236/jmf.2021.114036 675 Journal of Mathematical Finance 
 

( ) ( )( ) ( ) 2
1 log1, 2 exp

2
p r

g p s p
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π µ
−  − − 

 Ω = − −  
   

       (14) 

For 0p > , 3.124π ≈ , p µ> , { }T, ,r s µΩ = ∋ +Ω∈ℜ ∀  shape, scale and 
location parameters respectively. It is to be noted that ( ),G p Ω  is the CDFs of 
the pdfs defined above, from Equation (6) to Equation (14). The parameter es-
timation of the universal parameter space ( )TT, , ,a b cΘ = Ω  can be estimated 
via Maximum Likelihood function of 

( ) ( ) ( ) ( )
11

1
, 1 ,

,

n bac c

i

cL P g p G p
B a b

−−

=

 
 Θ = Ω − Ω   

 
∏         (15) 

3. Numerical Analysis 

The monthly-harmonized wholesale prices (in naira (#)) of cereals in Kano state, 
Nigeria from 2007 to 2019 would be subjected to the Generalized Beta-G family 
of distributions. The cereals include-rice, maize, sorghum, millet, gcorn, cowpea, 
groundnut, beans, wheat and cassava. The time series dataset was obtained from 
the Ministry of Agriculture and Natural Resources (MANR), Kano state, Nigeria. 
The dataset was a monthly uniform time-varying harmonized and regulated 
price of the edible grains by the ministry (Figure 1). 

The median value (that is the black line between the whiskers) for all the ce-
real prices except for the one of groundnut for the edible grains are more closer 
to their bottom boxes, with their whiskers shorter on the lower part of their 
boxes, this suggested an extremely positively skewed distribution (rightly 
skewed) for all. However, the groundnut possessed the same traits, but not to the 
extreme like others because the whisker (black line) for the groundnut boxplot 
was not at the basement of the wall of the plot. In other words, groundnut’s  

 

 
Author’s Computation (2021). 

Figure 1. Boxplots of the prices of the cereals. 
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whisker is in between the median (50th percentile or second quartile) and first 
quartile (25th percentile), in contrast to others that their whiskers leveled with 
the first quartile. Overall, it indicated that all the prices of the edible grains are 
affected by frequent modestly sized deviations that would surely affect estimates 
if model with Gaussian distribution or unbound distributions. 

From Table 1, Chen random noise gave the minimum monthly standard dev-
iation of 0.2686 (26.86%) for the monthly price of rice with moderate magnitude 
of skewness and kurtosis of 0.1589 and 2.2520 respectively. Interestingly, chen 
distributional random noise dominated all the other Generalized Beta-G family 
of distributions in absolving the noise and fluctuations characterized by the prices 
of cereals to give minimum monthly standard deviations of 0.2572 (25.72%), 
0.2404 (24.04%), 0.2267 (22.67%), 0.2257 (22.57%), 0.2544 (25.44%), 0.2343 
(23.43%), 0.2391 (23.91%),0.2273 (22.73%), 0.2465 (24.65%), skewness of 0.2154, 
0.3339, 0.1338, 0.1773, 0.1240, 0.3481, 0.1277, −0.0152, 0.0132 and kurtosis 
2.3266, 2.6471, 2.4149, 2.6258, 2.3426, 2.9886, 2.1858, 2.3668, 2.3813 for prices of 
Maize, Sorghum, Millet, G-corn, Cowpea, Groundnut, Beans, Wheat and Cassa-
va respectively. 

From Table 2, Chen and Weibull are the ideal generalized distributional random 
noises for rice. They jointly produced the same and smallest reduced error model 
performance of AIC = 2973.432; CAIC = 2973.996; BIC = 2991.731; HQIC = 
2980.864 with ( )28.4031,8.3039,0.2916,3.7685,1682.6468,7486.ˆ 7712Θ = ,  
where ( )ˆ 3.7685,1682.6468,748.7712Ω = . From the Anderson-Darling estimate 
of 9.5843, that is greater than the critical value of 0.7752, we fail to accept that 
the data came from normal distribution. Additionally, since the Kolomogorov- 
Smirnov statistic is 0.2701 with its p-value = 0.00011 < 0.05 there is no sufficient 
evidence that the rice price sample came from normal distribution. In addition, 
chen outmatched other candidates of Generalized Beta-G family of distributions 
in modelling the price of maize with reduced error performance of AIC = 
2812.919; CAIC = 2813.482; BIC = 2831.218; HQIC = 2820.351 with  

( )0.1884,5.2514,0.5869,0.1698,0.2694,3440.ˆ 8126Θ = , where  
( )ˆ 0.1698,0.2694,3440.8126Ω = . The Anderson-Darling of 7.1804 > 0.7752 shows 

that the strength of the price of the maize edible grains can be adequately de-
scribed by the Generalized Beta-G family of distribution. However, since the 
Kolmogorov-Smirnov statistic is 0.2038 with its p-value = 0.0000 < 0.05, it is ob-
vious that price of maize price did not emanate from Gaussian distribution. Fréchet 
and Loglogistic distributional random noises jointly produced ideal performance 
for sorghum with AIC = 2420.474; CAIC = 2421.038; BIC = 2438.773; HQIC = 
2427.906, but with different parameters of  

( )1.3025,1.0485,3.9379,2.3299,13.5964,128.ˆ 5248Θ =  and  
( )0.2059,0.1965,0.3054,9.0645,243.2897,6395.ˆ 0221Θ =  respectively. Their in-

duced parameters are ( )ˆ 2.3299,13.5964,128.5248Ω =  and  
( )ˆ 9.0645,243.2897,6395.0221Ω =  with Anderson-Darlings’ statistic of 12.7501 

and 8.8469 > 0.7752 and joint Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. 
Loglogistic and LFR distributional random noises jointly outstripped other  
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Table 1. Coefficients of skewness, kurtosis, and standard deviation for the prices of cereals. 

Rice Weibull 
Birnabum- 
Saunders 

Chen F Fréchet LFR Log-normal Log-logistic Lomax 

MonthlyStd 
Dev 

0.9160 8.2093 0.2686 8.1980 2.3690 3.6767 182.3016 3.8321 1.2433 

Skewness 
0.6057 

(0.1344) 
4.5183 

(4.6065) 
0.1589 

(0.1620) 
4.5199 

(4.6081) 
2.4468 

(2.4946) 
2.4654 

(3.5612) 
4.4902 

(4.5778) 
5.3156 

(5.4194) 
9.3941 

(9.5775) 

Kurtosis 
3.0919 

(0.0919) 
31.9927 

(28.9927) 
2.2520 

(−0.7480) 
25.6861 

(22.6861) 
11.9789 
(8.9789) 

5.6717 
(3.9106) 

27.4719 
(24.4719) 

41.5122 
(38.5122) 

103.6024 
(100.6024) 

Maize          

MonthlyStd 
Dev 

0.9118 10.0425 0.2572 14.2570 6.7517 0.3099 182.3693 5.5786 2.3576 

Skewness 
0.2868 

(0.2924) 
2.8147 

(2.8696) 
0.2154 

(0.2197) 
6.0355 

(6.1533) 
7.2594 

(7.4011) 
0.9326 

(0.9508) 
6.7469 

(6.8786) 
6.8477 

(6.8786) 
4.3167 

(3.7543) 

Kurtosis 
2.4606 

(2.4606) 
12.8122 
(9.8122) 

2.3266 
(−0.673) 

43.4280 
(40.4280) 

65.0128 
(62.0128) 

3.2869 
(0.2869) 

50.6347 
(47.6347) 

58.9935 
(47.6347) 

34.7172 
(7.7256) 

Sorghum          

MonthlyStd 
Dev 

0.8827 9.0662 0.2404 7.8903 3.3496 0.2922 236.6115 2.3323 3.4185 

Skewness 
0.5483 

(0.5590) 
2.7273 

(2.7806) 
0.3339 

(0.3404) 
5.6829 

(5.7939) 
2.9632 

(3.0211) 
0.9184 

(0.9364) 
9.0870 

(9.2644) 
1.9766 

(2.0152) 
1.7256 

(0.7853) 

Kurtosis 
2.7043 

(−0.2957) 
11.5328 
(8.5328) 

2.6471 
(−0.3529) 

38.1972 
(35.1972) 

12.9652 
(9.9652) 

2.8979 
(−0.1021) 

95.1809 
(95.1809) 

8.1811 
(5.1811) 

4.3256 
(6.4577) 

Millet          

MonthlyStd 
Dev 

1.0001 10.9945 0.2267 10.6418 5.2178 0.3194 443.5991 3.1816 2.1778 

Skewness 
0.7705 

(0.7855) 
3.4827 

(3.5507) 
0.1338 

(0.1364) 
9.8992 

(3.2715) 
3.2472 

(4.2516) 
1.1351 

(1.1573) 
7.3584 

(7.5020) 
2.8564 

(2.9121) 
10.5606 

(10.7668) 

Kurtosis 
2.9104 

(−0.0896) 
17.5067 

(14.5067) 
2.4149 

(−0.5851) 
112.6883 

(109.6883) 
7.4357 

(12.5467) 
4.0506 

(1.0506) 
63.0945 

(60.0945) 
12.1612 
(9.1612) 

123.6616 
(120.6616) 

G-Corn          

MonthlyStd 
Dev 

0.8978 11.1932 0.2257 13.8708 0.5324 0.3192 140.8943 2.6797 0.8967 

Skewness 
0.2112 

(0.2154) 
4.6541 

(4.7449) 
0.1773 

(0.1807) 
5.6299 

(5.7398) 
7.2356 

(2.3467) 
0.9829 

(1.0021) 
9.6636 

(9.8523) 
3.5679 

(3.6376) 
7.3981 

(7.5425) 

Kurtosis 
2.5665 

(−0.4335) 
33.5766 

(30.5766) 
2.6258 

(−0.3742) 
36.4662 

(33.4662) 
23.24352 
(56.2461) 

3.1701 
(0.1701) 

105.0269 
(102.0269) 

19.5677 
(16.5677) 

71.9099 
(68.9099) 

Cowpea          

MonthlyStd 
Dev 

0.8512 8.8147 0.2544 39.7075 30.2382 0.3027 109.7695 2.6991 0.7178 

Skewness 
0.6392 

(0.6517) 
2.6730 

(2.7251) 
0.1240 

(0.1264) 
5.9637 

(6.0801) 
4.2917 

(3.2536) 
0.9304 

(0.9486) 
4.0649 

(4.1442) 
2.8982 

(2.9548) 
5.0566 

(5.1553) 
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Continued 

Kurtosis 
3.1955 

(0.1955) 
10.9308 
(7.9308) 

2.3426 
(−0.6574) 

42.1433 
(39.1433) 

5.2142 
(2.1826) 

3.5416 
(0.5416) 

20.3783 
(17.3783) 

16.1041 
(13.1041) 

35.5875 
(32.5875) 

Groundnut          

MonthlyStd 
Dev 

0.9267 10.3373 0.2343 17.2021 2.7560 0.3308 438.7740 3.2202 2.1242 

Skewness 
0.4185 

(0.4267) 
2.7455 

(2.7990) 
0.3481 

(0.3549) 
6.1534 

(6.2735) 
3.9229 

(3.9995) 
1.2217 

(1.2455) 
8.8071 

(8.9790) 
3.0847 

(3.1449) 
2.7455 

(2.7990) 

Kurtosis 
2.9254 

(−0.0746) 
10.8047 
(7.8047) 

2.9886 
(−0.0114) 

43.7856 
(40.7856) 

22.8987 
(19.8987) 

3.7900 
(0.7900) 

81.3375 
(78.3375) 

14.0798 
(11.0798) 

10.8047 
(7.8047) 

Beans          

MonthlyStd 
Dev 

0.8577 7.5464 0.2391 52.9837 4.5063 0.3239 103.6060 4.5063 1.8774 

Skewness 
0.7500 

(0.7647) 
2.4527 

(2.5005) 
0.1277 

(0.1302) 
9.8622 

(10.0547) 
4.2262 

(4.3087) 
1.4355 

(1.4635) 
5.0355 

(5.1338) 
4.2262 

(4.3087) 
7.9103 

(8.0647) 

Kurtosis 
4.1828 

(1.1828) 
9.5973 

(6.5973) 
2.1858 

(−0.8142) 
108.2008 

(105.2008) 
24.8323 

(21.8323) 
6.3079 

(3.3079) 
33.0210 

(30.0210) 
24.8323 

(21.8323) 
67.4502 

(64.4502) 

Wheat          

MonthlyStd 
Dev 

1.0392 9.5383 0.2273 19.1155 3.5880 0.3182 219.1932 3.3448 3.3448 

Skewness 
0.7992 

(0.8148) 
2.5659 

(2.6160) 
−0.0152 

(−0.0155) 
6.9081 

(7.0429) 
5.0248 

(5.1229) 
1.1461 

(1.1685) 
4.8007 

(4.8944) 
3.2408 

(3.3041) 
3.2408 

(3.3041) 

Kurtosis 
3.7025 

(0.7025) 
11.0449 
(8.0449) 

2.3668 
(−0.6332) 

55.7194 
(52.7194) 

38.5132 
(35.5132) 

1.1565 
(1.1565) 

27.1498 
(24.1498) 

16.5721 
(13.5721) 

16.5721 
(13.5721) 

Cassava          

MonthlyStd 
Dev 

0.9636 12.0795 0.2465 30.5059 12.0795 0.3144 128.0633 2.3483 1.1944 

Skewness 
0.6517 

(0.6644) 
3.4383 

(3.5055) 
0.0132 

(0.0134) 
8.8221 

(8.9943) 
0.0132 

(0.0134) 
0.9114 

(0.9292) 
7.3775 

(7.5215) 
3.5322 

(3.6011) 
6.0366 

(6.1545) 

Kurtosis 
2.8589 

(−0.1411) 
16.5949 

(13.5949) 
2.3813 

(−0.6187) 
90.2360 

(87.2360) 
16.5949 

(13.5949) 
3.4208 

(0.4208) 
69.8926 

(66.8926) 
23.0768 

(20.0768) 
43.2602 

(40.2602) 

 
Generalized Beta-G family of distributions for price of millet with joint the same 
and smallest model performance of AIC = 2840.652; CAIC = 2841.216; BIC = 
2858.951; HQIC = 2848.084, with the same  

( )0.1744,0.1640,0.6688,7.5087,1400.7276,2779.ˆ 6405Θ = , where  
( )ˆ 7.5087,1400.7276,2779.6405Ω = , the same Anderson-Darling estimate of 

8.7738 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. Fréchet 
distributional random noise produced the ideal performance for price of gcorn 
with AIC = 2760.405; CAIC = 2241.564; BIC = 2778.704; HQIC = 2767.956 with 

( )0.1887,0.2012,1.1480,2.8519,712.9693,2598.ˆ 7736Θ = , such that the induced 
parameter is ( )ˆ 2.8519,712.9693,2598.7736Ω = . Its Anderson-Darling estimate  
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Table 2. Model adequacy for the generalized Beta-G family of distributions with the prices of cereals. 
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is 15.4291 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. Log-
normal possessed reduced-error model performance for cowpea with AIC = 
2834.013; CAIC = 2402.492; BIC = 2342.492, where  

( )1.7726,0.4814,1.1212,9.4512,2.15089,74.ˆ 7648Θ =  and induced parameter of 
( )9.4512,2.15089,74.7648Ω =  such that it’s Kolomogorov-Smirnovs’ p-value = 

0.0000 < 0.05. Log-logistic random noise produced the ideal performance for 
price of groundnut with ( )1.5776,2.4357,2.3989,1.3672,80.3525,75.ˆ 6026Θ = , 
induced parameters ( )ˆ 1.3672,80.3525,75.6026Ω = . Its Anderson-Darling esti-
mate is 35.3184 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. 

Birnbaum-Saunders possessed the ideal reduced-error model performance for 
price of beans with AIC = 2777.3; CAIC = 2777.864; BIC = 2795.6; HQIC = 
2784.733, where ( )0.5102,1.6791,2.8410,2.2832,1366.8216,5373.ˆ 9233Θ = , such 
that ( )ˆ 2.2832,1366.8216,5373.9223Ω = . Its Anderson-Darling estimate is  
8.8857 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. Loglogis-
tic is the paragon random noise for price of wheat with AIC = 2466.063; CAIC = 
2466.627; BIC = 2484.362; HQIC = 2473.495, where,  

( )1.0081,1.4591,0.5771,8.7772,14.7966,83.ˆ 7864Θ = , such that  
( )ˆ 8.7772,14.7966,83.7864Ω = . Its Anderson-Darling estimate is  

24.2533 > 0.7752 and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. Lastly, F 
surmounted other Generalized Beta-G distributional random noises for price of 
cassava with AIC = 2347.970; CAIC = 2649.446; BIC = 2344.769; HQIC = 
2589.095 ( )3.4248,4.5067,0.5772,0.1906,9.9779,61.ˆ 2566Θ =  such that,  

( )ˆ 0.1906,9.9779,61.2566Ω = . Its Anderson-Darling estimate is 6.9834 > 0.7752 
and Kolomogorov-Smirnovs’ p-value = 0.0000 < 0.05. 

4. Conclusion 

In conclusion, Lomax and Linear Failure Rate (LFR) out of the Generalized Be-
ta-G family of distributions are ineffective in modelling the prices of all the 
cereals studied. This might be due to the fact that LFR is peculiar to survival, 
censored and uncensored analysis. Aditionally, Lomax distribution (otherwise 
knwon as Pareto Type II distrbution) might be ineffectual in living-up to ex- 
pectation due to its peculiarity in statistical modelling of tailedness observations, 
reliability studies and life testing problems in survival studies. Chen and loglogistic 
distributional random noises are the leading candidates among the Generalized 
Beta-G family of distributions in modelling of price returns, followed by Fréchet 
random noise. Weibull, Birnbaum-Saunders, and F distributional random noises 
gave un-recommendable higher error performances. Overall, all the distributional 
random noises for the Generalized Beta-G family of distributions gave Kolmogo-
rov-Smirnov’s p-values that are far lesser than 0.05 and Anderson-Darling esti-
mates that are greater than the critical value of 0.7752 to affirm the model ade-
quacy of the Generalized Beta-G family of distributions, in contrast to unbounded 
distributions. Among the limitations of Beta-G family of distributions is that it is 
for positive continuous values with single mode, and its 1 to many mapping car-
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rier is based on either [ ]0,1  or ( )0,1 . 
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