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Abstract 
In this paper, we present an estimator that improves the well-calibrated co-
herent risk measure: expected shortfall by restructuring its functional form to 
incorporate dynamic weights on extreme conditional quantiles used in its de-
finition. Adjusted Extreme Quantile Autoregression will is used in estimating 
intermediary location measures. Consistency and coherence of the estimator 
are also proved. The resulting estimator was found to be less conservative com-
pared to the expected shortfall. 
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1. Introduction 

Different regulators expect institutions under their jurisdiction to comply with 
the set guidelines on how to ensure capital adequacy. A major threat to capital 
adequacy is reserves for fluctuations in investment values due to market risk. 
The amount of this reserve is determined using risk measures that quantify the 
market risk from the downside distribution of returns. One of the basic risk 
measures is volatility commonly referred to as standard deviation. Popular meas-
ures of risk that have found immense use in financial risk management include 
Value at Risk (VaR) and Expected Shortfall (ES). 

VaR is the maximum potential loss a portfolio can suffer at a certain confi-
dence interval, say 99%, in a particular number of days called the holding period. 
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In addition to comparing Value at Risk and the coherent Expected Shortfall pro-
posed in [1], it was also noted in [2] that VaR improved the “what if?” sensitivity 
analysis in Greeks by expressing risk in terms of currency as one number with 
some probability attached. This eases risk reporting and aids in comparing dif-
ferent portfolios. However, VaR suffers from two major shortcomings that crip-
ple its application in risk measurement. These are: VaR is not sub-additive with 
respect to subportfolios as well as risk variables and the fact that it underesti-
mates true risk by failing to appreciate the severity of losses beyond the confi-
dence threshold, [3]. Moreover, [4] showed that it is possible to construct two 
portfolios with different levels of tail risk but with the same VaR. 

To remedy the above shortcomings the Basel Committee on Banking Supervi-
sion during the fundamental review of the trading book in the year 2013 adopted 
97.5% Expected shortfall with a horizon of one day in place of 99% VaR in quan-
tifying market risk for banks under the Basel III framework, [5]. This decision 
was followed by a lot of criticism based on earlier findings in [6] that ES is not 
elicitable and hence impossible to backtest. The fears were quelled by [7] who 
derived backtest procedures for ES that do not require elicitability. In fact elici-
tability makes backtesting easier but is not a necessary condition for backtesting 
procedures, [4]. However, following findings in [8] that ES is less robust com-
pared to VaR, any misspecification of the loss/returns distribution greatly affects 
the risk estimates from ES. This can be attributed to the fact that ES averages 
quantiles in the extreme left tail of the returns distribution (right tail of the loss 
distribution) with equal weights meaning that the very extreme quantiles have the 
same effect on the final estimate as quantiles close to VaR. 

The use of equal weights was remedied in [9] using a uniformly weighted sum 
of a systematic sample of quantiles below the value at risk as an estimator of the 
expected shortfall. The number of sample quantiles used in the estimation was 
chosen subjectively depending on the considered sample size of returns distribu-
tion. This approach was generalized in [10] through the use of nonuniform weights 
in the summation of the sample quantiles below the value at risk; where the left 
tail of the returns distribution was considered. The weights were defined using a 
continuously differentiable function that assigned more weight to quantiles near 
α  thus improving the asymptotic efficiency of the ES estimator. 

This paper, presents derivation of an estimator for Weighted Expected Shortfall 
(WES) based on extreme quantile regression in [11] to remedy the subjectivity in 
the WICQF1 estimator in [10]. To achieve this, dynamic weights are introduced in 
the structural form of expected shortfall. The weights depend on the distance be-
tween the extreme quantiles and the value at risk. This will allow us to use all the 
quantiles above VaR thus quashing the subjectivity in WICQF estimator.  

2. Methodology 

Consider a real valued financial time series { }, 0tS t +∈ ∪  on a complete prob-

 

 

1WICQF, Weighted Conditional Integrated Quantile Function. 
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ability space ( ), , PΩ  . Assume tS  is t -measurable where  
{ }{ }, 0t t +∈ ∪  is an increasing sequence of σ -algebras representing infor-

mation available up to time t. In particular, let tS  be the value of a portfolio at 
trading time t so that the return, tr  on the portfolio at time t is given by  

t t t
t

t t

S S
r

S
−∆

−∆

−
=                           (1) 

For convenience, let the corresponding loss return be given by  

t tX r= −                             (2) 

The VaR at ( )1 100%α− ×  of the return on this portfolio is given by the quan-
tile at 100%α ×  of the loss distribution  

( ){ } ( ){ }inf : 1 inf :x
Xq x P X x x F xα α α= ∈ > ≤ − = ∈ >� �        (3) 

where ( )0,1α ∈ . The corresponding ES of the return on this portfolio is the 
expected value of the losses beyond VaR which is given by  

11 1| d |
1 1

x x x x X XES E X X q q q E X q X qα α τ α α αα
τ

α α
   = > = = + − >   − −∫    (4) 

where Xqα  is the inverse of the loss distribution function ( )XF x  
For a discrete ordered sample 1 2 nx x x≤ ≤ ≤�  the corresponding VaR and 

ES estimates are respectively given by  

ˆ x
nq xα α=                             (5) 

� 1 nx
i

i n
ES x

n nα
αα =

=
− ∑                        (6) 

where appropriate approximations are made when nα  is not an integer. 
Let us now define a conditional quantile autoregressive model on tX  of the 

form  

,t t tX θµ ε= +                           (7) 

where , : d
t fθµ ≡ →   is the central conditional θ -quantile of tX  and tε  

are heteroscedastic errors with zero θ -quantile. Suppose we define ,t t tZθε σ=  
where , : d

t fθσ ≡ →   is the central conditional scale of tX  and tZ  are 
assumed to be iid2 innovations with a common distribution F(.). To capture the 
ARCH effects in tX  we let ,t θσ  be a function of lagged values of tε , that is  

;t i iε − ∈ . This modification improves the QAR-QAR process in [11] 
According to [11] the adjusted extreme conditional quantile of tX  is given 

by  

, , , ,
z z

t t t q qθ α θ θ α θµ µ σ  = + −                      (8) 

defined such that if estimates of the quantiles of tZ  at α  and θ  are ˆ zqα  and 
ˆ zqθ  respectively then we can estimate the function by  

, , , ,ˆ ˆ ˆ ˆ ˆz z
t t t q qθ α θ θ α θµ µ σ  = + −                     (9) 

 

 

2Independent and identically distributed. 
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3. Estimation of Common Risk Measures 

Using Equation (9) we obtain an estimator for the one step ahead VaR forecast 
as  

�
1 1, , 1, 1,ˆ ˆ ˆ ˆ ˆz z

t t t tVaR q qα
θ α θ θ α θµ µ σ+ + + +  = = + −               (10) 

where 1,ˆt θµ +  and 1,ˆt θσ +  are the corresponding one step θ -quantile and scale 
estimators respectively from the linear conditional quantile process and; ˆ zqα  
and ˆ zqθ  are obtained by inverting the overall distribution of the iid errors. Note 
that the overall distribution of the iid errors is obtained by splicing GPD with 
empirical bulk distribution at the threshold as outlined in [11] to get  

( ) ( )
1
ˆˆ

ˆ 1 1 ˆ
z umF z

N

λλ

β

−

 −
= − +  

 
                 (11) 

for any ( )0,1τ ∈ . β̂  and λ̂  are the estimated parameters of the Generalised 
Pareto Distribution (GPD) adopted in formulating the estimated overall distri-
bution of the iid errors. m is the number of exceedances above a chosen thre-
shold u from a sample of size N. Inverting ( )F̂ z  we get  

( )
ˆˆ

ˆ 1 1ˆ
z Nq u

m

λ

τ
β τ
λ

−   = + − − 
   

                (12) 

Using Equation (4) the estimator of the expected shortfall from standardized 
errors is given by  

� ( )
ˆ ˆˆ

ˆ ˆ1 1

zq uES Z α
α

β λ
λ λ

−
= +

− −
                 (13) 

where ˆ zqα  is as defined in Equation (12). Similarly, using Equation (4) we have  

� ( ) ( )
� ( )

1
1, 1,

1, 1,

1 ˆ ˆ ˆ ˆ d
1
ˆ ˆ ˆ

z z
t t

z
t t

ES X q q

ES Z q

α θ θ τ θα

αθ θ θ

µ σ τ
α

µ σ

+ +

+ +

 = + − −
 = + − 

∫
         (14) 

where � ( )ES Zα  is as defined in Equation (13).  

Weighted Expected Shortfall 

Suppose ( )0,1α ∈ , then we define the Weighted Expected Shortfall for a con-
tinuous random variable X as:  

( ) ( )1
, , , , dt tWES Xα τ θ τ θ τα

µ µ τ= Ψ∫                (15) 

where ( ), ,tτ θ τµΨ , are dynamic weights (risk spectrum) that vary from one quan-
tile to another in the integrand and α  is fixed. , ,t θ τµ  is the quantile at level τ .  

Assumption 1 The dynamics of the weight function (risk spectrum) are such 
that for any risks X, Y; ( )0,1α ∈  and 1α τ≤ ≤   

( ) ( ) ( ) ( ), , , , , , , ,andx x y y x y
t t t tτ θ τ τ θ τ τ θ τ τ θ τµ µ µ µ+ +Ψ ≥ Ψ Ψ ≥ Ψ        (16) 

where , ,
x
t θ τµ  is the quantile at level τ  for loss distribution of X, , ,

y
t θ τµ  is the 

quantile at level τ  for loss distribution of Y and , ,
x y
t θ τµ +  is the quantile at level 
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τ  for loss distribution of Z X Y= +   
To reduce cumbersomeness in notations, we will drop the superscript on the 

quantile function, , ,t θ τµ  and reintroduce it when referring to another loss dis-
tribution different from X.  

Proposition 1 (Weights) ( ), ,tτ θ αµΨ  defined as  

( )
( ){ }
( ){ }

, , , ,

1
, , , , , ,

exp

exp d

0 otherwise

t t

t t t

θ τ θ α

τ θ α θ τ θ αα

µ µ
τ α

µ µ µ τ

 − −
 ≥Ψ =  − −



∫         (17) 

is an admissible risk spectrum.  
Proof. We need to show that ( ), ,tτ θ αµΨ  satisfies the three conditions in [12] 

for an admissible risk spectrum in the definition of a spectral risk measure.  
1) Expanding Equation (17) we obtain  

( )
( )( ){ }
( )( ){ }

( ){ }
( ){ }

, , , ,

, , 1
, , , ,

,

1
,

exp

exp d

exp
0

exp

z z z z
t t t t

t
z z z z

t t t t

z
t

z
t

q q q q

q q q q

q

q d

θ θ τ θ θ θ α θ

τ θ τ

θ θ τ θ θ θ α θα

θ τ

θ τ τα

µ σ µ σ
µ

µ σ µ σ τ

σ

σ

   − + − − + −   
Ψ =

   − + − − + −   

−
= ≥

−

∫

∫

  (18) 

as a result of non-negativity of the exponential function. Therefore  
( ), , 0tτ θ τµΨ ≥ .  

2) The first derivative of the weight function with respect to τ  is given by  

( )
( ){ }
( ){ }

( ){ } ( ){ }
( ){ }( )

( ){ }
( ){ }

( ) ( ) ( )

,
, , 1

,

1
, , ,

21
,

, ,

1
,

1
, , ,

exp

exp d

exp d exp

exp d

exp

exp d

1

z
t

t z
t

z z z
t t t

z
t

z z
t t

z
t

t t

q

q

q q q

q

q q

q

N
m

θ τ

τ θ τ

θ τα

θ τ θ τ θ τα

θ τα

θ θ τ τ

θ τα

λ
λ

θ τ θ τ

σ
µ

τ τ σ τ

σ τ σ σ
τ

σ τ

σ σ
τ

σ τ

σ µ τ
−

− +

 −∂ ∂  Ψ =  ∂ ∂ −  
∂  − − −    ∂ =

−

∂ − −  ∂ =
−

 = − Ψ − 
 

∫

∫

∫

∫

0





≤

 (19) 

for 1α τ≤ <  which confirms that ( ), ,tτ θ τµΨ  is monotonically decreasing in 
the interval.  

3) Observe that  

( ) ( ) ( ){ }
( ){ }

1
1 , , , ,

, , , , 1
, , , ,

exp d
d d 1

exp d

t t
t t

t t

θ τ θ αα
τ θ τ τ θ ττ α

θ τ θ αα

µ µ τ
µ τ µ τ

µ µ τ

− −
Ψ = Ψ = =

− −

∫
∫ ∫

∫
  (20) 

  

https://doi.org/10.4236/jmf.2021.113021


M. M. Kithinji et al. 
 

 

DOI: 10.4236/jmf.2021.113021 378 Journal of Mathematical Finance 
 

Replacing ( ), ,tτ θ τµΨ  and , ,t θ τµ  with their respective estimates in Equation 
(15) we deduce the corresponding WES estimate as:  

� ( ) ( )
( ){ }
( ){ }

( ){ }
( ){ }

� ( )

1
, , , ,

1 , , , ,
, ,1

, , , ,

,1
, , 1

,

, ,

ˆ ˆ ˆ d

ˆ ˆexp
ˆ d

ˆ ˆexp d

ˆ ˆ ˆexp
ˆ ˆ ˆd

ˆ ˆexp d

ˆ ˆ ˆ

t t

t t
t

t t

z z
t z

t t z
t

z
t t

WES X

q q
q

q

WES Z q

τ θ τ θ τα α

θ τ θ α
θ τα

θ τ θ αα

τ θ τ

θ θ θα
θ τα

θ θ θα

µ µ τ

µ µ
µ τ

µ µ τ

σ
µ σ τ

σ τ

µ σ

= Ψ

− −
=

− −

 −
 = + − −  
 = + − 

∫

∫
∫

∫
∫

      (21) 

where � zWESα  is the estimated weighted expected shortfall of the standardized 
errors. 

Theorem 1 (Consistency of WES estimator) � ( )1pWES WES oα α− =   
Proof. Observe that WESα  is a continuous function of , ,t θ τµ . Since  

, , , ,ˆ p
t tθ τ θ τµ µ→  by theorem 2 in [11] then by continuous mapping theorem in 

[13] we have the result.   
For a discrete ordered sample 1 2 nX X X≤ ≤ ≤� , � ( )dWES Xα  is given by  

� ( ) ( )ˆ
nd d

i i i
i n

WES X X Xα
α=

= Ψ∑                   (22) 

where nX α  is as defined in Equation (6) and  

( ) ( )

( )

expˆ
exp

i nd
i i n

i n
i n

X X
X

X X

α

α
α=

− −
Ψ =

− −∑
                (23) 

Note that as indicated earlier if nα  is not an integer then appropriate ap-
proximations are made.  

4. Properties of the Weighted Expected Shortfall 

In this section we look at the fundamental properties, lemmas and theorems of 
the loss random variable as well as the weighted expected shortfall.  

Lemma 1 For any random variable X, there exists a [ ]0,1U  random variable 

XU  such that ( )1
X XX F U−=   

Proof. This has been proved through a distribution transform in [14] [Lemma 
2.1].   

Lemma 2 For ( )0,1α ∈  and X integrable we have  

( ) ( ) ( ) ( )( )WES X VaR X E X X VaR Xα α τ α +
 = + Ψ −         (24) 

where ( )X
+

 means | 0X X >  and  

( )
( )( )

( ) ( )( )
( )

exp

exp d

0 otherwise
VaR X

X VaR x
X VaR X

X X VaR X X
α

α
α

τ α
∞

 − −
≥Ψ = − −




∫  
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Proof. By definition  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1
, , , , , ,

1 1 1 1
, ,

1 11 1 1
, , , ,

1

d d

d

d d

t t t X

t X X X

X t t X X

X X X

WES X F

F F F

F F F

VaR X E U F U VaR X

VaR X E X X VaR X

α τ θ τ θ τ τ θ τα α

τ θ τα

τ θ τ τ θ τα α

α τ α

α τ α

µ µ τ µ τ τ

µ α τ α τ

α µ τ µ τ α τ

−

− − −

− − −

−

+

+

= Ψ = Ψ

 = Ψ + − 

 = Ψ + Ψ − 
 = + Ψ − 
 = + Ψ − 

∫ ∫

∫

∫ ∫  (25) 

where  

( )
( ) ( )( )

( ) ( )( )
( ) ( )

1
1

1 1

exp

exp d

0 otherwise

X X
X X

X X X X

F U VaR x
F U VaR x

U F U VaR x U

α
α

τ αα

−
−

−

 − −
 ≥Ψ =  − −



∫  (26) 

  
Lemma 3 For ( )0,1α ∈  and X integrable we have  

( ) ( ) ( )

( )( ) ( ) ( )( )
X VaR XWES X E X XI

VaR X VaR X Pr X VaR X
αα τ

τ α α α α

>
 = Ψ 

 + Ψ ≤ − 
    (27) 

Proof. From Lemma 2 we have  

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ){ }
( ) ( )

( ) ( )( ) ( )( ){ }
( ) ( )

( )( ) ( ) ( )( )

1

1 1

X VaR X

X VaR X X VaR X

X VaR X

X VaR X

WES X VaR X E X X VaR X I

E X XI VaR X E X I

E X XI

VaR X VaR X Pr X VaR X

E X XI

VaR X VaR X Pr X VaR X

α

α α

α

α

α α τ α

τ α τ

τ

α τ α α

τ

τ α α α α

>

> >

>

>

 = + Ψ − 

   = Ψ + − Ψ   

 = Ψ 

 + − −Ψ = 

 = Ψ 
 + Ψ ≤ − 

(28) 

  
Definition 1 Let X be a bounded, integrable random variable. For ( )0,1α ∈  

and x∈  we define the generalized indicator function  

( )
( )

( )
( ) ( )

, if 0

, if 0

X x

X x
X x X x

I Pr X x
I Pr X x

I I Pr X x
Pr X x

α α
>

≥
> =

 = =
= ≤ − + = ≠ =

         (29) 

Lemma 4 Let X be a bounded, integrable random variable. For ( )0,1α ∈  
and x∈ , the following holds  

1) ( )
( )0 1X VaR XI

α

α
≥≤ ≤   

2) ( )
( ) 1X VaR XE I

α

α α≥
  = −    

3) ( ) ( )
( ) 1X VaR XE X I

α

α
τ ≥

 Ψ =    

https://doi.org/10.4236/jmf.2021.113021


M. M. Kithinji et al. 
 

 

DOI: 10.4236/jmf.2021.113021 380 Journal of Mathematical Finance 
 

4) ( ) ( )
( ) ( )X VaR XE X XI WES X

α

α
τ α≥

 Ψ =    

Proof. For proof of 1) and 2) see Lemma 3.5 in [14]. 
Prove of 3) follows trivially from admissibility of ( )XτΨ  in Proposition 1. 
To prove 4) we note that if ( )( ) 0Pr X VaR Xα= = , then  

( )( )Pr X VaR Xα α≤ =  hence by lemma 3 we have  

( ) ( )
( ) ( ) ( ) ( )X VaR XX VaR XE X XI E X XI WES X

αα

α
τ τ α>≥

   Ψ = Ψ =        (30) 

If ( )( ) 0Pr X VaR Xα= >  then  

( ) ( )
( )

( ) ( )

( )( )
( )( ) ( ) ( )

( ) ( )

( )( )
( )( ) ( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )
( )

X VaR X

X VaR X

X VaR X

X VaR X

X VaR X

E X XI

E X XI

Pr X VaR X
E X XI

Pr X VaR X

E X XI

Pr X VaR X
VaR X VaR Pr X VaR X

Pr X VaR X

E X XI Pr X VaR X VaR X VaR X

WES X

α

α

α

α

α

α
τ

τ

α
τ

α

τ

α
τ α α α

α

τ α τ α α

α

α

α

α

≥

>

=

>

>

 Ψ 
 = Ψ 

≤ −
 + Ψ =

 = Ψ 
≤ −

+ Ψ =
=

   = Ψ + ≤ − Ψ  
=

(31) 

  
Theorem 2 (Subadditivity of WES) Given that ( )XτΨ  satisfies assump-

tion 1 then ( )WES Xα  is subadditive. That is  

( ) ( ) ( )WES X Y WES X WES Yα α α+ ≤ +                (32) 

Proof. By lemma 4 4) we have,  

( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

( )( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )( )
( ) ( )

( ) ( ) ( )
( )( )

X VaR X Y VaR Y

X Y VaR X Y

X VaR X X Y VaR X Y

Y VaR Y X Y VaR X Y

WES X WES Y WES X Y

E X XI E Y YI

E X Y X Y I

E X X I X Y I

E Y Y I X Y I

α α

α

α α

α α

α α α

α α
τ τ

α
τ

α α
τ τ

α α
τ τ

≥ ≥

+ ≥ +

≥ + ≥ +

≥ + ≥ +

+ − +

   = Ψ + Ψ   
 − Ψ + + 

 = Ψ −Ψ + 
 + Ψ −Ψ + 

        (33) 

Let  

( )( ) ( ) ( )
( ) ( ) ( )

( )( )X VaR X X Y VaR X YM X VaR X X I X Y I
α α

α α
α τ τ≥ + ≥ += − Ψ −Ψ +  

We show that [ ] 0E M ≥ . Note that ( )
( )0 1X Y VaR X YI

α

α
+ ≥ +≤ ≤  by lemma 4 1). 

When ( )X VaR Xα>  then 0M ≥  since the highest value ( )
( )
X Y VaR X YI

α

α
+ ≥ +  can 

attain is 1 at which point ( ) ( ) 0X X Yτ τΨ −Ψ + ≥ . When ( )X VaR Xα= , then 

0M = . Finally, if ( )X VaR Xα<  then 0M ≥  since  

( ) ( )
( ) 0X Y VaR X YX Y I

α

α
τ + ≥ +Ψ + ≥ . Therefore  
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[ ]
( )( ) ( ) ( )

( ) ( ) ( )
( )( )

0
X VaR X X Y VaR X Y

E M

E X VaR X X I X Y I
α α

α α
α τ τ≥ + ≥ +

 = − Ψ −Ψ + 
≥

 

By Lemma 4 3)  

( ) ( ) ( )
( ) ( ) ( )

( )( )
0 by proposition 1

X VaR X X Y VaR X YE VaR X X I X Y I
α α

α α
α τ τ≥ + ≥ +

 Ψ −Ψ + 
=

 

and so we obtain  

( ) ( )
( ) ( ) ( )

( )( ) 0X VaR X X Y VaR X YE X X I X Y I
α α

α α
τ τ≥ + ≥ +

 Ψ −Ψ + ≥   

Similarly, it can be shown that  

( ) ( )
( ) ( ) ( )

( )( ) 0Y VaR Y X Y VaR X YE Y Y I X Y I
α α

α α
τ τ≥ + ≥ +

 Ψ −Ψ + ≥   

Therefore  

( ) ( ) ( ) 0WES X WES Y WES X Yα α α+ − + ≥  

  
Remark Note that both assumption 1 and theorem 2 can be generalized for 

any number of losses.  
Theorem 3 (Monotonicity of WES) For ( )0,1α ∈  ( )WES Xα  is monotonic. 

That is if X Y≤  always then  

( ) ( )WES X WES Yα α≤  

Proof. The result follows from Proposition 3.5(i) in [15] and monotonicity of 
both the quantile function and the Lebesgue integral.  

Theorem 4 (Coherence of WES) Given that ( )XτΨ  satisfies assumption 1 
then ( )WES Xα  is coherent.  

Proof. We show that ( )WES Xα  satisfies the four axioms of definition 2.7 in 
[4]. We note that the proves of axiom 1) and 3) are trivial. Axiom 2) and 4) fol-
lows from theorems 2 and 3 respectively.  

5. Application to Risk Measurement for NSE 20  
Share Index 

We compare risk estimates from VaR, ES and WES using NSE3 20 Share index 
data from January 2008 to March 2021. Returns and loss returns are calculated 
from the price data using Equations (1) and (2) respectively.  

Table 1 reports summary statistics of the data which shows that the data is 
heavy tailed and skewed to the left. Moreso, the reported p-value from the ADF 
test implies that the data is stationary at 5% significance level.  

From Figure 1 we observe some level of volatility clustering which is common 
in most financial data sets.  

 

 

3Nairobi Stock Exchange. 

https://doi.org/10.4236/jmf.2021.113021


M. M. Kithinji et al. 
 

 

DOI: 10.4236/jmf.2021.113021 382 Journal of Mathematical Finance 
 

Table 1. Sample statistics. 

Statistical properties of the loss return data 

minimum −0.09018 

maximum 0.08243 

median (Q1, Q3) 0.00013 (−0.00374, 0.00406) 

mean ± sd 0.00017 ± 0.00843 

skewness −0.37124 

kurtosis 16.04896 

ADF test p-value 0.01 

Q1, Lower quartile Q3, Upper quartile sd, standard deviation. 
 

 
Figure 1. NSE 20 share, loss return time series. 

 
The ACF and PACF plots of the data in Figure 2 suggests autocorrelation in 

the series of up to order two which informs the number of lags in our QAR 
process. Therefore using extreme quantile autoregression we obtain the follow-
ing model for the loss return  

( )
1 2

1 2

0.00008188 0.2932 0.1330

0.002647 0.1749 0.06753
t t t

t t t

X X X

Zε ε
− −

− −

= − + +

+ + +
         (34) 

where tZ  follows the extreme value distribution given by Equation (11).  
Based on p-values in Table 2 all the the estimated parameters of the quantile 

process are significant at 5% significance level except the constant of the central 
quantile process.  

The ACF plot in Figure 3 confirms independence of the resulting standar-
dized errors. Hence using the threshold 2.038538u = , to ensure that 10% of 
the errors are classified as extreme, we obtain the following estimates of the 
shape and scale parameters from the GPD fit.  

As outlined in Table 3, the p-values of all the parameter estimates are less than 
5% significance level implying that the distribution fits the data well. Figure 4 
shows a plot of the corresponding risk estimates at 97.5% confidence level.  

From Figure 4 we observe that risk estimates from ES are slightly higher 
than those from WES confirming that WES is less conservative compared to  
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Figure 2. Autocorrelation and Partial Autocorrelation Plot of 
the loss return series. 

 

 
Figure 3. Autocorrelation Plot of the standardized errors. 

 

 
Figure 4. Data plot superimposed with risk estimates from considered 
Risk measures. 

 
Table 2. Parameter estimates of the central quantile and the scale. 

 Term Estimate Std. Error t-value p-value 

Central 

constant 0.00008187868 0.0001184322 0.6913549 0.24471 

QAR(1) 0.2931358 0.0251979805 11.6333058 0.0000 

QAR(2) 0.1329694 0.0227462397 5.8457766 0.0000 

Scale 

constant 0.002646745 0.0001448444 18.273030 0.0000 

QAR(1) 0.174948799 0.0273538824 6.395758 0.0000 

QAR(2) 0.067533867 0.0231822250 2.913175 0.0018 
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Table 3. Parameter estimates of the Central quantile and the scale. 

Parameter Estimate Std. Error t-value p-value 

Shape 0.2445236 0.06464320 3.7826546 0.0000 

Scale 0.9666750 0.07864687 12.2913347 0.0000 

 
ES. However, risk estimates from both ES and WES are higher than those from 
VaR because VaR failed to appreciate severity of losses beyond the 97.5% confi-
dence threshold. 

6. Conclusion and Recommendations 

We have improved the adjusted extreme conditional quantile estimator in [11] 
and used it to obtain the one-step-ahead risk estimators for Var, ES and WES. 
The three estimators were then used to quantify risk in the NSE 20 share index 
portfolio. Consistency and coherence of the proposed Weighted expected short-
fall were also proved. It was observed that the WES is less conservative com-
pared to ES. 
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