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Abstract 
Since it was invented by Satoshi Nakamoto in 2008, Bitcoin has drawn consi-
derable attention both from the financial industry and government supervi-
sory departments, and there is no unanimity on Bitcoin’s nature in the aca-
demic field. Some people may think Bitcoin is more like an asset than a cur-
rency. And investors’ motivations for incorporating Bitcoin into their portfo-
lios may vary. Might there be a better way to deal with the risk-detection issue 
associated with such a unique and ambiguous object? The copula-GARCH 
method has been proven in much of the literature to be a better way than the 
traditional ways to estimate the value at risk (VaR) of portfolios. When it comes 
to a portfolio containing Bitcoin, can it still maintain its superiority? In this 
study, gold and Ethereum were each used to construct a portfolio with Bitcoin. 
We collected a total of 2246 daily adjusted closing prices from July 23, 2010, to 
March 12, 2019. As for the copula-GARCH model, we selected four constant 
and two time-varying copula models combined with GARCH Student-t resi-
duals to fit the joint distribution of the two assets in the portfolios. The tradi-
tional methods refer to the historical simulation, the variance-covariance me-
thod, the EWMA method, and the univariate GARCH VaR method. We 
adopted each method to compute corresponding one-day VaRs. Our results 
indicated that for the portfolios containing Bitcoin and Ethereum, the copu-
la-GARCH method performed better than traditional methods, while for the 
portfolio consisting of Bitcoin and gold, traditional methods performed bet-
ter. Our results may suggest that the copula-GARCH method may not be 
suitable in the extremely low correlation case. 
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1. Introduction 

With the goal of creating an alternative to the traditional bank system, Satoshi 
Nakamoto invented Bitcoin in 2008. One important feature of Bitcoin is that 
there is no central authority to control it. Another feature is that it can be deli-
vered on a peer-to-peer network without intermediaries. Transaction records are 
kept in a public system known as a blockchain. Using computer programs, min-
ers endeavor to solve mathematical problems, and the winner can obtain one 
block of Bitcoin as a reward [1]1. 

As its popularity rises among investors, Bitcoin has drawn considerable atten-
tion from the financial industry and supervisory departments. Some literature 
has also mentioned the characteristics of Bitcoin (e.g. Dyhrberg, 2016 [2]; Ur-
quhart, 2017 [3]). From one perspective, Bitcoin is treated as an asset instead of 
a currency (e.g. Baek and Elbeck, 2015 [4]). Investors in the Bitcoin market are 
also highly speculative, resulting in its relatively high volatility. Due to its uni-
queness, Bitcoin has become a hot issue in portfolio management. The role of 
Bitcoin in the portfolio has been analyzed in some of the literature, but there is 
no unanimity on the function of Bitcoin in portfolio management. For example, 
Eisl et al. (2015) [5] suggested that Bitcoin should be in optimal portfolios. Even 
though the inclusion of Bitcoin raised the conditional VaR of portfolios, the 
higher risk is covered by higher returns. Dyhrberg (2016b) [6] concluded that 
Bitcoin can be adapted to hedge against the FTSE index. But Bouri et al. (2016) 
[7] showed that Bitcoin did not perform well as a hedge against stocks, bonds, 
oil, etc., whereas it is suitable for diversification purposes. Bouri et al. (2017) [8] 
stated that before the Bitcoin price crash in December 2013, it had hedge and 
safe-haven characteristics against commodities; after that period, it could merely 
be a diversifier. 

In recent years, some investors have called Bitcoin “a new form of gold”. And 
there are some similarities between them. First, both are scarce and require great 
effort to extract. Bitcoin has a limited amount of about 21 million units, and gold 
is a well-known precious metal, since it is difficult to mine. The second similarity 
is their recognizability. Bitcoin has signature characteristics, so it cannot be 
counterfeited, and the purity of gold can be identified by doing purity tests. 
Third, neither is backed by a central bank or a government institution. Some li-
terature focuses on comparisons between Bitcoin and gold. Dyhrberg (2016) [2] 
showed that Bitcoin is something between gold and the US dollar. However, 
Baur et al. (2018) [9] showed that compared to gold, Bitcoin presents obviously 
different returns and volatility characteristics. Klein et al. (2018) [10] found that 
gold played the role of a safe haven when the market dropped, while Bitcoin’s 
trend was positively correlated with downward markets. 

In the market, both Bitcoin and gold have their own advocates. People lured 
by Bitcoin say that it can keep its value during a financial crisis (e.g. the Bitcoin 
price rose when the Russian ruble crisis and the Greece debt crisis occurred), 

 

 

1Refer to Nakamoto (2008) [1] for more details. 
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and it provides a higher return than gold. On the other hand, gold enthusiasts 
say that the volatility of Bitcoin is too high, and its price is vulnerable to gov-
ernment regulations. If Bitcoin is banned by a government or is affected by some 
severe events, the capital in Bitcoin might flow into the gold market. The rise of 
the price of gold can compensate for the loss of Bitcoin and act as a protection. 
But in reality, opportunists might not treat this situation as a multiple choice; 
investors might have their cake and eat it too. Let us consider a hypothetical sit-
uation. How do investors deal with portfolio management when they put both 
Bitcoin and gold into the portfolio? In one part of this study, we discuss a port-
folio constructed with Bitcoin and gold. 

In addition to traditional assets like gold, we propose that other cryptocurren-
cies might also be incorporated with Bitcoin to form a portfolio when investors 
consider their asset allocation. The possible reasons are as follows. First, there 
are about 1500 kinds of cryptocurrencies, more than 500 of them having a scale 
over ten million dollars, which implies sufficient liquidity. Second, new kinds of 
cryptocurrency are invented every year, so there might be more choices when 
diversifying the portfolio. Among all cryptocurrencies, Bitcoin and Ethereum are 
two of the most iconic ones in the market, accounting for a 40% and 30% market 
share, respectively. So in another part of our study, we also design a portfolio 
containing Bitcoin and Ethereum. 

Among several interesting issues in portfolio management, risk management 
is the most crucial one when it comes to cryptocurrency investments. Due to in-
creasing speculative demand, the role of cryptocurrencies is not as purely digital 
money; they become a kind of investment asset. It is obvious that investors are 
attracted by the high return and volatility and are eager to achieve abnormal re-
turns. However, because investors in cryptocurrencies are mainly speculators, 
speculative bubbles are prone to occur, and the bursting of a bubble might create 
great volatility shocks that affect financial markets worldwide. 

When measuring risk, value at risk (VaR) is commonly applied to quantify the 
risk within a firm or portfolio over a specific period. In financial textbooks, there 
are some typical methods for obtaining the VaR, such as historical simulation, 
variance-covariance, exponentially weighted moving average, etc. One problem 
is that we need to know the joint distribution first when applying these methods. 
In practice, the joint distribution of two assets is often unknown and complex. 
Hence, people apply copula theory to allow the joint distribution to consist of 
different margins and different dependent structures. 

Heteroscedasticity is an important feature in financial markets. That is, the 
volatilities vary with time. This feature is often fitted by the GARCH model. 
Another two features of financial market volatilities are leverage and asymmetry 
(e.g. McAleer, 2014 [11]). Previous studies applied several kinds of GARCH 
models to Bitcoin volatilities, such as the TGARCH (Bouri et al., 2017 [8]), the 
EGARCH (Bouoiyour and Selmi, 2016 [12]), etc. Hansen and Lunde (2005) [13] 
showed that when it came to the ability to describe conditional variance, there 
was no evidence that other 330 ARCH-type models performed better than the 
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GARCH (1, 1) model. So in this study, we only applied the GARCH (1, 1) with 
Student-t residuals to fit the asset returns. 

The combination of GARCH and copula was frequently used when compu-
ting VaR (e.g. Lu et al., 2014 [14]; So and Yu, 2015 [15]; Huang and So, 2018 
[16]). Lu et al. (2014) used static and time-varying copulas with the GARCH 
model to establish the conditional distribution of crude oil futures and natural 
gas futures. So and Yu (2015) [15] showed that the time-varying symmetrized 
Joe-Clayton (tvSJC) copula combined with the GARCH with Student-t residuals 
performed better than traditional VaR methods. Huang and So (2018) [16] also 
found that when estimating the VaRs of CDS portfolios, the tvSJC copula com-
bined with GARCH with skewed-t residuals performed the best, regardless of 
market situations. 

The purpose of this study was to find a good way to estimate the VaR of Bit-
coin portfolios. To the best of our knowledge, although there is a great deal of li-
terature studying Bitcoin’s role in a portfolio, our work is probably the first to 
estimate the VaR of a Bitcoin portfolio using different models. We applied the 
copula-GARCH method and the other four traditional VaR methods to two Bit-
coin portfolios. Then we compared the results with the expected outcome to see 
which method performed the best. 

The remainder of the paper is organized as follows. The methodology is in 
Section 2, the data are in Section 3, the empirical results are in Section 4, and the 
conclusions are in the final section. 

2. Methodology 
2.1. Value at Risk 

VaR is an attempt to provide a number to summarize the risk of a portfolio. It is 
widely used by financial institutions. Given the time horizon (T days) and the 
confidence level ( )1 100%α− ⋅ , the definition of VaR is: we are ( )1 100%α− ⋅  
certain that the loss will not exceed VaR in the following T days. 

Among all the traditional methods, the following four are most commonly 
used—historical simulation, the variance-covariance method, the exponentially 
weighted moving average (EWMA), and the univariate GARCH-VaR method. 

The univariate GARCH-VaR method applied in this study is described as fol-
lows:  

Suppose ,p tx  ( 1,2, ,t T=  ) are portfolio returns. We used the GARCH (1, 1) 
model with residual terms following Student-t distribution to fit the portfolio 
return: 

,t p te x µ= − , 

t
t

t

e
h

ε = , ~t vtε , 

2
1 1t t th e hω α β− −= + ⋅ + ⋅ , 

where ( ),p tE xµ =  is the unconditional mean and ( ), 1|t p t th var x ϕ −=  is the 
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conditional variance; 1tϕ −  is the information obtained on day t − 1. The reason 
we chose GARCH-t was that its AIC statistic was smaller than GARCH with 
normal residuals. The AIC statistics of GARCH-t and GARCH with skewness 
Student-t residuals were very close, so we decided to apply the simpler one. 

After fitting the portfolio returns of the last T days with the GARCH (1, 1) 
model, we then estimated the conditional variance of day T + 1. And the 1-day 
VaR on that day, ( ) ( )1

1 1VaRT Thα µ ψ α−
+ += + ⋅ . ( )1ψ α−  is the inverse cu-

mulative distribution function of Student-t. 

2.2. Copula-GARCH Model 
2.2.1. Sklar’s Theorem 
A copula is a multidimensional probability distribution function with uni-
form-distributed marginal distributions. Given n random variables { }1 2 , ,, nx x x  
and F denoting an n-dimensional distribution function with marginal distribu-
tion 1 2, , , nF F F , then there exists a copula representation such that: 

( ) ( )
( ) ( )( )
( ) ( )( )

1 2 1 1

1 1

1 1

, , , , ,

, ,

, ,

n n n

n n

n n

F x x x P X x X x

C P X x P X x

C F x F x

= ≤ ≤

= ≤ ≤

=

 





 

If all variables are continuous, ( )i i iu F x=  follows the uniform distribution, 
and if  denotes the marginal probability distribution functions. According to 
Sklar’s theorem, any multivariate probability distribution function is composed 
of a copula and marginal probability distribution functions. 

( ) ( )

( ) ( )

( ) ( )

1
1

1

1

1

1

, ,
, ,

, ,

, ,

n
n

n

n i i
i

n i

n i ii

F x x
f x x

x x
C u u F x

u u x
c u u f x

∂
=

∂ ∂

∂ ∂
= ⋅

∂ ∂ ∂

= ⋅

∏

∏













 

From the equations above, the marginal distributions need not be the same as 
each other, nor does the selection of the copula need to be the same as the choice 
of marginal distributions. The following are some copulas that are commonly 
used. 

2.2.2. Copula Functions 
1) Normal copula 

( ) ( ) ( )1 1
1 2 1 2, , , ,NormalC u u u uρρ − − = Φ Φ Φ   

where ρΦ  is the bivariate standard normal cumulative distribution function 
with correlation coefficient ρ . 

2) Student-t copula 

( ) ( ) ( )1 1
1 2 , 1 2, , , , , 1 1T v v vC u u v t t u t uρρ ρ− − = − ≤ ≤   

where ,vtρ  is the bivariate Student-t cumulative distribution function, ρ  is 
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the correlation, and v is the degree of freedom. When the degree of freedom is 
large enough, the Student-t copula converges to a Gaussian copula. It is often 
applied to capture the fat-tailed dependence feature of financial data. 

3) Clayton copula 

( ) ( ) [ ) { }
1

1 2 1 2, ; 1 1, \ 0 .,ClaytonC u u u uω ω ωω ω
−

− −= + − ∈ − ∞  

The Clayton (1978) [17] copula is asymmetric. When 1u  or 2u  approach 0, 
the value of the copula goes up, meaning that the dependence of these two va-
riables becomes heavier. Thus, it is suitable for capturing the dependence around 
the left tail. 

4) Symmetrized Joe-Clayton copula (SJC copula) 
The Joe-Clayton copula (JC copula) has the following form: 

( ) ( ) ( ){ }
1

1

1 2 1 2, | , 1 1 1 ,1 1 1 1
k

k kU L
JCC u u u u

γ γ γ
τ τ

−
− − 

    = − − − − + − − −    
 

 

( ) ( ) ( ) ( )
2 2

1 1, , 0,1 , 0,1 ,
log 2 log 2

U L
U L

k γ τ τ
τ τ

−
= = ∈ ∈

− −
 

( ) ( )( )1 1
2 2 1 10

lim | ,U Pr x F x F
ε

τ ε ε− −

→
= > >  

( ) ( )( )1 1
2 2 1 10

lim | ,L Pr x F x F
ε

τ ε ε− −

→
= ≤ ≤  

where Uτ  is the upper tail dependence, and Lτ  is the lower tail dependence. 
From the two equations above, Uτ  is the probability that 2x  has an extremely 
large increase, given that 1x  has an extremely large increase. On the other hand, 

Lτ  measures the probability that 2x  has an extremely large decline, given that 

1x  has an extremely great decline. 
The SJC copula is a modified version of the JC copula: 

( )
( ) ( )( )

1 2

1 2 1 2 1 2

, | ,

0.5 , | , 1 ,1 | , 1 .

U L
SJC

U L U L
JC JC

C u u

C u u C u u u u

τ τ

τ τ τ τ= ⋅ + − − + + −
 

5) Time-varying normal copula 
The copulas mentioned above are all static. That is, the dependence structure 

between two assets remains the same over time. However, the real situation is 
that dependence structure varies across time. Hence, the time-varying copula is 
proposed. According to Patton (2006), the time-varying copula has the following 
form: 

( ) ( ) ( )1 1
1 2 1 2, ; , ,tvNormal tC u u u uρ − − = Φ Φ Φ   

( ) ( )( )10 1 1
1 1, 2,10.1 ,t t t j t jj u uρ ρ ρρ ω β ρ α − −
− − −=

= Λ + ⋅ + ⋅ Φ ⋅Φ∑  

where ( ) tanh
2
xx  Λ =  

 
 , which is a transformation to let tρ  stay in the range 

of −1 and 1. 
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6) Time-varying symmetrized Joe-Clayton copula (tvSJC copula) 
According to Patton (2006) [18], the tvSJC copula has the same function form 

as the SJC copula. The difference is that its dependence parameters follow a spe-
cific form of evolution. 

( )
( ) ( )( )

1 2

1 2 1 2 1 2

, | ,

0.5 , | , 1 ,1 | , 1

U L
tvSJC t t

U L U L
JC t t JC t t

C u u

C u u C u u u u

τ τ

τ τ τ τ= ⋅ + − − + + −
 

10
1 1, 2,1

1 ,
10

U U
t U U t U t j t jj u uτ ω β τ α− − −=

 = Λ + ⋅ + ⋅ − 
 

∑  

10
1 1, 2,1

1 ,
10

L L
t L L t L t j t jj u uτ ω β τ α− − −=

 = Λ + ⋅ + ⋅ − 
 

∑  

( ) ( ) ( )
1

1 e 0 0 1 ., ,, ,1x U L
t tτ τ

−−Λ = − ∈ ∈  

Λ  is a logistic transformation to make U
tτ  and L

tτ  stay in the range of 0, 1, 
U
tτ  is the upper tail dependence, and L

tτ  is the lower tail dependence. 

2.2.3. Parameter Estimation 
Assume there are two random variables 1x  and 2x , and each has T observa-

tions ( ){ }1 2 1
,

T
t t t

x x
=

. The joint cumulative distribution function and probability 

distribution function are: 

( ) ( ) ( )1 2 1 1 1 2 2 2, , , , ;t tF x x C F x F xθ θ θ =    

( ) ( ) ( ) ( ) ( )1 2 1 1 1 2 2 2 1 1 1 2 2 2, , , , ; , , ,t t t tf x x c F x F x f x f xθ θ θ θ θ = ⋅ ⋅   

where 1θ  and 2θ  are the GARCH parameters, and θ  is the copula parame-
ter. Let ( )1 2, ,ϕ θ θ θ= . In this case, the log-likelihood function is: 

( ) ( ) ( ){ } ( )2
1 1 1 2 2 21 1 1ln ln , , , ; ln ,T T

t t i it it t iL c F x F x f xϕ θ θ θ θ
= = =

   = +   ∑ ∑ ∑  

( )ˆ arg max lnMLE Lϕ ϕ= . 

If the GARCH parameters and the copula parameters are estimated simulta-
neously, the computation will take too much time. Hence, Joe (2005) [19] pro-
posed the two-stage inference function for margins (IFMs) method to estimate 
the parameters separately. 

In the first step, we only consider the log-likelihood function of the marginal 
distributions and estimate the GARCH parameters: 

( ) ( )1ln ln , , 1, 2T
i i i it itL f x iθ θ

=
 = = ∑  

( )ˆ arg max ln , 1,2
MLEi i iL iθ θ= =  

In the second step, we substitute the parameters estimated in stage 1 into the 
following equation and apply MLE to estimate the copula parameter: 

( ) ( ) ( ){ }1 1 1 2 2 21
ˆ ˆln ln , , , ;T

t ttL c F x F xθ θ θ θ
=

 =  ∑  
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( )ˆ arg max ln .MLE Lθ θ=  

2.2.4. VaR Using Copula-GARCH 
Suppose we have the data of two asset returns ( ){ }1 2 1

,
T

t t t
r r

=
, which is the 

in-sample data. We want to estimate their joint distribution on day T + 1 and 
the VaR on day T + 1. The procedures are as follows: 

1) Use the GARCH model to fit ( )1 1

T
t t

r
=

 and ( )2 1

T
t t

r
=

. Then obtain the stan-

dardized residuals. 
2) Apply probability integral transform to the standardized residuals to make 

them uniformly distributed. After the transformation, we obtain ( )1 1

T
t t

u
=

 and 

( )2 1

T
t t

u
=

. 

3) Estimate the copula parameters by applying the maximum likelihood me-
thod. 

4) Substitute the estimated parameters into the copula to obtain a uniformly 

distributed random vector ( ){ }1 2 1
,

T
t t t

v v
=

. 

5) Apply probability integral transform to ( ){ }1 2 1
,

T
t t t

v v
=

 and substitute the 

unconditional mean and conditional variance of the GARCH models to obtain a 

set of simulated asset returns ( ){ }1 2 1
,

T
t t t

w w
=

. 

6) Suppose two assets are equally weighted in the portfolio. Use the results of 
step (5) to obtain the simulated portfolio returns and then reorder them. The 
[ ]thT α×  worst value on the reordered list is VaRT+1. Assume α  is 5% or 1%. 

7) Suppose there are N out-of-sample data. When a new observation is added, 
the oldest one is removed. Repeat step (1) to step (6) N times to obtain all 
out-of-sample 1-day VaRs. 

2.2.5. Back Testing 
We compared the actual portfolio return to the corresponding 1-day VaR. If the 
confidence level was ( )1 100%α− ⋅ , we expected N α×  actual portfolio re-
turns to be lower than the 1-day VaR. The method giving the closet number of 
violations to the expected number of violations performs the best. 

Suppose there are N out-of-sample observations and y violations. Let p y N= . 
The hypothesis testing is *

0 :H p α=  vs. *
1 :H p α≠ . Here we applied the li-

kelihood ratio test (Kupiec, 1995 [20]), and the test statistic is: 

( ) ( )2
0LR 2 ln 1 2 ln 1 ~ 1 under

y N y
N yy y y x H

N N
α α

−
−      = − ⋅ − + ⋅ −           

 

Using the information above, we obtained the non-rejection region of 0H . 
For example, when 600N =  and 0.05α = , the non-rejection region of 0H  is 
21 41y≤ ≤ . 

If the number of violations lies within the non-rejection region, it means the 
method applied to calculate VaR is appropriate. In contrast, if it lies outside the 
non-rejection region, it means the method overestimates or underestimates the 
risk. 
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3. Data 

The daily log returns of each asset are computed as follows: 

1

ln t
t

t

P
r

P−

 
=  

 
, 

where tP  and 1tP−  are the adjusted closing prices of each asset. In this paper, 
we use both gold and Ethereum to form portfolios with Bitcoin. 

3.1. Portfolio Containing Bitcoin and Gold 

Both Bitcoin and gold data were obtained from the Bloomberg database; in this 
database, the first report of Bitcoin price data was July 23, 2010. Hence, we set 
the starting date of the portfolio on that day. We collected a total of 2246 daily 
adjusted closing prices from July 23, 2010, to March 12, 2019, and obtained 2245 
daily log returns. The first 1000 returns from July 26, 2010, to June 2, 2014, are 
used as in-sample data, and the remaining 1245 returns from June 3, 2014, to 
March 12, 2019, are used as out-of-sample data. 

3.2. Portfolio Containing Bitcoin and Ethereum 

The Bitcoin data was collected from the Bloomberg database. The Ethereum data 
was not available on the Bloomberg database, so we obtained it from the Coin-
desk website. The start date of Ethereum price data on this website is August 7, 
2015. We collected a total of 938 daily adjusted closing prices ranging from Au-
gust 7, 2015, to March 12, 2019, and obtained 937 daily log returns. The first 600 
returns from August 10, 2015, to November 24, 2017, are used as in-sample data, 
and the remaining 337 returns from November 27, 2017, to March 12, 2019, are 
used as out-of-sample data. 

4. Empirical Results 
4.1. Copulas 

In this section, we combined the GARCH-t model with six kinds of copulas, in-
cluding four static copulas and two dynamic copulas, to model the joint distri-
bution of two asset returns. The estimated copula parameters are shown in Ta-
ble 1. We used the AIC statistics to determine which copula fitted the best. The 
results are shown in Table 2. For the portfolio containing Bitcoin and gold, the 
time-varying normal copula with GARCH-t had the lowest AIC, and for the 
portfolio containing Bitcoin and Ethereum, the t-copula with GARCH-t had the 
best goodness-of-fit. One thing worth mentioning is that for these two portfolios, 
the dynamic copula-GARCH models did not necessarily perform better than the 
static ones. According to previous literature (e.g. So and Yu, 2015 [15]), the dy-
namic ones have the characteristic of capturing time-varying relations between 
two asset returns, so they usually perform better than the static ones. But in this 
case, maybe because of low correlation between asset returns, the dynamic ones 
may not perform better than the static ones. 
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Table 1. Results of copula-GARCH-t models. 

Copula Parameter Bitcoin & Gold Bitcoin & Ethereum 

Normal ρ  −0.056144 0.066045 

Student-t 
ρ  −0.056434 0.052308 

v 99.985635 7.891662 

Clayton δ  0.000103 0.094013 

SJC 
uλ  6.019420 × 10−7 6.267916 × 10−5 

Lλ  7.379685 × 10−7 0.012719 

tvNormal 

ρω  −0.038916 0.298822 

ρα  −0.069228 −0.392363 

ρβ  1.402669 −1.910929 

tvSJC 

uα  −15.301512 −15.203831 

uβ  −0.379823 1.938233 

uω  −0.000174 −0.010136 

Lα  −15.329840 2.446052 

Lβ  −0.475029 −24.999134 

Lω  −0.005585 −0.866843 

After fitting in-sample returns of each portfolio with the GARCH-t model, we applied probability integral 
transform to the standardized residuals to get uniformly distributed vectors. Then we put them into differ-
ent kinds of copulas. This table shows the estimated parameters of six copulas for the two portfolios. 

 
Table 2. AIC of copula-GARCH models. 

Copula Bitcoin & Gold Bitcoin & Ethereum 

Normal −3.155078 −2.619534 

Student-t −2.644454 −9.959406 

Clayton 0.011215 −4.623443 

SJC 6.120127 −5.574239 

tv normal −4.005762 −5.038872 

tv SJC 15.310120 −6.549664 

We chose the copula-GARCH model by AIC statistics. The lowest AIC statistic among all is marked in 
bold. 

4.2. Backtesting of VaR Using Five Methods 

The five methods applied to the estimation of VaR were historical simulation, 
the variance-covariance method, EWMA, the univariate GARCH method, and 
the copula-GARCH method. We set the first T days as the in-sample period and 
tried to estimate the 1-day VaRT+1. In the portfolio containing Bitcoin and gold, 
there were 1000 in-sample data and 1245 out-of-sample data; for the portfolio 
containing Bitcoin and Ethereum, there were 600 in-sample data and 337 
out-of-sample data. We applied the rolling window method. For example, we 
used the data from day 2 to day 1001 to estimate VaR1002; day 3 to day 1002 to es-
timate VaR1003, etc. 

https://doi.org/10.4236/jmf.2020.104030


T.-Y. Chen, L.-C. So 
 

 

DOI: 10.4236/jmf.2020.104030 509 Journal of Mathematical Finance 
 

For the portfolio containing Bitcoin and gold, historical simulation and 
EWMA passed backtesting under a 95% confidence level. If the confidence level 
was 99%, variance-covariance and GARCH-t were the only two that passed 
backtesting. One thing worth mentioning is that in this portfolio, whether the 
confidence level was 95% or 99%, the time-varying normal copula-GARCH-t 
model did not perform well. It gave out lower numbers of violations, which 
means it overestimated the risk of the portfolio. In some previous literature (e.g. 
So and Yu, 2015 [15]; Huang and So, 2018 [16]), the copula-GARCH model 
performed much better than traditional methods, which differs from the results 
here. Some literature (e.g. Eisl et al., 2015 [5]; Chuen et al., 2017 [21]) showed 
that Bitcoin returns had extremely low correlations with traditional asset returns 
such as currencies, stocks, bonds, gold, etc. The correlation coefficient between 
Bitcoin returns and gold returns is about −0.004, which is extremely low. Hence, 
the copula model may not be suitable in this case. Instead, the traditional me-
thods perform better than the copula-GARCH model. Among the four tradi-
tional methods, when α is 5%, historical simulation is the most accurate among 
them all; when α is 1%, the variance-covariance method gives out the closet vi-
olation numbers. Hence, we speculated that when correlation is low, the perfor-
mance of traditional methods may vary case by case. 

As for the portfolio containing Bitcoin and Etheruem, historical simulation 
and the t-copula-GARCH-t model passed backtesting under 95% and 99% con-
fidence levels. The variance-covariance method only passed backtesting under a 
95% confidence level, and GARCH-t only passed backtesting under a 99% con-
fidence level. Among all the methods, t-copula-GARCH-t gave out the number 
of violations closest to the expected number under both 95% and 99% confi-
dence levels.  

When we compared the two portfolios, the difference was the correlation 
coefficient between asset returns. In the former, the correlation coefficient was 
only −0.004; while in the latter, it was about 0.2. Although 0.2 is not a very high 
correlation coefficient compared to previous literature (e.g. Huang and So, 2018), 
the copula-GARCH model still showed an advantage in this case. 

The backtesting results of different VaR models are presented in Table 3. The 
EWMA and univariate GARCH methods gave out a relatively high number of 
violations, which means an underestimation of risk. The copula-GARCH me-
thod considers both serial correlations and the nonlinear dependence of asset 
returns. Theoretically, it is the best method of estimating VaR. But when the 
correlation is too low, as in the case of the portfolio consisting of Bitcoin and 
gold, the result might be contrary to the expected outcome. 

5. Conclusions 

In recent years, the trading volume and popularity of Bitcoin have risen signifi-
cantly, providing another choice for investors worldwide to make their portfo-
lios more diverse. To deal with the drastic trend of the Bitcoin price, we endea-
vored to find an effective way to estimate the VaR of Bitcoin portfolios.  
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Table 3. Number of violations of the two portfolios. 

Portfolio containing Bitcoin and Gold 

Trading days: 1245 0.05α =  0.01α =  

Expected No. of violations 62 12 

Non-rejection regions 48 75y≤ ≤  7 22y≤ ≤  

Historical simulation 60* 6 

Variance-covariance 43 15* 

EWMA 53* 24 

GARCH-t 44 7* 

tvNormal-copula-GARCH-t 21 2 

Portfolio containing Bitcoin and Ethereum 

Trading days: 337 0.05α =  0.01α =  

Expected No. of violations 17 3 

Non-rejection regions 10 25y≤ ≤  1 9y≤ ≤  

Historical simulation 24* 7* 

Variance-covariance 25* 12 

EWMA 39 19 

GARCH-t 28 7* 

t-copula-GARCH-t 16* 3* 

Violation numbers of all five models are presented here. The one with the closet violation number to the 
expected violations is the best. If the violation number lay in the non-rejection region, we marked it with a 
star.  

 
One of our main contributions is that our work is probably the first to esti-

mate the VaR of a Bitcoin portfolio using different models. According to the 
evidence provided by financial data, the assumption of linear correlation is im-
proper for depicting the dependence structure. Hence, a flexible multivariate 
distribution with different margins and dependent structures is required. This 
allows the joint distribution to be free of normality and linear correlation. Hence, 
in addition to traditional VaR methods, we also applied the copula-GARCH 
model with Student-t residuals to the VaR estimation. 

The other main contribution of this study is that we propose a reminder for 
the limitation of applying the copula-GARCH method. To our surprise, even 
though the copula-GARCH method has been proven in much of the literature to 
be a better way than the traditional ways to estimate the VaR of portfolios (e.g. 
Lu et al., 2014 [13]; So and Yu, 2015 [14]; Huang and So, 2018 [15]), its effec-
tiveness may not hold when it comes to a portfolio containing Bitcoin. In this 
study, we formed two Bitcoin portfolios, one with gold and the other with Ethe-
reum. The results showed that if the correlation between asset returns is not ex-
tremely low, for example in the portfolio containing Bitcoin and Ethereum in 
this paper, the copula-GARCH method is still better than other traditional me-
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thods. However, if the correlation between two asset returns is extremely low, 
for example in the portfolio containing Bitcoin and gold in this paper, then the 
copula-GARCH model may not perform better than the other methods. Origi-
nally, the advantage of the copula-GARCH method was that it considers hete-
roscedasticity and allows nonlinear or more complicated dependence structures. 
But when the correlation is low, despite these advantages, it may be dominated 
by other models. 
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