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Abstract 
A recent proposal by Adams integrates the digital credentials (DC) technolo-
gy of Brands with the identity-based encryption (IBE) technology of Boneh 
and Franklin to create an IBE scheme that demonstrably enhances privacy for 
users. We refer to this scheme as a privacy-preserving identity-based encryp-
tion (PP-IBE) construction. In this paper, we discuss the concrete implemen-
tation considerations for PP-IBE and provide a detailed instantiation (based 
on q-torsion groups in supersingular elliptic curves) that may be useful both 
for proof-of-concept purposes and for pedagogical purposes. 
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1. Introduction 

This paper describes, in some details, the considerations involved in implementing 
the Privacy-Preserving Identity-Based Encryption (PP-IBE) scheme presented by 
Adams [1] [2]. In 2001, Boneh and Franklin proposed the first efficient construc-
tion of Identity-Based Encryption (IBE) [3] [4], but their construction has a system 
authority, the Private Key Generator (PKG), that computes all user private keys; 
the PKG can therefore decrypt all ciphertexts in the environment. Subsequent 
constructions to reduce the trust in the PKG have relied on unrealistic assumptions 
(see [1]) and have not been described and implemented using easy-to-analyze nu-
merical values. 

The recently introduced proposal by Adams [1] [2] incorporates pseudonyms 
into the IBE process. This ensures that the PKG no longer needs to be fully trusted 
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(in particular, the PKG is successfully able to learn any given user’s private key 
with probability as small as the user wishes). Adams’ proposal is based on the IBE 
scheme designed by Boneh and Franklin (BF-IBE) [3] [4] but also uses the Digi-
tal Credentials (DC) technology of Brands [5] [6] for identity and pseudonym 
credentials. 

The integrated protocol combines pairing-based cryptography (in the IBE 
portions) with discrete-log-based cryptography (in the DC portions); thus, pa-
rameter values must be carefully chosen to provide a consistent security level 
throughout the PP-IBE architecture. 

This present paper provides the first concrete construction and numeric exam-
ple (produced by our SageMath [7] software implementation1) of the complete 
Adams proposal. Our construction uses a q-torsion group (a cyclic subgroup of 
order q) of a supersingular elliptic curve over Fp, where p is a prime congruent to 
2 modulo 3. 

Section 1 of this paper presents an overview of PP-IBE. Section 2 provides a 
brief introductory background on BF-IBE, DC, PP-IBE, and the mathematical 
concepts supporting the proposed construction. Section 3 describes the con-
struction itself. Section 4 presents a detailed numerical example using relatively 
small, easy-to-verify numbers. Section 5 provides some discussion, including 
suggested parameters for 128-bit security and enhancements for an admissible 
encoding of user identities. Section 6 presents performance measurements for 
the 128-bit secure version, and Section 7 concludes the paper. 

1.1. Protocol Overview 

Whereas the protocol of BF-IBE includes steps for entity setup, encryption, key 
extraction, and decryption, PP-IBE introduces a sequence of identity and pseu-
donym credential steps into the workflow. To obtain the keying material used 
for decryption from the PKG, Alice must redeem a valid identity/pseudonym 
credential. Identity and pseudonym credentials are obtained through interaction 
with a community of Intermediate Certification Authorities (ICAs) who each 
verify Alice’s identity or the derivation of a pseudonym and issue a Brands digital 
credential. In the key extraction protocol, the PKG returns initial keying material 
which can be finalized (“un-blinded”) only by Alice using random data produced 
during pseudonym creation. The overall flow, from encryption, through pseudo-
nymization, to key extraction, and finally to decryption, is shown in Figure 1. 

1.2. Protocol Steps 

Setup: First, as a precursor to protocol execution, all participants undergo a SETUP 
phase. The required public primitives and parameters for PP-IBE, BF-IBE, and DC 
are initialized into the environment. 

Following the environment setup, each of the scenario participants is set up. 
Thus, individual participants (Alice and Bob) and the service providers (ICAi,  

 

 

1PP-IBE SageMath implementation: [ada22] Integrated example 2 mod 3 v08.sage. 
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Figure 1. PP-IBE employs a five-step protocol. (1) System parameters are estab-
lished for all participants. (2) Bob encrypts a message and sends it to Alice. (3) 
Alice engages with a community of Intermediate Certification Authorities (ICAs) 
which grant her identity and pseudonym credentials. (4) To obtain a decryption 
key, Alice presents a pseudonym credential to the PKG which validates it and 
provides her with initial keying material. (5) After finalizing her decryption key, 
Alice decrypts her message. 

 
ICAj, ICAk and PKG) are initialized, granted access to the environment, and in-
stantiated with public keys, private keys, and attributes, as appropriate. 

Encrypt: Bob encrypts a message for Alice as in BF-IBE. Given an identity string 
for Alice (say, alice@gmail.com) and only public functions and data, Bob encrypts a 
message for Alice and sends her the resulting ciphertext. 

Get Identity/Pseudonym Credentials: To decrypt the message received from 
Bob, Alice requires a decryption key. This key is calculated by Alice using keying 
material provided by the PKG and using a set of random values which she chooses 
and stores during pseudonym creation (each random value is shared with only a 
single ICA). Figure 1 shows an identity credential being issued by ICAi followed 
by consecutive steps with ICAj and ICAk in which pseudonym credentials are ela-
borated. Thus, each pseudonym is associated with a random data value; Alice 
creates and retains these values in local protected storage. 

Extract: Alice presents a pseudonym credential to query the private key gene-
rator (PKG) which conducts a verification protocol. On successful verification, 
the PKG calculates keying material specific to messages encrypted for Alice. This 
keying material cannot be used directly to decrypt the ciphertext sent by Bob. 
Rather, Alice must finalize (“unblind”) the keying material into her decryption 
key by applying the random values accumulated during the pseudonym creation 
steps. 

Decrypt: After finalization of her private key, Alice uses it to decrypt the ci-
phertext received from Bob. Decryption proceeds as specified in BF-IBE. 
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2. Background 

This section introduces some of the background mathematical concepts used in 
PP-IBE, as well as the BF-IBE, DC, and PP-IBE algorithms themselves. 

2.1. Fundamental Principles 

Elliptic Curves. An elliptic curve over a finite field E/Fp can be seen as the set of 
( ),x y  points with , px y F∈  which satisfy an equation of the form E:  

2 3 2
1 3 2 4 6y a xy a y x a x a x a+ + = + + + , where 1 2 3 4 6, , , , , , px y a a a a a F∈ .  

The set of points in the curve E(Fp) includes a distinguished point, the point at 
infinity  , and forms a group under addition. The number of points on a curve 
#E(Fp) is called the order of the curve. The Hasse theorem places a bound on the 
number of points in a curve: ( )# 1pE F p t= + − , where 2t p≤ . 

Background on supersingular elliptic curves can be found in [8]. Given a 
prime base b, an integer exponent e ≥ 1, and t in a range, such that 2t p≤ , a 
supersingular curve E(Fp) over a field F on prime power p = be is a curve such 
that its order ( )# 1pE F p t= + − , with b | t [9] [10]. The worked example of §4, 
uses the curve ( ) 2 3

281 : 1E F y x= + , which has order 282, with p = b = 281, e = 1 
and t = 0. (To keep our example as simple as possible, we want to use a modulus 
that is a prime, rather than a prime power; thus, e = 1 and therefore p = b. Fur-
thermore, supersingular curves of the form 2 3 1y x= +  over Fp are known to 
have order p + 1, meaning that t = 0. We chose p = 281 as this is a relatively small 
prime that is not too trivial such as 7 or 13.) 

Each point on a curve also has an order, a scalar r, the number of times that 
point must be added to itself to give  : the order of a point o(P) = r, so that 
r P∗ =  for ( )pP E F∈ . The r-torsion subgroup of a curve E(Fp)[r] is the sub-
set of points in E(Fp) which have order r. 

In this paper, curves are used in the context of bilinear maps (“pairings”). A 
taxonomy of pairing-friendly curves (including FMT curves, GMV curves, Free-
man curves, Cyclotomic families, Sporadic families, Scott-Barreto families, Super-
singular curves, Cocks-Pinch curves, MNT curves, and DEM curves) is presented 
in [11]. 

The construction given in this paper uses a supersingular curve of the form 
2 3 1y x= +  over F(p), with prime ( )2 mod3p ≡ . This follows the construction 

in BF-IBE and lends itself well to the requirements of PP-IBE where a point p1 
must be paired with itself. Other curves are also possible, including other super-
singular curves and MNT curves. 

Bilinear Maps. A bilinear map is a function 0 1ˆ : Te G G G× →  where G0, G1 
and GT have order q. We focus on so-called symmetric pairings, where G0 = G1. 
The mapping is bilinear if 1 2 1,P P G∈∀  and *, qa b Z∀ ∈ , ( ) ( )1 2 1 2ˆ ˆ, , aba be P P e P P= , 
and it is non-degenerate if ∀  non-trivial points 1 1P G∈ , ( )1 1ˆ , 1e P P ≠  (the 
multiplicative identity element in GT). Two common pairing functions are the 
Weil pairing and the Tate pairing [8] [12] [13]. The worked example in this 
document was verified with both the Weil and Tate pairings but, for the sake of 
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brevity, only the computations demonstrating the Weil pairing are shown in this 
paper.  

The embedding degree of elliptic curve E(Fp) with respect to the order q of its 
q-torsion subgroup is the smallest positive integer k such that ( )1 modkp q≡  
(for background, see [8]). The embedding degree affects security. Curves with a 
small embedding degree are susceptible to the MOV reduction proposed by 
Menezes, Vanstone and Okamoto [9]. The MOV reduction allows the discrete log 
problem to be translated from the elliptic curve setting of G1 to the finite field set-
ting of GT, in which there are faster sub-exponential algorithms to solve it [9]. For 
this reason, sufficiently large security parameters must be selected when instan-
tiating our construction of PP-IBE (see §3, §5). 

Distortion Maps. As we shall see, in its derivation of ξ, PP-IBE requires that 
the two inputs to the pairing be from the same cyclic group G1. The Weil pairing 
produces the degenerate result 1 when the inputs P and Q are linearly dependent. 
The Tate pairing also has this property when k > 1. One technique for working 
around this issue is to use a supersingular curve, E, with a distortion map φ. The 
distortion map projects points from the base curve onto the curve on the exten-
sion field, in a manner that the points are no longer linearly dependent, and so the 
result of the Weil pairing is non-degenerate [3] [9] [12]. When distortion map 
functionality is required, supersingular curves are not the only choice. MNT curves 
and their trace map may also be used [14]. We selected the supersingular curve for 
pedagogical reasons, as a natural progression from BF-IBE and PP-IBE. 

2.2. Boneh-Franklin Identity-Based Encryption 

In 2001, Boneh and Franklin published the first Identity-based Encryption scheme 
[3]. Their scheme is defined in terms of bilinear maps. BF-IBE features four pro-
tocols. 

Setup: The environment is initialized with public parameters q prime, groups 
G1 and GT of order q, bilinear map 1 1ˆ : Te G G G× → , generator 1G G∈ , and 
hash functions { }* *

1 1: 0,1H G→ , where  { }*
1 1 \G G=  ,  

{ } { } *
2 : 0,1 0,1n n

qH Z× → , { }3 : 0,1T
nH G → , and { } { }4 : 0,1 0,1n nH → . The PKG 

is given master private key *
qt Z∈  and master public key T = tG. 

Encrypt: Message { }0,1 nM ∈  is encrypted to ciphertext (u, v, w) using Alice’s 
public identity string { }0,1 n

iID ∈  as follows. 
1) Map the identity string to point ( )1A iI H ID= . 
2) Apply the pairing ( )ˆ ,Ae I Tµ = . 
3) Select random { }0,1 nσ ∈ . 
4) Set exponent r to ( )2 ||H Mσ .  
5) Compute rz µ= . 
6) Compute ciphertext ( ) ( ) ( )( )3 4,, , ,u v rG H z M Hw σ σ⊕ ⊕= . 
Extract: To decrypt a message the recipient must present their iID  to a Pri-

vate Key Generator (PKG). The algorithm first maps the string to a group point 
( )1A iI H ID=  and then multiplies the point by the master private key to pro-
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duce the decryption key A AK tI= . The decryption key KA is returned to the 
caller. 

Decrypt: The decryption algorithm applies the private key KA to ciphertext (u, 
v, w) to obtain plaintext M. 

1) Compute ( )ˆ ,Az e K u= . 
2) Compute ( )3v H zσ = ⊕ . 
3) ( )4M w H σ= ⊕ .  
4) Verify that u == rG: if these are equal, return M; if they are not equal, the 

ciphertext is rejected. 
Boneh and Franklin define an adaptive chosen ciphertext notion of security 

IND-ID-CCA applicable to identity-based encryption, and three different varia-
tions of their protocol. 

2.3. Digital Credentials 

Brands Digital Credentials [5] [6] may be described in terms of three protocols: 
“setup”, “issue” and “show”. 

Setup: During setup, the environment is initialized with 0, ,p q g , where p is a 
large prime,  q is the prime order of a multiplicative subgroup of *

pZ , and g0 is a 
generator of this q-order subgroup. Issuers of Digital Credentials are each initia-
lized with a private key ( )1 2 0, , , ,my y y x  where 1 2 0, , , ,m qy y y x Z∈  and a 
public key ( )1 2 0, , , ,mg g g h , where 0

iy
ig g=  for i in [1, m] and 0

0 0
xh g= . 

Issue: The issue protocol proceeds between an individual, Alice, and a cre-
dential issuer, say Bob, as follows.  

1) Alice selects qR
Zα←  and calculates ( )1 2

1 2 0 modmxx x
mh g g g h p

α
=   using  

Bob’s public key and her attributes ( )1 2, , , mx x x . Alice retains h as the first 
part of the credential.  

2) Bob selects 0 qR
w Z←  and calculates 0

0 0 modwa g p=  which he sends to Alice. 

3) Alice selects , qR
Zβ γ ←  and calculates the second credential component 

( )0 2|c H h h′ =  where ( )( )1 2
2 0 1 2 0 0 modmxx x

mh g g g g h a p
γβ=  . She sends a blinded 

version ( )0 0 modc c qβ′= −  to Bob for his signature.  

4) Bob creates receives c0 and creates signature material  
( ) ( )0 0 0 0 1 1 2 2 modm mr w c x x y x y x y q= − + ∗ + ∗ + + ∗  and sends this r0 to Alice. 

5) Alice evaluates an issuance verification relation, confirming that 

( ) 00 1 2
0 1 2 0 modm

rc xx x
mg g g g h p  is equal to a0. If valid, she finalizes Bob’s signature  

to obtain ( )0 0 modr r qγ α′ = +  and stores the issued credential ( )0 0, ,h c r′ ′  for 
later use in the showing protocol.  

Show: Alice shows selected contents of her credential to verifier Victor as fol-
lows. 

1) Alice sends the credential ( )0 0, ,h c r′ ′  to Victor. 
2) Victor confirms the credential is valid by evaluating a verification relation, 

confirming that 0c′  is equal to ( )0 0
0| modc rH h g h p′ ′ . 
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3) If the verification relation passes, Alice and Victor engage in a proof of 
knowledge protocol (a verification of a Boolean predicate on Alice’s credential 
attributes). Brands describes a variety of predicates in which Alice reveals the 
value of a required attribute and proves knowledge of the remaining attributes in 
the credential [5] [6]. One such predicate will be presented in the construction 
section of this document.  

4) Following successful proof of knowledge, Victor provides Alice with a ser-
vice or access to a resource. In the PP-IBE protocol, after integrity verification 
and proof of knowledge, the ICA in the role of verifier grants a pseudonym cre-
dential.  

Brands [6] presents variations of the protocols including a version based on 
the RSA problem. This paper restricts itself to the protocol as described on the 
discrete logarithm problem [5] [6]. Brands digital credentials are used by Adams 
to sign and certify identity and pseudonym credentials. The nomenclature in our 
construction uses p' and q' for p and q above for integration with BF-IBE (which 
itself uses a p and q). 

2.4. Privacy-Preserving Identity-Based Encryption 

In [1] [2], Adams proposes PP-IBE, an approach to reduce the amount of trust 
that must be placed in the PKG. PP-IBE uses digital credentials as both identity 
certificates and pseudonyms, and proposes a community of ICAs who certify 
these credentials. In this paper, we focus on the “augmented scheme” of PP-IBE 
in which Alice interacts with a community of ICAs to obtain a final pseudonym 
credential that is exchanged for keying material with the PKG.  

Setup: The setup protocol of PP-IBE combines the setup activities of BF-IBE 
and DC, without introducing additional global (i.e., publicly accessible) data. 
Thus PP-IBE requires, for BF-IBE, a curve ( ),E a bρ  with generator point G 
which generates the group G1, and a bilinear map 1 1ˆ : Te G G G× → . For DC, 
PP-IBE requires primes p' and q', and g0, a generator of the q'-order subgroup of 

*
pZ ′ . 
Encrypt: Encryption proceeds as defined by BF IBE, thus using 1AI H=

(id_string) and ( )ˆ ,Ae I Tµ = , producing ciphertext ( ), ,u v w  which is sent to 
Alice. Alice requires the help of a community of ICAs and a PKG to decrypt the 
ciphertext. 

Identity Credential Issuance. Alice obtains an identity credential from ICAi 
as follows. 1) Alice sends her id_string to ICAi who verifies Alice’s ownership. 2) 
ICAi computes 1 1Ap I H= =  (id_string) and ( )

1 1 1ˆ ,p e p pξ = . Alice and ICAi 
engage in the Brands Issuing protocol with 

11 px ξ=  and x2 = the id of ICAi. On 
successful completion of the issuing protocol, Alice holds ( )0 0, ,icred h c r′ ′= , a 
signed identity credential enclosing a 

1pξ  certified by a trusted service provid-
er. 

Pseudonym Credential Issuance. Alice may choose to pseudonymize the 
identity credential issued by ICAi. To do this, Alice selects another Intermediate 
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Certification Authority, say ICAj and proceeds as follows. 1) Alice sends credi, pi, 
( )1 2,i i

attr a a=  and sj to ICAj. 2) ICAj applies the verification relation to confirm 
digital integrity of the credential. 3) If the credential passes the integrity check, 
Alice and ICAj conduct a Brands proof of knowledge on attributes 

11 pa ξ=  and 

2 ia id= . 4) ICAj verifies provenance, confirming that that ( ) 1ˆ ,
ii ie p p a==  5) 

Following successful verification of credi, ICAj computes pseudonym point 

j i jp p s= ∗ , ( )ˆ ,j j je p pξ =  and proceeds with the Brands issuing protocol with 

( ) ( ) ( )( )1 2 1 2, , ,
j jj j jj

attr a a a a id ICAξ= = = . 

Alice may now choose to pseudonymize further: she can present credj, pj, si to 
another authority (say, ICAk), proving knowledge of attrj. On successful verifica-
tion, pseudonym pk = sj * pj is created by ICAk, and a new credential, credk, is is-
sued to Alice. Using this process, Alice may create a chain of credentials on 
pseudonyms of any length she wishes. Note that the random values si, sj, ∙∙∙ are 
retained by Alice for use in key extraction. 

Key Extraction. In PP-IBE, key extraction is in two parts. First Alice provides 
a credential on a pseudonymized point pk to the PKG. After verifying the cre-
dential and Alice’s proof of knowledge of the signed attributes, the PKG creates 
keying material K = t * pk, where t is the PKG’s master secret key. This initial 
keying material is sent to Alice who creates the decryption key KA by multiplying 
this K with the product of the inverses of the scalars used to create pk, thus KA =  
wK, where ( )1 mod

is S iw s q−
∈

=∏ . 

Decryption. After having successfully created KA, Alice can decrypt ciphertext 
( ), ,u v w  as per the BF-IBE algorithm. 

Note that in [1] [2], PP-IBE uses two attributes within the credential (one for ξ 
and one for the id of the issuing ICA). However, in an actual implementation, 
the output of the pairing function (either the Weil or Tate pairing) will be a po-
lynomial in the extension field pk. For the supersingular curves on which we base 
our construction below, k = 2 and the pairing output will be a polynomial with 
two coefficients. Therefore, the credentials in our construction have been mod-
ified to contain three attributes (two for the coefficients of the pairing output 
and one for the id of the issuing ICA). 

3. Construction 
3.1. PP-IBE Group Parameters 

The parameter selection consists of finding a tuple of primes (q, p, q', p'). These 
values determine the main group sizes used in our construction PP-IBE. Para-
meter q sets the size of G1; in our construction G1 is q-torsion group of the base 
elliptic curve. Parameter p creates Fp, the prime field upon which the base elliptic 
curve is defined. Parameter p' creates pZ ′  the base field for digital credentials. 
Parameter q' is the order of the multiplicative subgroup of *

pZ ′ ; digital creden-
tial attributes and other exponents are drawn from *

qZ ′ . 
The parameter selection algorithm is as follows: 
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1) Select q a prime.  
2) Find p prime such that q | p + 1, q2 ∤ p + 1 and p ≡ 2 mod 3.  
3) Set q' to p.  
4) Find p' prime such that q' | p' - 1.  
5) Return (q, p, q', p'). 

3.2. Definition of Mathematical Objects 

Given parameters (q, p, q', p') initialize the required mathematical objects: 
1) Let p define the prime field Fp. 
2) Set base curve ( ) 2 3: 1pE F y x= + . 
3) Set G1 to be the torsion group E(Fp)[q]. 

4) Extension field 2p
F , curve on extension field ( )2

2 3: 1
p

E F y x= + , and 

corresponding torsion group ( )[ ]2p
E F q  are created. 

5) Set 1G′  to be ( )[ ]2p
E F q . 

6) Set *
qZ ′ , pZ ′ , [ ]*

pZ q′ ′ . 

7) Return ( ( )[ ] ( ) ( )2
*, , , ,p p q pp

E F q E F E F Z Z′ ′ ). 

The base curve ( ) 2 3: 1pE F y x= +  where p = 2 mod 3 has the following 
properties. It is a supersingular curve of order #E(Fp) = p + 1. Since q | p + 1, 
E(Fp) contains a torsion group E(Fp)[q] of order q. The curve E(Fp) also supports 
a distortion map ( ) ( ), ,x y x yϕ ζ=  where 2p

Fζ ∈  and 3 1ζ = .  

3.3. Construction of PP-IBE 

The parameters (q, p, q', p') and mathematical objects ( ( )[ ]pE F q , ( )pE F ,

( )2p
E F , *

qZ ′ , [ ]*
pZ q′ ′ , pZ ′ ) are used to initialize the components of PP-IBE as 

follows: 
1) Set G1 to ( )[ ]pE F q . 

2) Set ( )[ ] ( )[ ] ( )2: p p p
f E F q E F q E F× →  to the Weil (or Tate) pairing. 

3) Define ( ) ( )( )ˆ , , qe p q f p ϕ  where φ is the distortion map of E(Fp). 
4) Set m, the number of attributes for digital credentials, to be 3. 
5) Set *

qZ ′  to be the field from which digital credential attributes and expo-
nents are drawn. 

6) Set *
pZ ′  to be the base field of digital credentials. 

7) Set G and 
1HG  to be elements of G1. 

8) Set g0 to be a generator of [ ]*
pZ q′ ′ . 

3.4. Hash Functions 

Function { }* *
1 1: 0,1H G→  is implemented using 

1HG , a generator of G1, which 
is multiplied by the SHA256 hash of the input string (this product is reduced 
modulo q). Function { } { } *

2 : 0,1 0,1n n
qH Z× →  takes the hash of the input strings, 

reduces it modulo q − 1 and adds one to the result. Function { }3 : 0,1T
nH G →  

https://doi.org/10.4236/jis.2023.144018
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has the polynomial representation of the arguments and extracts the n least sig-
nificant bits. Function { } { }4 : 0,1 0,1n nH →  hashes the input string and extracts 
the n least significant bits. 

3.5. Other Considerations 

Use of Distortion Map. In PP-IBE, the identity token ( )ˆ ,
ip i ie p pξ =  requires 

that point 1ip G∈  be paired with itself. The Weil pairing f(P,Q) returns the de-
generate result 1 when the inputs are linearly dependent, which is precisely the 
case in determining 

ipξ . The problem is addressed by using the distortion map 
to implement a modified pairing function ( ) ( )( )ˆ , ,e p q f p qϕ=  where f is a 
pairing such as the Weil or Tate pairing. The distortion map is defined as  

( ) ( ), ,x y x yϕ ζ=  where 2p
Fζ ∈  and 3 1ζ = . This map ( ) ( )2: p p

F E Fϕ →  

translates a point in E(Fp) to a linearly independent point in ( )2p
E F , which  

allows the pairing to be applied returning non-degenerate results.  
Three-Base Credential. The modified pairing function uses the Weil or Tate  

pairing and returns 2p
Fξ ∈ , a degree-one polynomial with two coefficients Fp.  

Since q' = p, these coefficients may carried as attributes qZ ′  in the digital cre-
dential. There are different approaches to carrying ξ in the credential; however, 
we found that carrying both coefficients is convenient for calculations in key ex-
traction. Thus, one attribute (and corresponding base) is added to PP-IBE as de-
fined in [1]. Commensurate changes are required to the digital credential setup, 
issue, and verification protocols.  

Choice of the Curve. A supersingular curve was chosen for two main reasons. 
First, the distortion map permits the pairing of p with itself. Second, this curve 
follows the construction given in [3]; our worked example thus complements [3] 
and contributes to its body of knowledge. Note that by choosing this curve, we 
also benefit from the BDH generator and security proofs given in [3]. 

Security Impact. From the perspective of elliptic curves and bilinear pairings, 
we refer to the discussion in [3]. The MOV reduction [9] can be applied to such 
supersingular curves as we have chosen for our construction. Thus as pointed 
out in [3], care must be taken to choose parameters such that the discrete log  
G1 = E(Fp)[q] remains difficult in 2T p

G F= . In addition to security in elliptic  

curves and bilinear maps, we must also consider the difficulty of the traditional 
discrete log problem due to use of the digital credentials. Parameter sizes are 
discussed in §5.  

Issue_on_Point(). We introduce a function issue_on_point() which takes a 
point in G1 and a scalar and can be used for issuing both credentials and pseu-
donyms. Identity credentials and pseudonym credentials are both issued based 
on some iξ  derived from a source point in G1. The elegance of the algorithm 
allows one to be expressed in terms of the other. An “issue_on_point” algorithm 
has been implemented, which accepts a point and a scalar (as well as the other 
DC-required arguments) to produce a credential on the point resulting from the 
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multiplication of the point and the scalar received as arguments. This protocol is 
called both by identity issuance and pseudonym issuance logic. If an identity 
credential is to be issued, the scalar has the value one and multiplication leaves 
the point unchanged. If a pseudonym credential is to be issued, the scalar is the si 
value selected by Alice to create the pseudonym. See Figure 2 for an illustration 
of the steps involved in credential issuance. 

4. Worked Example 

The following demonstrates the augmented flow from [1] on sample parameters 
describing an elliptic curve of the form ( ) 2 3: 1pE F y x= +  where p = 2 mod 3. 
The numbers are based on output generated by the SageMath [7] implementa-
tion of PP-IBE2. 

4.1. System Parameter Generation 

Group Parameters: First, group parameters are selected. We seek p, q, q', p' all 
prime with | 1q p +  and 2 1q p + , p = 2 mod 3, p ≠ 3 mod 4, q' = p, and 

| 1q p′ ′ − . Our worked example (a “toy” example with deliberately small num-
bers for readability and easy verifiability) uses q = 47, p = 281, q' = 281, and p' = 
563. 

Let q = 47, for a torsion group G1 of size 47. Parameters o, p, q' and p' follow 
from this choice. Our construction uses a supersingular curve of the form 

( ) 2 3: 1pE F y x= + , where p = 2 mod 3, which has order ( )# 1po E F p= = + . We 
require p prime such that | 1q p +  and 2 1q p + . For the worked example, we 
select p = 281, so that our base curve is E/F281: 2 3 1y x= +  with G1 = E(F281) [47],  

 

 

Figure 2. In the pseudonym service Alice submits credential credi, point pi, and scalar sj 
to ICAj. First, credi is verified for data integrity, attribute ownership and point corres-
pondence. After verification, an issuance protocol is conducted to create pseudonym cre-
dential credj. The verification and Issuance protocols of Brands are augmented with point 
verification and derivation steps which use modified pairing ( )ˆ .e . 

 

 

2Ibid. 
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the set of points in E (F281) with order 47, along with  . The order of the base 
curve o = #E (Fp) = 282 is divisible by q = 47. The embedding degree of our 
worked example is k = 2, the smallest positive integer k such that #G1| #E (Fp)k + 
1. In our example, 47 | 282 1k + .  

Credential Parameters: As per our construction, the output of the pairing  
function will be an element in the extension field 2p

F , a polynomial of degree  

one with coefficients in Fp. We carry the coefficients as attributes in the digital 
credential. The q' of the digital credential parameters must be large enough to 
accommodate these numbers. We set q' = p = 281. It remains only to find p', the 
modulus for digital credentials, such that | 1q p′ ′ − . For our worked example, 
we select p' = 563. 

Generators: Select generator G = (1, 132) for IBE and g0 = 3 for digital cre-
dentials. 

4.2. Key Generation 

The ICAs are each initialized with their DC key pairs in which private key 
( )1 2 3 0, , ,privK y y y x=  which are random values in qZ ′  and public key  
( )1 2 3 0, , ,pubK g g g h=  where 0 modiy

ig g p= ′  and 0
0 0 modxh g p′= . The PKG is 

initialized with a BF-IBE key pair in which the master secret key is a random 
scalar in Zq, say t = 23, and the public key is calculated as  

( ) ( )23 1,132 252,202T t G= ∗ = ∗ = . Select 68 106bζ = +  (here, 2p
Fζ ∈  and 

3 1ζ = ). Table 1 presents the key pairs for the service providers of the scenario 
presented in the augmented scheme of [1]. 

4.3. Encryption 

Encryption proceeds according to BF-IBE. Here, ciphertext ( ), ,u v w  is created 
for M = “abc” (msg_bits: “011000010110001001100011”, of length n = 24) using 
Alice’s identity string “alice@gmail.com”. 

First u is calculated. Alice’s identity string is first mapped to point 1AI ∈ =  
H1 (“alice@gmail.com”) = (34, 33). Next the identity point IA is paired with the 
master public key ( )ˆ ,Ae I Tµ = . Recall that ( ) ( )( )1 2 1 2ˆ , ,e p p f p pϕ=  where 
( ) ( ), ,x y x yϕ ζ= , 68 106bζ += , f() is either the Tate or Weil pairing, and b is  
 

Table 1. Service provider key pairs. 

Service Provider Key Pair 

ICAi 
Kpub: (243, 541, 498, 27) 

Kpriv: (5, 9, 7, 3) 

ICAj 
Kpub: (289, 326, 349, 470) 

Kpriv: (15, 19, 17, 13) 

ICAk 
Kpub: (68, 441, 49, 508) 
Kpriv: (25, 29, 27, 23) 

PKG 
T: (252, 202 ) 

t: 23 
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an arbitrary symbolic variable to be used in polynomials in 2p
F . Using the Weil  

pairing, ( )( ) ( ) ( )( )weil_pairing , weil_pairing 34,33 , 252,202AI Tϕ ϕµ ==

( )( ( ))weil_pairing 34,33 , 276 17,202 216 147bb = += + . Let σ =  
“100101000111100011000010”, and r = H2 (σ, msg_bits) = 43, then u r G= ∗ =  

( ) ( )43 1,132 263,167∗ = . 
The second component of the ciphertext, v, is calculated as follows. Calculate 

( )43216 147 21 60rz b bµ= = += +  (where exponentiation is reduced modulo 
the Conway polynomial [15] [16] b2 + 280b + 3) and let h3z = H3(z, n) =  
001100110011011000110001; then component v = sigma xor h3z =  
101001110100111011110011. 

The last component of the ciphertext is w = msg_bits ⊕ H4(σ). Assuming H4(σ) 
= 011001100011010001100010, then w = 011000010110001001100011 ⊕  
011001100011010001100010 = 000001110101011000000001.  

The ciphertext of M = “abc” encrypted using Alice’s identity string  
“alice@gmail.com” is (u,v,w) = ((263, 167), 101001110100111011110011,  
000001110101011000000001). 

4.4. Identity Credentials 

PP-IBE uses interactions between Alice and ICAs to certify her identity and 
pseudonym as precursors to interacting with the PKG to obtain the decryption 
keys. 

Alice engages with ICAi to obtain a digital credential ( )0 0, ,h c r′ ′  certifying her 
identity. For this worked example, we choose the following values at random: (α 
= 12, β = 6, γ = 2, w0 = 8). As a first step, Alice calculates h on her own. She cal-
culates her identity point p1 = H1 ('alice@gmail.com') = IA = (34, 33). Following 
this, she calculates ( ) ( )( ) ( )(ˆ , weil_pairing , weil_pairing 34,33i i i i ie p p p pξ ϕ= == ,
( ))64 232,33 13 211bb ++ = . Assuming service provider id = 27, Alice has 
attributes ( ) ( )1 2 3 211, 3, 7, 2, 1x x x = . Assuming α = 12, she calculates and retains  

( ) ( )( )( )( )( )31 2
12211 13 27

1 2 3 0 1mod 243 541 498 27 mod563 256xx xh g g g h p
α

= = = . 

As her next step Alice calculates ( )0 2|c H h h′ =  with input a committed 
random from the ICA. ICAi selects random w0 (assume w0 = 8), calculates  

0
0 0

wa g= 83 mo 3d56= , and sends a0 to Alice. Alice uses a0 to calculate  

( )31 2
2 0 1 2 3 0 0 modxx xh g g g g h a p

γβ ′=  = 36(243211 * 54113 * 49827 * 27)2 * 368 mod 563 
= 99. This h2 is combined with h to form ( )0 2|c H h h′ =  = SHA256(256|99) 
mod 281 = 204. This 0c′  will be the second component in the digital credential. 

To calculate 0r′ , Alice initiates by sending 0 0 modc c qβ′= − ′  = 204 – 6 mod 
281 = 198 to ICAi. The ICA calculates ( ) (0 0 0 0 1 1 2 2 3r w c x x y x y x= − + ∗ + ∗ +

)3 mody q′∗  = ((8 - 198)/(3 + 211 * 5 + 13 * 9 + 27 * 7) mod 281 = 128 and re-
turns it to Alice. Alice checks the integrity of the components using the verifica-
tion relation: ( ) 00 31 2

0 1 2 3 0 0mod
rc xx xg g g g h p a′ == . In this case both a0 and 3198 * 

((243211) * (54113) * (49827) * 27)128 mod 563 are equal to 368, so the verification 
relation holds. Alice finalizes ( )0 0 mod 128 2 12mod 281 245r r qγ α′ += ′+ = = . 
Alice stores the finalized credential ( ) ( )0 0, , 256,204,245icred h c r′ ′= =  for the 
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next step in certifying a pseudonym with ICAj.  

4.5. Pseudonym Credentials 

As in the augmented scheme example from [1], identity credential credi is used 
as an input in obtaining pseudonym credential credj from ICAj, which is then 
used to obtain another pseudonym credential credk from ICAk. 

In general, to issue a pseudonym credential, the ICA conducts a verification of 
the previous credential and the proposed pseudonym, and then issues a new 
credential on the pseudonym.  

ICAj Issuance of Pseudonym Credential. Alice presents her identity creden-
tial credi in the showing protocol. ICAj verifies this before issuing a pseudonym 
credential credj.  

Alice sends credi = (256, 204, 245), pi = (34, 33) and a scalar sj = 25 to ICAj, as 
input to the pseudonym service, which will yield a new credential credj = (440, 
252, 63) on pseudonym point pj = (199, 158). This process proceeds in two steps: 
first the submitted credi is verified, after that, the new credj is issued. 

Verification of credi consists of three checks: the integrity check, the proof of 
knowledge, and the coefficients check. The integrity of credi is verified using the 
digital credentials verification relation. Given credential ( )0 0, ,h c r′ ′  verify that 

( )0 0
0 0| c rc H h g h′ ′′ ==  Thus with credi = (256, 204, 245), 0

0
rcg h ′′  = (3204) (256245) 

mod 563 = 99. This value corresponds to the h2 calculated during the issuing 

protocol, so ( )0 0
0| 204c rH h g h′ ′ =  which is equal to 0c′ , which satisfies the veri-

fication relation.  
The next step is the proof of knowledge. For this example, let’s assume ran-

dom values w = 6 and c = 7. ICAj creates a random challenge c = 7, and sends it 
to Alice who creates ( ) ( )1 2 3, , , 30,211,13,27iproof c x x x =′=  where the value for 

mod 7 12 6mod 281 30c c w qα′ = + = + =  and 1 2 3, ,x x x  are Alice’s attributes for 
credi. Alice sends iproof  to ICAj who verifies it by confirming the equality of 

ch a′  mod p' = (25630)363 mod 563 = 485 with 31 2
1 2 3 0

xx x cg g g h  = 
(243211*7)(54113*7)(7627*7)(277) mod 563 = 485; thus proof of knowledge has been 
confirmed.  

In the final verification step, ICAj verifies that credi is on the coefficients of ξi. 
In this case correspondence is confirmed: ( ) 1 2 1ˆ , 3 1i ip be p = + , the coefficients 
of which correspond to the (x1, x2) received in the proof, above. 

After this successful verification of credi, ICAj issues a pseudonym credential 
to Alice. Let’s assume the random values for the issue protocol to be α = 19, β = 
26, γ = 32, w0 = 18. ICAj calculates new point pj = pi * s1 = (34, 33) * 25 = (199, 
158) and ξj = ê(pj, pj) = ê((199, 158), (199, 158)) = weil_pairing((199, 158), 
phi((199, 158))) = weil_pairing((199, 158), (44b + 19, 158)) = 151b + 29. As-
suming id(ICAj) = 11, the credential is constructed on attributes (x1 = 29, x2 = 
151, x3 = 11). Alice calculates and retains ( )31 2

1 2 3 0 1modxx xh g g g h p
α

=  = 
((28929)(326151)(34911)(470))19 mod 563 = 440. 

Next ICAj selects random w0=18 and calculates 0 18
0 0 3 mod563 484wa g === , 
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which it sends to Alice. Alice calculates ( )0 2|c H h h′ =  where h = 197 and 

( )31 2
2 0 1 2 3 0 0 modxx xh g g g g h a p

γβ= ′  = 326((28929)(326151)(34911)(470))32484 mod 563 
= 425, thus ( )0 440 | 425 252c H′ = = . Alice retains this 0c′  and calculates 

( )0 0 1modc c qβ′= −  = (252 - 26) mod 281 = 226 which is sent to ICAj. ICAj 
produces signature data ( ) ( )0 0 0 0 1 1 2 2 3 3 modr w c x x y x y x y q′− + + +=  = (18 - 
226)/(13 + 29 * 15 + 151 * 19 + 11 * 17) mod 281 = 41, which is sent to Alice. 
Alice evaluates the issue-time verification relation, confirming that  

( ) 00 31 2
0 1 2 3 0 mod

rc xx xg g g g h p′  = 3226((28929)(326151)(34911)(470))41 mod 563 = 484 
equals the expected value of a0 = 484. Alice proceeds to unblind the signature 

( )0 0 modr r qγ α′ ′= +  = (41 + 32)/19 mod 281 = 63 and stores the resulting 
credential credj = (440, 252, 63). 

ICAk Issuance of Pseudonym Credential. Alice uses pseudonym credential 
credj to obtain another pseudonym credential with ICAk. Alice enters into the 
“show” protocol, supplying credj = (440, 252, 63), attrj = (x1 = 29, x2 = 151, x3 = 
11), pj = (199, 158) and s2 = 17. ICAk first checks the time verification relation 
for credj: ( )0 0

0 0| c rc H h g h′ ′′ == . Here 0c′  = 252, h = 440, and 0 0
0 modc rg h p′ ′ ′  = 

325244063 mod 563 = 425, thus, the hash H(440|425), evaluates, as above, to 252 
which is equal to 0c′ . The verification relation is satisfied for credj. 

The proof of knowledge follows the verification relation. ICAk creates a ran-
dom challenge, say c = 8, and sends it to Alice who creates ( )1 2 3, , ,jproof c x x x′=  
= (37, 29, 151, 11) where c' = c/α + w mod q = 8 /19 + 7 mod 281 = 37 and x1, x2, 
x3 are the attributes attrj. Alice sends proofj to ICAk who verifies it by confirming 
that 31 2

1 2 3 0 modxx xc ch a g g g h p′ ′== . Here, mod  ch a p′ ′  = (44037)381 mod 563 = 99 
and 31 2

1 2 3 0
xx x cg g g h  = (28929*8)(326151*8)(34911*8)(4708) mod 563 = 99; thus the 

proof of knowledge verifies correctly.  
For the last verification step, ICAk performs a pairing and confirms that the 

coefficients of ( ) ( ) ( )( )ˆ ˆ, 199,158 , 199,158 151 29j j je p p e bξ = = = +  correspond 
to (x1 =29, x2 = 151) of credj. 

Once credj has been verified, ICAk proceeds to issue pseudonym credential 
credk to Alice. For the issuance of credk assume values of α = 7, β = 26, γ = 22, w0 
= 28 for the random values of the issue protocol.Alice calculates her new point 
pk = pj * s2 = (199 , 158) * 17 = (99, 179) and ξk = ê(pk, pk) = ê((99, 179), (99, 
179)) = weil_pairing ((99 , 179), phi((99, 179))) = weil_pairing((99, 179), (269b 
+ 97, 179)) = 197b + 190. Assuming id(ICAk) = 42, attributes attrk = (x1 = 190, x2 
= 197, x3 = 42) are used for issuance of credk. 

Credential ( )0 0, ,kcred h c r′ ′=  is calculated as follows. First, Alice calculates 
and retains ( )31 2

1 2 3 0 1modxx xh g g g h p
α

=  = ((68190)(441197)(4942)(508))7 mod 563 = 
92. Alice sends pj = (199, 158) and s2 = 17 to ICAk, who calculates the same attrk. 
Next ICAk selects a random w0, say the value 28, and calculates 0

0 0
wa g=  = 328 

mod 563 = 147 and sends this a0 to Alice. Alice calculates ( )0 2|c H h h′ =  where  

h = 92 and ( )31 2
2 0 1 2 3 0 0 modxx xh g g g g h a p

γβ= ′  = 326(68190 * 441197 * 4942 * 508)22 *  

147 mod 563 = 513, so ( )0 92 | 513 240c H′ = = . Alice retains 0c′  and calculates 
( ) ( )0 0 1 240 26 mod 281 21mod 4c c qβ= = − =′ −  and sends it to ICAk. Finally, 
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ICAk produces signature data ( ) ( )0 0 0 0 1 1 2 2 3 3 modr w c x x y x y x y q′− + + +=  = 
((28 - 214)/(23 + 190 * 25 + 197 * 29 + 42 * 27)) mod 281 = 211, which is sent to 
Alice. Alice evaluates the issuance-time verification relation, confirming that 

( ) 00 31 2
0 1 2 3 0 mod

rc xx xg g g g h p′  = 3214((68190)(441197)(4942)(508))211 mod 563 = 147 
which equals a0, as expected. Alice proceeds to unblind the signature  

( )0 0 1modr r qγ α′ +=  = (211 + 22)/7 mod 281 = 234 and stores the resulting 
credential credk = (92, 240, 234), along with the attributes and other parameters 
she used to obtain it. 

4.6. Key Extraction 

Alice sends credential credk = (92, 240, 234) and pseudonymous point pk = (99, 
179) to the PKG with supporting attributes (190, 197, 42). The PKG checks the 
verification relation: ( )0 0

0 0| c rc H h g h′ ′′ == , with h = 92, and 0 0
0
c rg h′ ′  = 3240 * 92234 

mod 563 = 513, thus H(92|513) = SHA256(92|513) mod 281 =  
3b11806f98cd81d368137bb211c63561bff95c219fc5b6649501708d0e14693b mod 
281 = 240 which indeed equals 0c′ , so the verification relation holds.  

The PKG’s next step in checking credk is the proof of knowledge. Proof of 
knowledge proceeds with the PKG generating random value w = 8 and Alice ge-
nerating proof (c' = (9/7 + 8) mod 281 = 210, x1 = 190, x2 = 197, x3 = 42). The 
PKG evaluates (hc')a = (92210)271 mod 563 = 201 and confirms that it is equal to 

( )( )( )( ) ( )( )( )( )31 2 190 9 197 9 42
2 3

9 9
01 68 441 49 508x cx c x c cg g g h∗∗ ∗ ∗ ∗ ∗=  mod 563. Finally, 

the PKG confirms that the coefficients of ( ), 197 190ˆk k ke p p bξ = = +  corres-
pond to attributes (x1, x2). 

Once credk has been verified, the PKG creates the keying material by multip-
lying the pseudonymous point pk = (99, 179) with PKG private master key t = 23 
to obtain keying material K = t * pk = 23 * (99, 179) = (34, 248). This keying ma-
terial is sent to Alice.  

4.7. Finalization and Decryption 

To finalize her decryption key, Alice applies the scalars she retained during 
pseudonym creation to the keying material received from the PKG to obtain KA 
= ((s1s2)−1 mod q) * K = ((25 * 17)−1 mod 47) * (34, 248) = 24 * (34, 248) = (111, 
206). Alice had received ciphertext  
( ) ( )( ), , 263,167 ,101001110100111011110011,000001110101011000000001u v w =
from Bob. She proceeds to decrypt it using the decryption key KA = (111, 206). 

First, she computes ( ) ( ) ( )( ), 111,206 , 263,1ˆ ˆ 67 21 60Ae ez K u b= = = + . Then 
she derives σ = v ⊕ H3(z) = 101001110100111011110011 ⊕ H3(21b + 60) =  
101001110100111011110011 ⊕ 001100110011011000110001 =  
100101000111100011000010. Using σ, she calculates the plaintext M = w ⊕  
H4(σ)) = 000001110101011000000001 ⊕ 011001100011010001100010 =  
011000010110001001100011. Alice confirms the verification relation: u == r * G 
= 43 * (1, 132) which is equal to u = (263, 167), the first component in the ci-
phertext, so the ciphertext is confirmed to be valid. Encryption returns the string 
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value of M, which is “abc”. 

5. Discussion 

The worked example of section 4 demonstrates small numbers for ease of calcu-
lation and for the sake of communication. This section discusses how to obtain 
parameters with more realistic security levels. BF-IBE specifies that an admissi-
ble mapping is required to achieve IND-ID-CCA security; this section also de-
scribes how the current implementation should be extended to achieve this. 

5.1. Parameter Generation 

The worked example uses small numbers for the sake of illustration. In an IBE 
deployment, the group parameters must be selected so that identity attacks on G1 
and forgery attacks on the digital credential are cryptographically hard. The pa-
rameter generation algorithm described in Section 5 can be modified to set tar-
get security sizes for Fp and pZ ′ . For 128-bit security, we would seek |q| ≥ 254 
bits and |p'| ≥ 3072 bits [17]. If we want 128 bits of security, we will need p to be 
at least 1536 bits in length (so that the group size in 2p

F  is at least 3072 bits 
long). One possible combination of parameters is shown in Table 2. 

 
Table 2. Parameters for 128 bit security. 

Parameter Bits Value 

q 254 18084954865587818898836522312022138958973336066876267931291791709863092691657 

p 1536 

1505815871876832243686385797405417086747442132319081109462549092672986148913147712
6050963379402596668434054802636682381795516038359756455626297906367181049920813143
5420800275716978025229082012410897784079781127610249755672633743612996898666717726
2848466198170120827878069735673393999481196850397009877651044221861767087908930129
8153900283251802757504683271943616791840213068001180705047772853501630908997907235
55574792186063881861798528780879222016066039614503449 

q' 1536 

1505815871876832243686385797405417086747442132319081109462549092672986148913147712
6050963379402596668434054802636682381795516038359756455626297906367181049920813143
5420800275716978025229082012410897784079781127610249755672633743612996898666717726
2848466198170120827878069735673393999481196850397009877651044221861767087908930129
8153900283251802757504683271943616791840213068001180705047772853501630908997907235
55574792186063881861798528780879222016066039614503449 

p' 3072 

3629486708639658188874499746057268547110688504809725649304977113445485843891988226
4160957333294984542707139604503351885397263047844080601676465284909069648531793318
6300183805974162455670937509189190091435274973825827102765916993330557387395253985
7360018851241366638408454297306509012854308617198602225491402705421206175355897289
2627574646483804052838499315127662034760188518536575968817033081793640605664209883
2094117177224532881243911286262127234775186593610681550282603157461894045560539769
2903029852427679997113613688593713995915189775085683864185903166140123843662981946
1050386582803513843592642397440813865886938695854733609047237628645563114139859965
5588122460118235939592683723920568205321376211727974225997978376610562789823902131
1279630212987364568274804195734882687630845919756759795990674371528553541639713181
0608129871147620110836919378528213990183943477239140474976170186054598821206043297
15099546744578323408879 
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The required constraints hold on the above parameters. All numbers are 
prime, and all required relationships hold, namely that q | p + 1, p ≡ 2 mod 3, p 
≠ 3 mod 4, q2 ∤ p+1, and q' | p' – 1. 

We also note that other (i.e., non-supersingular) elliptic curves may be used to 
obtain a security level of 128 bits (or higher) with a smaller value of p. For ex-
ample, BLS12-381 and BLS12-440 curves have an embedding degree of k = 12, 
allowing a significant reduction in the size of p (which, of course, would lead to a 
corresponding increase in the efficiency of computations involving p); see [18]. 
However, these so-called Type 3 curves use an asymmetric pairing  
( 0 1ˆ : Te G G G× → ), rather than a symmetric pairing ( 1 1ˆ : Te G G G× → ), which 
would then require a modification to how pairings are used for pseudonym con-
struction in PP-IBE. 

5.2. IBE Topics 

Security Model. Boneh and Franklin [3] [4] define IND-ID-CCA, a form of 
chosen ciphertext security applicable to IBE schemes. IND-ID-CCA defines 
adaptive security in which the attacker attempts to demonstrate an advantage at 
decrypting a ciphertext for a chosen identity. The Attacker is given a choice of 
which identity to attack, the option of knowing the decryption keys for a set of 
independent identities, and oracle access to the private key extraction algorithm 
and to the decryption algorithm. 

Construction: Boneh and Franklin present a construction based on p ≡ 2 mod 
3 with its accompanying distortion map. Our example proceeds with such a 
curve and is, as such, complimentary material for researchers in the area.  

Distribution of Trust: A large amount of trust is placed in the PKG in an IBE 
deployment. All users obtain their decryption keys from the PKG using their 
public identity string. The PKG is thus able to derive private keys for all users. 
Adams’ architectural approach wipes out this complete knowledge, displacing it 
across the community of ICAs instead. The initial ICA provides a verification of 
ownership of the identity string (for example, using a challenge and response 
email pattern). The subsequent ICA issues a pseudonym credential on the trust 
of the previous ICA’s identity proofing mechanisms. Thus, the full trust that had 
previously been placed in the PKG is now spread out across the service provid-
ers: 
• At the beginning of this chain of trust, the first ICA issues an identity creden-

tial, verifying Alice’s ownership of the identity string, and then maps that 
string to a point (using a map-to-point function H1(.) or its stronger “ad-
missible encoding” counterpart L(.); see below). 

• The subsequent ICAs in the chain each issue a pseudonym on the basis of 
their trust in the integrity and processes of the peers that precede them in the 
chain, the strength of the signatures, and the quality of the map-to-point 
function. 

Admissible Encoding: Of the variations presented in [3] [4], only FullIdent’ 
is IND-ID-CCA secure. The algorithms for FullIdent and FullIdent’ are identical, 
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differing only differ only in terms of the definition of H1(.). FullIdent’ tightens 
requirements on the mapping, such that the distribution is provably uniformly 
random. In FullIdent', p1 = H1(id_string) is replaced with  

( )( )1 1 _p L H id string′=  where ( )1 .H ′  is uniform string hashing and L(.) is 
uniform point mapping. This is referred to as an “admissible encoding”. The H1 
used in this implementation conforms to FullIdent requirements but has not (yet) 
been verified against FullIdent’ requirements. 

6. Performance 

This section presents performance measures for the scenario of Figure 1 using 
the 128-bit security parameters presented in section 5.1. 

The computing environment consists of SageMath version 9.6, installed on 
Ubuntu 20.04.5 LTS within the Windows Subsystem for Linux (GNU/Linux 
5.10.16.3-microsoft-standard-WSL2 x86_64) on a Windows 10 Pro computer 
equipped with an IntelCore i7-1185G7, 3.00 GHz processor with 16.0 GB of RAM. 

Table 3 presents performance measurements at 4 levels of drill-down: a) total 
demo execution time, b) time spent on initialization vs. protocol execution, c) 
breakdown by workflow step and, within each step, the breakdown per algo-
rithm, d) within selected algorithms, a view at the primitive operations used. Full 
drill-down is shown for the issuance of credj, but is omitted from other steps for 
the sake of brevity. 

The total time to run the demo is made up of two parts: initialization time, 
and protocol execution time. The actual protocol runs in 1.68 seconds. The full 
demo runs in 20 seconds, however data structure initialization accounts for 92% 
of this time, requiring over 18 seconds. Note that this initialization is a one-time 
pre-deployment cost to instantiate objects using prime moduli and curve para-
meters; once these are established, the PP-IBE system can be run for a set of us-
ers for an indefinite amount of time at sub-second speeds for each protocol step. 

Figure 3 presents the relationship of protocol execution to system initializa-
tion and shows the execution times and proportions of the main steps in the 
scenario depicted in Figure 1. 

Comparative Examination of Workflow Steps. When evaluated with the 
128-bit security parameters, each protocol step exhibits sub-second performance. 
The three credential issuance steps are comparable, requiring between 304 and 
462 ms. Also comparable are the encryption and decryption steps, requiring be-
tween 132 and 162 ms. These costs are dominated by the cost of the pairing. The 
issuance of credj requires 2 pairing calculations, whereas the issuance of credj 
and credk requires three. Encryption and decryption each require one pairing. 
The key extraction step also requires a pairing for credential verification. As-
suming upfront data structure initialization, key-pair establishment and the se-
lection of generators requires 1.6 ms. 

Primitive Usage. The PP-IBE protocol combines elliptic curve operations, 
pairings, and modular exponentiations. Figure 4 shows the breakdown of Step 
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Table 3. Performance measurements at 128 bit security. 

Step Performance (ms) 

Demo 20381.8      

 Initialization 18699.5    

 Scenario 1682.2    

  1) Setup  1.6   

  2) Encrypt  132.5   

  3.1) Total for credi  304.0   

   Alice calculates ζi  127.8  

   ICAi issues credi  176.1  

    ICAi calculates ζi  132.0 

    Make h  8.5 

    Make a0  0.02 

    Make 0c′   8.7 

    Make c0  0.002 

    Make r0  0.1 

    Make 0r′   0.02 

   Alice accepts credi 26.6  

  3.2) Total for credj 461.8   

   Alice calculates ζj 128.7  

   ICAj verifies credi 160.3  

    Verifyintegrity  4.8 
    Verify ZKP  22.2 

    Verify Coefficients  133.1 

   ICAj issues credj 172.54  
    ICAj calculates ζj  129.06 

    Make h  8.4 

    Make a0  0.02 

    Make 0c′   8.4 

    Make c0  0.003 

    Make r0  0.08 

    Make 0r′   0.02 

   Alice accepts credj 26.49  
  3.3) Total for credk 462.0   
    Alice calculates ζk 129.2  
    ICAk verifies credj 159.3  
    ICAk issues credk 147.06  
    Alice accepts credk 26.28  
  4) Total for PKG 158.2   
   Verify credk 157.7  
   Extract key 0.5  
  5) Total for Finalize and Decrypt: 162.0   
   Finalize key: 3.3  
   Decrypt: 158.6  
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Continued 

Scalar Multiplication: 0.34  

Modular exponentiation: 0.06  

Mapto Point: 3.14  

Weil Pairing: 125.45  

 

 

Figure 3. Protocol execution (Setup, Encrypt, Credential Certifications, Key Extraction 
and Decrypt) takes approximately 1.68 seconds. Initialization activities for group and 
curve data structures require 18.7 seconds. Each protocol step exhibits sub-second per-
formance. The encrypt and decrypt steps have comparable performance, as do the three 
credential issuance steps.  

 

 

Figure 4. Looking at Step 3.2, the cost of pairing operations dominatesissuance of credj. 
The total cost of this step is 461.8 ms; 85% of that time is spent in pairings. 

 
3.2, the interactive protocol between Alice and ICAJ for the issuance of credj, and 
provides a view of the usage of the primitive operations and how the costs of these 
impact protocol performance.  

The total cost of step 3.2, the issuance of credj, is made up of four parts. Alice’s 
calculation of the pseudonym ζj, the ICA verification of credi, the issuance of 
credj, and Alice’s acceptance of credj. The first three parts each require a pairing 
calculation, at approximately 130 ms. The modular exponentiations require a 
fraction of that time. Looking at credential issuance and acceptance in steps 3 
and 4, over 20 modular exponentiations are required, at a total of 43.5 ms, these 
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making up only 25% of the total 172.54 ms required.  

7. Conclusions 

In a Boneh-Franklin Identity Based Encryption (BF-IBE) [3] [4], the Private Key 
Generator has significant power, with the ability to derive the decryption keys of 
the community of users. The community must trust, therefore, that this PKG 
will not be malicious. 

The recently-introduced Privacy Preserving Identity-based Encryption (“PP- 
IBE”) [1] [2] removes this complete knowledge of the PKG, and distributes it 
across the PKG and a community of Intermediate Certification Authorities (ICA) 
who grant identity and pseudonym credentials. In PP-IBE, the generation of de-
cryption keys becomes a collaborative responsibility between the ciphertext reci-
pient and the PKG. 

This paper provides an elaboration of the recent privacy preserving IBE pro-
posed by Adams. We offer a construction and a worked example based on tor-
sion groups within supersingular elliptic curves over Fp in which p = 2 mod 3, 
along with their accompanying distortion map. We make extensions to Adams’ 
algorithms, including a parameter generator, an added digital credential base to 
support our approach of carrying the Weil or Tate pairing coefficients, and a 
reuse opportunity between the issuance of identity credentials and pseudonym 
credentials. We offer a software implementation and a worked numeric example 
that may be useful to researchers and to students new to this area. We also offer 
selected discussions into representative-sized parameters for privacy and securi-
ty properties in an open-world setting. 
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Appendix—Notation 
Symbol Description 

P = (q, p, q', p') Parameter specification for an instantiation of PP-IBE 
r The order of the r-torsion group G. 

q 

Prime integer specifying the number of elements of G1 and GT. 
The security of the scheme in PP-IBE depends on q. 

In our construction, q = r, because G1 is chosen to be the  
torsion group of order r 

  The point at infinity of an elliptic curve 

p 
Prime integer. Base of the prime field Fp from which points in 

E(Fp) are drawn 

p' 
Prime number, the base of pZ ′  the prime field for digital 

credentials. p' is selected using q' such that q' | (p' − 1) 

pZ ′  
The prime field within which calculations for digital  

credentials and their signatures are performed. 

qZ ′  Prime field, source of the attributes and exponents for digital 
credentials 

#E(Fp) 
The order of the base elliptic curve. E is specified in this  

document such that q | o. 

( )[ ]pE F q  
The q-torsion group of curve E. In our construction 

( )[ ]1 pG E F q= . 

k 
Embedding degree k is the smallest positive integer k such that 
#G1 | #Ek + 1. In our implementation the Tate pairing requires 

k as an argument. 

Fp 
Prime field upon which the base elliptic curve E(Fp) is drawn. 

Fp is the set of integers [0, p-1]. 

E(Fp) 
The base elliptic curve. In this paper, 

( ) 2 3: 1pE F y x= + , , px y F∈  

G1 

The set of points, a subset of  
E(Fp), that forms the domain for the bilinear pairing function. 

Our construction presents a symmetric pairing in which  
G1 is a q-torsion subgroup of E(Fp). Group G1 is the source of 

identity points for the protocol; as such, its size is a privacy 
and security parameter. 

( )[ ]2p
E F q  

The extension of G1 into 2p
F . For a point ( )[ ]1 pp E F q∈ , 

( ) ( )[ ]21 p
p E F qϕ ∈  

( )2 1p pϕ=  

Distortion map which transforms a point from the torsion 
group 1  in the base curve E(Fp) to a point in the torsion 

group Gx in the elliptic curve on the extension field ( )2p
E F . 

In this paper we use ( ) ( ), ,x y x yϕ ζ=  

( )2p
E F  

The elliptic curve on the extension field. The set of pairs drawn 
from elements of the polynomial ring which satisfy the elliptic 

curve characteristic equation. In this paper, ( ) ( ){ }2 ,
p

E F x y=   

x,y in 2p
F , s.t. 2 3 1y x= + . 
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Continued 

2p
F  

Field extension of Fp, elements of which have the form 

1 0c x c+  with coefficients 1 0,c c  ϵ Fp. In this paper 2T p
G F⊂  

and ( )2 2 2p p p
FE F F⊂ × . 

1 1ˆ : Te G G G× →  

Custom pairing function ê  allowing two points from G1 
(possibly dependent) to be paired in a non-degenerate manner 
to a point in GT. Our construction implements ê  in terms of 

e and φ 

1 1: Tf G G G× →  A well-known pairing function, such as the Weil or the Tate 
pairing. 

G 
Source Group for the pairing. In our construction the source 

group G is the r-torsion, a subset of the points in Ep 

Gt 
Target Group. In our construction, the target group is 2p

F , 

the extension field 

pZ ′  
The prime field of integers modulo p'. used for calculation of 

digital credentials. 
*
pZ ′  The integers in pZ ′  relatively prime to p' 

qZ ′  
The prime field of integers mod q'. The values used for 

attributes and exponents within the digital credential are in  
qZ ′  

r The order of the r-torsion group G. 

q 

Prime integer specifying the number of elements of G1 and GT. 
The security of the scheme in PP-IBE depends on q. 

In our construction, q = r, because G1 is chosen to be the  
torsion group of order r 

  The point at infinity of an elliptic curve 

p Prime integer. Base of the prime field Fp from which points in 
E(Fp) are drawn 

p' 
Prime number, the base of pZ ′  the prime field for digital 

credentials. p' is selected using q' such that q' | (p' − 1) 

pZ ′  
The prime field within which calculations for digital  

credentials and their signatures are performed. 

qZ ′  Prime field, source of the attributes and exponents for digital 
credentials 

#E(Fp) 
The order of the base elliptic curve. E is specified in this doc-

ument such that q | o. 

( )[ ]pE F q  
The q-torsion group of curve E. In our construction  

( )[ ]1 pG E F q= . 

k 
Embedding degree k is the smallest positive integer k such that 
#G1 | #Ek + 1. In our implementation the Tate pairing requires 

k as an argument. 

Fp Prime field upon which the base elliptic curve E(Fp) is drawn. 
Fp is the set of integers [0, p − 1]. 

E(Fp) 
The base elliptic curve. In this paper, 

( ) 2 3: 1pE F y x= + , , px y F∈  
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Continued 

G1 

The set of points, a subset of E(Fp), that forms the domain for 
the bilinear pairing function. Our construction presents a 
symmetric pairing in which G1 is a q-torsion subgroup of 

E(Fp). Group G1 is the source of identity points for the  
protocol; as such, its size is a privacy and security parameter. 

( )[ ]2p
E F q  

The extension of G1 into 2p
F . For a point ( )[ ]1 pp E F q∈ , 

( ) ( )[ ]21 p
p E F qϕ ∈  

( )2 1p pϕ=  

Distortion map which transforms a point from the torsion 
group 1  in the base curve E(Fp) to a point in the torsion 

group Gx in the elliptic curve on the extension field ( )2p
E F . 

In this paper we use ( ) ( ), ,x y x yϕ ζ=  

G Source Group for the pairing. In our construction the source 
group G is the r-torsion, a subset of the points in  

pZ ′  
The prime field of integers modulo p'. used for calculation of 

digital credentials. 
*
pZ ′  The integers in pZ ′  relatively prime to p' 

qZ ′  
The prime field of integers mod q'. The values used for 

attributes and exponents within the digital credential are in  
qZ ′  
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