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Abstract 
The purpose of this article is to extend the theory of circulant matrix to gen-
eral ideal matrix, and to construct more general NTRU cryptosystem com-
bined with the φ -cyclic code. To understand our construction, first we dis-
cuss a more general form of the ordinary cyclic code, namely φ -cyclic code, 
which firstly appeared in [1] and [2], thus we give a more generalized 
NTRUEncrypt by replacing finite field with real number field � . 
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1. Introduction 

Lattice theory based cryptography is a representative technology of post quan-
tum cryptography, which is recognized by the academic community as being 
able to resist quantum computing attacks. Cyclic code and the number theory 
research unit (NTRU) cryptosystem are two representatives of the post quantum 
cryptography. Both the two cryptosystems are based on the theory of circulant 
matrix. Cyclic code plays a central role in algebraic coding theory (see Chapter 6 
of [3]). An important class of cyclic code named BCH code was discovered in 
1960 [4]. After that, many other codes were developed based on cyclic code, such 
as polynomial code, Goppa code and so on [5]. The φ -cyclic code was firstly in-
troduced in [1], which was applied to McEliece and Niederriter’s cryptosystems. 

NTRU cryptosystem is a new public key cryptosystem based on lattice hard 
problem proposed in 1996 by three digit theorists Hoffstein, Piper and Silver-
man of Brown University in the United States [6]. Its main feature is that the key 
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generation is very simple, and the encryption and decryption algorithm is much 
faster than the commonly used RSA and elliptic curve cryptography. In particu-
lar, NTRU can resist quantum computing attacks and is considered to be a po-
tential public key cryptography that can replace RSA in the post quantum cryp-
tography era. The essence of NTRU cryptographic design is the generalization of 
RSA on polynomials, so it is called the cryptosystem based on polynomial rings. 
However, NTRU can give a completely equivalent form by using the concept of 
q-ary lattice, so NTRU is also a lattice based cryptosystem. 

Many researchers have presented some variations of NTRU by changing its 
algebraic structure. In 2002, Gaborit introduced an NTRU-like cryptosystem 
called CTRU by replacing the base ring of the NTRU with a polynomial ring 
over a binary field [ ]2F x  [7]. They proved that their system is successfully de-
crypted. In 2005, Kouzmenko showed that CTRU is weak under a time attack 
and proposed the GNTRU cryptosystem based on Gaussian integers [ ]Z i  [8]. 
In the same year, Coglianese introduced an analog to the NTRU cryptosystem 
called MaTRU [9]. MaTRU is based on a ring of all square matrices with poly-
nomial entries. In 2009, Malekian introduced the QTRU cryptosystem based on 
quaternion algebra [10]. They also introduced the OTRU cryptosystem in 2010 
based on Octonion algebra [11]. In 2016, Alsaidi proposed a public key crypto-
system BITRU based on binary algebra [12]. However, all of the above variations 
of NTRU have limitations. The purpose of this article is to extend the theory of 
circulant matrix to general ideal matrix, and to construct more general NTRU 
cryptosystem combined with the φ -cyclic code. The motivation of this research 
is to adapt the distributed scenario of blockchain architecture and apply the post 
quantum cryptography in it. 

2. φ -Cyclic Code 

Let qF  be a finite field with q  elements and q  be a power of a prime num-
ber, [ ]qF x  be the polynomial ring of qF  with variable x . Let n

qF  be the 
n -dimensional linear space over qF , and ( )0 1 1, , , n

n qa a a a F−= ∈�  be a fixed 
vector in n

qF  with 0 0a ≠ , the associated polynomial of a  given by 

( ) ( ) [ ]1
1 1 0 0,   0.n n

a n qx x x a x a x a F x aφ φ −
−= = − − − − ∈ ≠�      (1.1) 

Let ( )xφ  be the principal ideal generated by ( )xφ  in [ ]qF x . There is a one 
to one correspondence between n

qF  and the quotient ring [ ] ( )qR F x xφ= , 
given by 

( ) ( ) 1
0 1 1 0 1 1, , , .n n

n q nc c c c F c x c c x c x R−
− −= ∈ = + + + ∈� � �      (1.2) 

In fact, this correspondence is also an isomorphism of Abel groups. One may 
extend this correspondence to subsets of n

qF  and R  by 

( ) ( ){ }| .n
qC F C x c x c C R⊂ = ∈ ⊂�               (1.3) 

If n
qC F⊂  is a linear subspace of n

qF  of dimension k , then C  is called a 
linear code in coding theory and written by [ , ]C n k=  as usual. Each vector 
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( )0 1 1, , , nc c c c C−= ∈�  is called a codeword of length n . Obviously, [ ],0C n=  
and [ ],C n n=  are two trivial codes. Another one is called constant codes, 
which is almost trivial given by 

( ){ } [ ], , , | ,  and ,1 .qC b b b b F C n= ∈ =�  

According to the given polynomial ( ) ( )ax xφ φ= , we may define a linear 
transformation φτ  in n

qF , 

( ) ( )( ) ( )0 1 1 0 1 0 1 1 2 1 1, , , , , ,n n n n n nc c c c a c c a c c a cφ φτ τ − − − − − −= = + +� �    (1.4) 

It is easily seen that : n n
q qF Fφτ →  is a linear transformation. 

Definition 1.1. Let n
qC F⊂  be a linear code. It is called a φ -cyclic code, if 

( ) .c C c Cφτ∀ ∈ ⇒ ∈                     (1.5) 

In other words, a linear code C  is a φ -cyclic code, if and only if C  is 
closed under linear transformation φτ . Clearly, if ( )1,0, ,0a = � , and 

( ) 1n
a x xφ = − , then the φ -cyclic code is precisely the ordinary cyclic code (see 

Chapter 6 of [1]). 
Remark The φ -cyclic code we give here is polycyclic code in fact, which 

firstly appeared in [1] [2], but we mainly concern for its application to McEliece 
and Niederriter’s cryptosystems. We first show that there is a one to one corres-
pondence between φ -cyclic codes in n

qF  and ideals in [ ] ( )qR F x xφ= . 
Theorem 1. Let n

qC F⊂  be a subset, then C  is a φ -cyclic code, if and only 
if ( )C x  is an ideal of R . 

Proof: We use column notation for vector in n
qF , then linear transformation 

φτ  may be written as 

0 0 1 0

1 0 1 1 1

1 2 1 1 1

,   .

n

n n
q

n n n n n

c a c c
c c a c c

c F

c c a c c

−

−

− − − − −

     
     +     = ∀ = ∈
     
     

+     

� � �φτ

 
Let Tφ  be a n n×  square matrix over qF , 

0

1

1

1

0 0

.n n
q

n

n

a
a

T F
I

a

φ
×

−

−

 
 
 = ∈
 
 
 

�

�
                (1.6) 

where 1nI −  is the ( ) ( )1 1n n− × −  unit matrix. The matrix expression of φτ  as 
follows 

0 0 0 1

1 1 0 1 1

1 1 2 1 1

.

n

n

n n n n n

c c a c
c c c a c

T

c c c a c

φ φτ

−

−

− − − − −

     
     +     = =
     
     

+     

� � �
             (1.7) 

Suppose n
qC F⊂  and ( )C x  is an ideal of R , it is clear that C  is a linear 

code of n
qF . To prove C  is a φ -cyclic code, we note that for any polynomial 

( ) ( )c x C x∈ , then ( ) ( )xc x C x∈  if and only if ( )c Cφτ ∈ , namely, if 
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( ) ( )c x C x∈ , then 

( ) ( ) ( ) .xc x C x c C T c Cφ φτ∈ ⇔ ∈ ⇔ ∈              (1.8) 

Therefore, if ( )C x  is an ideal of R , then we have immediately that C  is a 
φ -cyclic code of n

qF . 
Conversely, if n

qC F⊂  is a φ -cyclic code, then for all 1k ≥ , we have 

,  1.kc C T c C k∀ ∈ ⇒ ∈ ≥φ  
It follows that 

( ) ( ) ( ) ( ) ,  0 1,kc x C x x c x C x k n∀ ∈ ⇒ ∈ ≤ ≤ −  
which implies ( )C x  is an ideal of R . This is the proof of Theorem 1. �  

By Theorem 1, to find a φ -cyclic code, it is enough to find an ideal of R . 
There are two trivial ideals ( ) 0C x =  and ( )C x R= , the corresponding φ
-cyclic codes are [ ],0C n=  and n

qC F=  respectively, which are called trivial 
φ -cyclic code. To find non-trivial φ -cyclic codes, we make use of homomor-
phic theorems, which is a standard technique in Algebra. Let π  be the natural 
homomorphism from [ ]qF x  to its quotient ring [ ] ( )qR F x xφ= ,  

( )ker xπ φ= , 

( ) [ ] [ ] ( ) ,q qx N F x R F x xπφ φ⊂ ⊂ → =           (1.9) 

where N  is an ideal of [ ]qF x , which is containing ( )ker xπ φ= . Since 
[ ]qF x  is a principal ideal domain, then ( )N g x=  is a principal ideal gener-

ated by a monic polynomial ( ) [ ]qg x F x∈ . It is easy to see that 

( ) ( ) ( ) ( )| .x g x g x x⊂ ⇔φ φ
 

It follows that all ideals N  satisfying (1.9) are given by 

( ) ( ) [ ] ( ) ( ){ }|  is monic and | .qg x g x F x g x x∈ φ
 

We write by ( )g x  mod ( )xφ , the image of ( )g x  under π , it is easy 
to check 

( ) ( ) ( ) ( ) ( ) [ ] ( ) ( ){ }mod |  and deg deg ,qg x x h x g x h x F x h x g x nφ = ∈ + < (1.10) 

more precisely, which is a representative elements set of ( )g x  mod ( )xφ , 
by homomorphism theorem in ring theory, all ideals of R  given by 

( ) ( ) ( ) [ ] ( ) ( ){ }mod |  is monic and | .qg x x g x F x g x xφ φ∈     (1.11) 

Let d  be the number of monic divisors of ( )xφ  in [ ]qF x , we can get the 
following corollary immediately.  

Corollary 1. The number of φ -cyclic code in n
qF  is d . 

To compare the φ -cyclic code and ordinary cyclic code, we see a simple ex-
ample. 

Example 1. Constant code C  is always a cyclic code for 11 | 1n nx x x−+ + + −� , 
and its generated polynomial is just 11 nx x −+ + +� . But constant code C  in 

n
qF  is not always a φ -cyclic code, it is a φ -cyclic code if and only if  
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( )11 |nx x xφ−+ + +� , an equivalent condition for ( )11 |nx x xφ−+ + +�  is 

1 2 1 0,  and 1 .n na a a b a b− −= = = = = +�  
Definition 1.2. Let C  be a φ -cyclic code and ( ) ( )C x g x=  mod ( )xφ . 

We call ( )g x  is the generated polynomial of C , where ( )g x  is monic and 
( ) ( )|g x xφ . 
Lemma 1.1. Let ( ) 1

0 1 1
n k n k

n kg x g g x g x x− − −
− −= + + + +�  be the generated 

polynomial of a φ -cyclic code C , where 1 1k n≤ ≤ − , and ( ) ( )|g x xφ , then 
[ ],C n k=  and a generated matrix for C  is the following block matrix 

( )
( )

( )

2

1

,

k
k n

g
g
gG

g

φ

φ

φ

τ
τ

τ −

×

 
 
 
 =
 
 
 
 

�
                     (1.12) 

where ( )0 1 1, , , ,1,0, ,0n kg g g g C− −= ∈� �  is the corresponding codeword of 
( )g x , and ( ) ( )( )1i ig gφ φ φτ τ τ−=  for 1 1i n≤ ≤ − . 
Proof: By assumption, ( ) ( )C x g x=  mod ( )xφ , then  

( ) ( ){ }1, , , kg g g Cφ φτ τ − ⊂� , we are to prove it is a basis of C . First, these vec-
tors are linearly independent. Otherwise, we have 

( )
1

0
0,  for some ,

k
i

i i q
i

b g b Fφτ
−

=

= ∈∑                (1.13) 

and the corresponding polynomial is zero, namely 

( )
1

0
0.

k
i

i
i

b x g x
−

=

  = 
 
∑

 
It follows that 

1

0
0 0 for all ,  0 1.

k
i

i i
i

b x b i i k
−

=

= ⇒ = ≤ ≤ −∑
 

Next, if c C∈ , and ( ) ( )c x C x∈ , by (1.10), there is a polynomial  
( ) 2 1

0 1 2
k k

kb x b b x b x x− −
−= + + + +�  such that 

( ) ( ) ( ) ( )
1

1
0

,  where 1.
k

i
i k

i
c x b x g x b x g x b

−

−
=

 = = = 
 
∑

 
Thus we have the corresponding codeword of ( )C x  

( )
1

0
.

k
i

i
i

c b g
−

=

= ∑ φτ
 

This shows that ( ) ( ){ }1, , , kg g gφ φτ τ −�  is a basis of C , and a generated ma-
trix for C  is 

( )
( )

( )

2

1

.

k
k n

g
g
gG

g

φ

φ

φ

τ
τ

τ −

×

 
 
 
 =
 
 
 
 

�
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We have lemma 1.1 at once. �  
To describe a parity check matrix for a φ -cyclic code, for any  
( )0 1 1, , , n

n qc c c c F−= ∈� , we write 

( )1 2 1 0, , , , .n
n n qc c c c c F− −= ∈�  

Lemma 1.2. Suppose C  is a φ -cyclic code with generated polynomial 
( )g x , where ( ) ( )|g x xφ  and ( )deg g x n k= − . Let ( ) ( ) ( )h x g x xφ= , where 
( ) 1

0 1 1
k k

kh x h h x h x x−
−= + + + +� . Then a parity check matrix for C  is 

( )

( )
( )

1

.

n k

n k n

h

h
H

h

φ

φ

τ

τ − −

− ×

 
 
 

=  
 
  
 

�
                   (1.14) 

Proof: Since ( ) ( ) ( )h x g x xφ= , it means that ( ) ( ) 0h x g x =  in  
[ ] ( )qR F x xφ= , thus we have 

0 1 1 0,  0 1.i i n k i n kg h g h g h i n− − − ++ + + = ∀ ≤ ≤ −�  
It follows that 0GH ′ = , where G  is a generated matrix for C  given by 

(1.12). Therefore, H  is a parity check matrix for C . �  
A separable polynomial in Algebra means that it has no multiple roots in its 

splitting field. The following lemma shows that there is a unit element in any 
non-zero ideal of R , when ( )xφ  is a separable polynomial. 

Lemma 1.3. Suppose ( )xφ  is a separable polynomial of qF , and  
( ) ( )C x g x=  mod ( )xφ  is an ideal of R  with ( )deg 1g x n≤ − , then there 

exists an element ( ) ( )d x C x∈  such that 

( ) ( ) ( ) ( ) ( ),  for all .c x d x c x c x C x= ∈  
Proof: Let ( ) ( ) ( )h x g x xφ= . Since ( )xφ  is a separable polynomial, then 

gcd ( ) ( )( ), 1g x h x = , and there are two polynomial ( )a x  and ( )b x  in [ ]qF x  
such that 

( ) ( ) ( ) ( ) 1.a x g x b x h x+ =  
Let 

( ) ( ) ( ) ( ) ( ) ( )1 .d x a x g x b x h x C x= = − ∈  
If ( ) ( )c x C x∈ , by (1.10), we write ( ) ( ) ( )1c x g x g x= , it follows that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( ) ( ) ( )( )

1 1

1

1

mod .

c x d x a x g x g x g x b x h x g x g x

g x g x c x x

≡ ≡ −

≡ ≡ φ
 

Thus we have ( ) ( ) ( )c x d x c x=  in R . �  
Next, we discuss maximal φ -cyclic code. Let ( ) ( )C x g x=  mod ( )xφ , and 
( )g x  be an irreducible polynomial in [ ]qF x , we call the corresponding φ -cyclic 

code C  a maximal φ -cyclic code, because ( )g x  is a maximal ideal in 
[ ]qF x . 

Lemma 1.4. Let C  be a maximal φ -cyclic code with generated polynomial 
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( )g x , β  be a root of ( )g x  in some extensions of qF , then 

( ) ( ) ( ) ( ){ }|  and 0 .C x a x a x R a β= ∈ =             (1.15) 

Proof: If ( ) ( )a x C x∈ , by (1.10) we have ( ) 0a β =  immediately. Con-
versely, if ( ) [ ]qa x F x∈  and ( ) 0a β = , since ( )g x  is irreducible, thus we 
have ( ) ( )|g x a x , and (1.15) follows at once. �  

An important application of maximal φ -cyclic code is to construct an er-
ror-correcting code, so that we may obtain a modified McEliece-Niederriter’s 
cryptosystem. To do this, let 1 m n≤ < , and mq

F  be an extension field of qF  
of degree m . Suppose ( )m qq

F F θ= , where θ  is a primitive element of mq
F  

and ( )qF θ  is the simple extension containing qF  and θ . Let ( ) [ ]qg x F x∈  
be the minimum polynomial of θ , then ( )g x  is an irreducible polynomial of 
degree m  of [ ]qF x . It is well-known that mq

F  is a Galois extension of qF , so 
that all roots of ( )g x  are in mq

F . Let 1 2, , , mβ β β�  be all roots of ( )g x , the 
Vandermonde matrix ( )1 2, , , mV β β β�  defined by 

( )

2 1
1 1 1

2 1
2 2 2

1 2

2 1

1
1

, , , ,

1

n

n

m

n
m m m m n

H V

β β β
β β β

β β β

β β β

−

−

−
×

 
 
 = =  
  
 

�
�

�
� � � � �

�

       (1.16) 

where 1β θ=  and each iβ  is a vector of ( )m
qF . For arbitrary monic poly-

nomial ( ) [ ]qh x F x∈ , ( )deg h x n m= − , let ( ) ( ) ( )x h x g xφ =  and C  be a 
maximal φ -cyclic code generated by ( )g x . It is easy to verify that 

0.c C cH ′∈ ⇔ =  
Therefore, H  is a parity check matrix for C . If we choose the primitive 

element θ , so that any 1d −  columns in H  are linearly independent, then 
the minimum distance of C  is greater than d , and C  is a t-error-correcting  

code, where 
2
dt  =   

. 

The public key cryptosystems based on algebraic coding theory were created 
by R. J. McEliece [13] and H. Niederriter [14], a suitable t-error-correcting code 
plays a key role in their construction. The error-correcting code C  should sa-
tisfy the following requirements: 

1) C  should have a relatively large error-correcting capability so that a rea-
sonable number of message vectors can be used; 

2) C  should allow an efficient decoding algorithm so that the decryption can 
be carried out in a short time. 

Our results supply a different way to choose an error-correcting code by se-
lecting arbitrary irreducible polynomials ( ) [ ]qg x F x∈  of degree m  and roots 
of ( )g x  rather than an irreducible factor of 1nx −  and the roots of unit such 
as ordinary BCH code and Gappa code. 

In fact, for any positive integer m , there is at least an irreducible polynomial 
( ) [ ]qg x F x∈  with degree m . Let ( )qN m  be the number of irreducible poly-

nomials of degree m  in [ ]qF x , then we have (see Theorem 3.25 of [15]) 
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( ) ( )
| |

1 1 ,
m

d d
q

d m d m

mN m u q u d q
m d m

 = = 
 

∑ ∑
 

where ( )u d  is Mobius function. 
Assuming one has selected two monic and irreducible polynomials ( )g x  

and ( )h x  with ( )deg g x m=  and ( )deg h x n m= − , let ( ) ( ) ( )x g x h xφ = , 
then one may obtain φ -cyclic code C  generated by ( )g x  or ( )h x , which is 
more convenient and more flexible than the ordinary methods. 

Remark It’s difficult to compare the error-correcting capability between 
φ -cyclic code with existing cyclic codes of the same length and dimension. 
However, we believe that the advantages of φ -cyclic code will become more 
clear when q  increases. We will discuss this carefully in another paper later. 

3. A Generalization of NTRUEncrypt 

The public key cryptosystem NTRU proposed in 1996 by Hoffstein, Pipher and 
Silverman, is the fastest known lattice based encryption scheme, although its de-
scription relies on arithmetic over polynomial quotient ring [ ] 1nZ x x − , it 
was easily observed that it could be expressed as a lattice based cryptosystem (see 
[16]). For the background materials, we refer to [3] [6] [17] [18] [19] and [20]. 
Our strategy in this section is to replace [ ] 1nZ x x −  by more general poly-
nomial ring [ ] ( )Z x xφ  and obtain a generalization of NTRUEncrypt, where 
( )xφ  is a monic polynomial of degree n  with integer coefficients. 
In this section, we denote ( )xφ  and R  by 

( ) [ ] [ ] ( )1
1 1 0 0,  ,  0.n n

nx x a x a x a Z x R Z x x aφ φ−
−= − − − − ∈ = ≠�   (2.1) 

Let n nH Zφ
×∈  be a square matrix given by 

0

1

1

1

0 0

,
n

n n n

a
a

H H
I

a

φ
−

− ×

 
 
 = =
 
 
 

�

�
               (2.2) 

where 1nI −  is ( ) ( )1 1n n− × −  unit matrix. Obviously, ( )xφ  is the characte-
ristic polynomial of H , and H  defines a linear transformation of n n→� �  
by x Hx→ , where �  is real number field, x  is a column vector of n� . We 
may extend this transformation to 2n�  and denote σ  by 

2,  where .nH
H

α α α
σ

β β β
     

= ∈     
     

�                (2.3) 

Of course, σ  is again a linear transformation of 2 2n n→� � . 
According to [20], a q -ary lattice is a lattice L  such that n nqZ L Z⊂ ⊂ , 

where q  is a positive integer. 
Definition 2.1. A q -ary lattice L  is called convolutional modular lattice, if 

L  is in even dimension 2n  satisfying 

.
H

L L
H

α α α
σ

β β β
     

∀ ∈ ⇒ = ∈     
     

                (2.4) 
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In other words, a convolutional modular lattice is a q -ary lattice in even di-
mension and is closed under the linear transformation σ . 

Recalling the secret key 
f
g

 
 
 

 of NTRU is a pair of polynomials of degree 

1n − , we may regard f  and g  as column vectors in nZ . To obtain a convo-

lutional modular lattice containing 
f
g

 
 
 

, we need some help of ideal matrices. 

An ideal matrix generated by a vector f  is defined by 

( ) ( )* * 2 1, , , , ,n
n n

H f H f f Hf H f H fφ
−

×
 = =  �           (2.5) 

which is a block matrix in terms of each column ( )0 1kH f k n≤ ≤ − . It is easily 
seen that ( )*H f  is a generalization of the classical circulant matrices (see 
[21]), in fact, let ( ) 1nx xφ = − , and ( ) [ ]1

0 1 1
n

nf x f f x f x Z x−
−= + + + ∈� , the 

ideal matrix ( )*H fφ  generated by f  is given by 

( ) ( ) ( )

0 1 1

1 0 2* *

1 2 0

,  1,

n

n

n n

f f f
f f f

H f H f x x

f f f

−

− −

 
 
 = = = −
 
 
 

�
�

� � �
�

φ φ

 
which is known as a circulant matrix. On the other hand, ideal matrix and ideal 
lattice play an important role in Ajtai’s construction of a collision resistant Hash 
function, the related materials we refer to [3] [22] [23] [24] [25] and [26]. 

First, we have to establish some basic properties for an ideal matrix ( )*H f , 
most of them are known when ( )*H f  is a circulant matrix. 

Lemma 2.1. Suppose H  and ( )*H f  are given by (2.2) and (2.5) respec-
tively, then for any nf ∈�  we have 

( ) ( )* * ,  .nH H f H f H f⋅ = ⋅ ∀ ∈�  
Proof: Since ( ) 1

1 1 0
n n

nx x a x a x aφ −
−= − − − −�  is the characteristic poly-

nomial of H , by Hamilton-Cayley theorem, we have 
1

0 1 1 .n n
n nH a I a H a H −

−= + + +�                 (2.6) 

Let 

1

2 0

1

1

0
,  and .

n

n

a
a a

b H
I b

a
−

−

 
    = =      
 

�

 
By (2.5) we have 

( )

( )

0* 1

1

2 1 1
0 1 1

2 1

1 *

0
, , ,

, , , ,

, , , ,

, , , .

n

n

n n
n

n n

n

a
H f H f Hf H f

I b

Hf H f H f a f a Hf a H f

Hf H f H f H f

H f Hf H f H H f

−

−

− −
−

−

−

  =     
 = + + + 
 =  
 = = ⋅ 

�

� �

�

�
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the lemma follows. �  

Lemma 2.2. For any 

0

1

1

n

n

f
f

f

f −

 
 
 = ∈
 
 
 

�
�

 we have 

( )* 1
0 1 1 .n

n nH f f I f H f H −
−= + + +�               (2.7) 

Proof: We use induction on n  to show this conclusion. If 1n = , it is trivial. 
Suppose it is true for n , we consider the case of 1n + . For this purpose, we 
write nH H= , 1 2, , , ne e e�  the n  column vectors of unit in n� , namely 

1 2

1 0 0
0 1 0

,  , , ,

0 0 1

ne e e

     
     
     = = =
     
     
     

�
� � �

 
and 

0
1

1

0
,n

n

A
H

e H+

 
=  
   

where ( )0 00,0, , nA a= ∈� �  is a row vector. For any k , 1 1k n≤ ≤ − , it is 
easy to check that 

1
0

1 1 1 1
0

,   and .
k

k k n
n k k n k n k

k n

A H
H e e H e e H

e H

−

+ + +

 
= = =  

   

Let 

0

1
1

1

n

n

n

f
f

f
f
f

+

−

 
 
 
 = ∈
 
 
 
 

� � , we denote f ′  by 

1

2 0,  and .n

n

f
f f

f f
f

f

 
 

  ′ = ∈ =    ′  
 

�
�

 
By the assumption of induction, we have 

( )* 1 1
1 2, , , .n n

n n n n n n nH f f H f H f f I f H f H− − ′ ′ ′ ′= = + + + � �
 

It follows that 

( ) 0 0 0*
1 1 1

0 1 1 1

, , ,

.

n
n n n

n
n n n n

f f f
H f H H

f f f

f I f H f H

+ + +

+ +

      
=       ′ ′ ′      
= + + +

�

�  
We complete the proof of lemma 2.2. �  
We always suppose that ( ) [ ]x Z xφ ∈  is a separable polynomial and 

1 2, , , nw w w�  are complex number roots of ( )xφ , of which are different from 
each other. The Vandermonde matrix Vφ  generated by { }1 2, , , nw w w�  is 
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( )1 2

1 1 1
1 2

1 1 1

,  and det 0.n

n n n
n

w w w
V V

w w w− − −

 
 
 = ≠
 
 
 

�
�

� � �
�

φ φ

 
Lemma 2.3. Let ( ) [ ]1

0 1 1
n

nf x f f x f x x−
−= + + + ∈� � , then we have 

( ) ( ) ( ) ( ){ }* 1
1 2diag , , , ,nH f V f w f w f w Vφ φ

−= �           (2.8) 

where ( ) ( ) ( ){ }1 2, , ,diag nf w f w f w�  is the diagonal matrix. 
Proof: By Theorem 3.2.5 of [21], for H , we have 

{ }1
1 2diag , , , .nH V w w w Vφ φ

−= �                 (2.9) 

By lemma 2.2, it follows that 

( ) ( ) ( ) ( ){ }* 1
1 2diag , , , .nH f V f w f w f w Vφ φ

−= �  �  

Now, we summarize some basic properties for ideal matrix as follows. 
Theorem 2. Let nf ∈� , ng ∈�  be two column vectors and ( )*H f  be 

the ideal matrix generated by f , then we have: 
(i) ( ) ( ) ( ) ( )* * * *H f H g H g H f= . 
(ii) ( ) ( ) ( )( )* * * *H f H g H H f g= . 

(iii) ( )( ) ( )*

1
det

n

i
i

H f f w
=

=∏ . 

(iv) ( )*H f  is an invertible matrix if and only if ( )xφ  and ( )f x  are co-
prime, i.e. ( ) ( )( )gcd , 1x f xφ = . 

Proof: (i) and (ii) follow from lemma 2.2 immediately, (iii) and (iv) follow 
from lemma 2.3. Here we only give an equivalent form of (ii). Let 

( )* .f g H f g∗ =                      (2.10) 

then by (ii) we have 

( ) ( ) ( )* * * .H f g H f H g∗ =                  (2.11) 

�  

To construct a convolutional modular lattice containing vector 
f
g

 
 
 

, let 

2nf
Z

g
 

∈ 
 

, ( )( )*H f ′  be the transpose of ( )*H f , and 

( )( ) ( )( ) ( )

( )

( )

( )

2 2* *

1 1

2

, ,

n n

n n

f g
f H g H

f H g HA H f H g

f H g H− −

×

′ ′ 
 ′ ′ ′ ′ 

 ′ ′  ′ ′ ′ ′= =      
  ′ ′ ′ ′ 

� �
     (2.12) 

( )
( )

* 1

* 1
2

.
n

n
n n

H f f Hf H f
A

H g g Hg H g

−

−
×

   
′ = =       

�
�

          (2.13) 

We consider A  and A′  as matrices over qZ , i.e. 2n n
qA Z ×∈ , 2n n

qA Z ×′∈ , a 
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q -ary lattice ( )q AΛ  is defined by (see [20]) 

( ) ( ){ }2 | there exists mod .n n
q A y Z x Z y A x q′Λ = ∈ ∈ ⇒ ≡     (2.14) 

Under the above notations, we have 
Theorem 3. For any column vectors nf Z∈  and ng Z∈ , then ( )q AΛ  is a 

convolutional modular lattice, and ( )q

f
A

g
 

∈Λ 
 

. 

Proof: It is known that ( )q AΛ  is a q -ary lattice, i.e. 

( )2 2 .n n
qqZ A Z⊂ Λ ⊂  

We only prove that ( )q AΛ  is fixed under the linear transformation σ  
given by (2.4). If ( )qy A∈Λ , then ( )mody A x q′≡  for some nx Z∈ , by lem-
ma 2.1, we have 

( ) ( )
( )

( )
( ) ( )

* *

* * mod .
HH f x H f Hx

y A Hx q
HH g x H g Hx

   
′≡ = ≡      

   
σ

 
It means that ( ) ( )qy Aσ ∈Λ  whenever ( )qy A∈Λ . Let 

( ) ( )* *

1
0

,  and .

0

ne Z H f e f H g e g

 
 
 = ∈ ⇒ = =
 
 
 

�

 

We have ( )q

f
A

q
 

∈Λ 
 

, and Theorem 3 follows. �  

Since ( ) 2n
q A ZΛ ⊂ , then there is a unique Hermite Normal Form of basis 

N , which is an upper triangular matrix given by 

( ) ( )( ) ( )
* 1*,  where mod .

0
n

n

I H h
N h H f g q

qI
− 

= ≡ 
 

       (2.15) 

Next, we consider parameters system of NTRU. To choose the parameters of 
NTRU, let fd  be a positive integer and { },0, n np p Z− ⊂  be a subset of nZ , of 
which has exactly 1fd +  positive entries and fd  negative ones, the remaining 

2 1fn d− −  entries will be zero. We take some assumption conditions for choice 
of parameters as follows: 

(i) ( ) [ ]1
1 1 0

n n
nx x a x a x a Z xφ −
−= − − − − ∈�  with 0 0a ≠ , and ( )xφ  is se-

parable polynomial, , , , fn p q d  are positive integers with n  prime, 1 p q< <  
and gcd ( ), 1p q = . 

(ii) ( )f x  and ( )g x  are two polynomials in [ ]Z x  of degree 1n − , the 
constant term of ( )f x  is 1, and 

( ) { } { }1 ,0, ,  ,0, .n nf x p p g p p− ∈ − ∈ −  
(iii) ( )*H f  is invertible modulo q . 

(iv) 11 4
2 2f
qd p < − − 

 
. 

Under the above conditions, by lemma 2.2 we have 
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( ) ( ) ( ) ( )* *mod ,  and 0 mod .nH f I p H g p≡ ≡          (2.16) 

Now, we state a generalization of NTRU as follows. 
• Private key. The private key in generalized NTRU is a short vector 

2nf
Z

q
 

∈ 
 

. The lattice associated with a private key is ( )q AΛ , which is a 

convolutional modular lattice containing private key. 
• Public key. The public key of the generalized NTRU is the HNF basis N  of 

( )q AΛ , which is given by (2.15). 
• Encryption. An input message is encoded as a vector { }1,0, 1 nm∈ −  with 

exactly 1fd +  positive entries and fd  negative ones. Here the reason for 
restricting 1fd +  positive and fd  negative entries of vector m  is to im-
prove the efficiency of encryption and decryption and it’s not necessary. The 
vector m  is concatenated with a randomly chosen vector { }1,0, 1 nr∈ −  al-
so with exactly 1fd +  positive entries and fd  negative ones, to obtain a  

short error vector { }21,0, 1 nm
r

 
∈ − 

 
. Let 

( ) ( )
*

mod ,
0 0
c m m H h rN q

r
 +   

= ≡     
     

            (2.17) 

where h  is given by (2.15). Then, the n -dimensional vector c  

( ) ( )* mod ,c m H h r q≡ +  
is the ciphertext. 
• Decryption. Suppose the entries of n -dimensional vector c  are belong to 

interval ,
2 2
q q −  

, then ciphertext c  is decrypted by multiplying it by the 

secret matrix ( )*H f  mod q , it follows that 

( ) ( ) ( ) ( ) ( ) ( ) ( )* * * * * * mod .H f c H f m H f H h r H f m H g r q≡ + ≡ +   (2.18) 

Here, we use the identity (ii) of Theorem 2, namely, 

( ) ( ) ( )( )* * * * .H f H g H H f g=
 

If the above conditions (iv) is satisfied, it is easily seen that the coordinates of 

vector ( ) ( )* *H f m H g r+  are all bounded by 
2
q  in absolute value, or, with 

high probability, even for larger value of fd . The decryption process is com-
pleted by reducing (2.18) modulo p , to obtain 

( ) ( ) ( )* * mod .nH f m H g r mI p+ ≡  
Thus one gets plaintext m  from ciphertext c . 
Example 2. Let 3n = , 3p = , 7q = , ( ) 3 2 1x x x xφ = + + + , ( ) 23 1f x x= + , 

( ) 23g x x= , i.e. the private key is 
f
g

 
 
 

 with 
1
0
3

f
 
 =  
 
 

, 
0
0
3

g
 
 =  
 
 

. It is easy to 

get 
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( ) ( )* *

1 3 3 0 3 3
0 2 0 ,  and 0 3 0 .
3 3 1 3 3 0

H f H g
− −   

   = − = −   
   − −     

By (2.15), we compute the public key N  as follows 

( ) ( )*
* 3

3

2 2 3 3
0 ,  0 5 0 ,  and .

0 7
3 3 3 2

I H h
h H h N

I

−   
    = = =     
    − −     

Assume the input message 
1
0
0

m
 
 =  
 
 

, random vector 
0
1
0

r
 
 =  
 
 

, by (2.17) we 

get the ciphertext 

( ) ( )*

3
2 mod 7 .

3
c m H h r

− 
 ≡ + ≡ − 
 
   

By (2.18), we have 

( ) ( )*

2
3 mod 7 .

0
H f c

− 
 ≡ − 
 
   

Since 

( )
2 1
3 0 mod3 ,

0 0

−   
   − ≡   
   
     

one can get the plaintext 
1
0
0

m
 
 =  
 
 

 from ciphertext c . 

4. Conclusion 

In this study, we first discuss a more general form of the ordinary cyclic code, 
namely φ -cyclic code. Then we give a generalized construction of NTRU based 
on ideal matrix and q-ary lattice theory. Compared with other variations of 
NTRU, such as CTRU, GNTRU, QTRU and BITRU, our extended NTRU cryp-
tosystem is constructed with general ideal matrix rather than some special alge-
braic structures. Our purpose is to apply post quantum cryptography in distri-
buted scenarios of blockchain future. 
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