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Abstract 
Redistricting is the process of grouping all census blocks within a region to 
form larger subdivisions, or districts. The process is typically subject to some 
hard rules and some (soft) preferences to improve fairness of the solution. 
Achieving public consensus on the fairness of proposed redistricting plans is 
highly desirable. Unfortunately, fair redistricting is an NP hard optimization 
problem. The complexity of the process makes it even more challenging to 
convince the public of the fairness of the proposed solution. This paper pro-
poses a completely transparent blockchain based strategy to promote public 
participation in the redistricting process, to increase public confidence in the 
outcome of the process. The proposed approach is based on the fact that one 
does not have to worry about how the NP hard problem was solved, as long 
as it is possible for anyone to compute a “goodness” metric for the proposed 
plan. In the proposed approach, anyone can submit a plan along with the ex-
pected metric. Only the plan with the best claimed metric needs to be eva-
luated in a blockchain network. 
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1. Introduction 

Redistricting is a process of subdividing a geographical region into districts such 
that each district meets similarity criteria such as geographic contiguity, equality 
of population, etc. Some of the basic principles [1] underlying the congressional 
redistricting process include 1) contiguity of districts, 2) equality of population 
size, 3) geographic compactness, 4) protection against vote dilution of minori-
ties, 5) preservation of the boundaries of other political subdivisions, 6) promo-
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tion of electoral competition, 7) prohibition of partisan considerations, etc. 
In the United States, congressional redistricting is performed every 10 years to 

account for dynamics in population. Specific redistricting principles, however, 
may differ among states. Congressional redistricting may be performed by a 
commission of political representatives, or by independent experts. Redistricting 
by a politically biased committee may lead to what is known as gerrymandering 
[2]. A gerrymandered redistricting process produces districts that give an ad-
vantage [3] [4] to one party over another in elections. 

Ideally, redistricting seeks to create equal-population districts that are opti-
mally compact, thereby optimizing some cost. A redistricting plan that maps b 
blocks to d districts has bd possible solutions, making it an NP-hard problem [5]. 
While the notion of using sophisticated computer algorithms to automate redi-
stricting to produce a fair district plan is appealing, the public often lacks trust in 
the computer platforms and algorithms. The lack of trust is not unjustifiable, 
especially for complex platforms needed to solve NP-hard problems. Sophisti-
cated computer algorithms have been known to be misused to produce visually 
satisfying, but with subtle deliberate sub-optimal tweaks to create politically bi-
ased districts [5]. 

1.1. Problem Statement 

Let the b blocks in a region R be 1 bB B� . Any block iB  is a polygon with in  
sides, typically represented by a sequence of 1in +  boundary points (or vertices 
of a polygon) in the counter clockwise (CCW) order, viz., 

( ) ( ) ( ) ( ){ }1 1 2 2 1 1, , , , , , , , .
i ii n nB x y x y x y x y= �              (1) 

The last point is the same as the first point. Traversing the polygon in the CCW 
direction leaves the area enclosed by the polygon to the left. Figure 1 depicts a re-
gion R with 10 blocks, grouped into 3 districts. 

Assigning the b blocks to d districts is a process of creating d groups 1 dD D�  
among the b blocks, subject to some hard and soft constraints. For our purposes 
we shall assume that the region is a state, and the districts are congressional dis-
tricts. Hard constraints dictate that the blocks in a group should be contiguous 
(a block should share at least one side with another block in the same group), no  

 

 
Figure 1. A region R with 10 blocks grouped into 3 districts. 
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overlap between blocks, and no overlap between districts. Some soft constraints 
include equal-population, compactness, convexity, and proximity of blocks in a 
district to the “center” of the district. The center, could be a geographic centroid, 
or the population centroid (which pulls the geographic centroid closer to more 
populated blocks). Other soft constraints may include consideration of racial 
mix, annual income, political leanings, etc. 

In the United States, census blocks are public data [6], available in shapefile 
(.shp) format [7]. The shapefiles for states range from 4MB for the District of 
Colombia, to 760 MB for Texas. The total number of census blocks in the U.S.A 
is over 6 million. For example, the state of California has 710145b =  blocks 
grouped into 53d =  districts. 

1.1.1. The Challenge 
The computing process of interest to us in this paper is required to take possibly 
up to a million blocks as input, where each block is represented by possibly 
hundreds or even thousands of points. Each block may also be associated with 
non geographic data like population, racial mix, average annual income, political 
leanings, etc. The input will also include a set of weights i nw w�  applied to 
various soft metrics to influence the output of the process, viz., the allocation of 
blocks to each group. 

The utility of any computing process is ultimately limited by the extent of 
trust in the correctness of output of the process. In general, higher the complex-
ity of the platform, the harder it is to ensure that every component of the plat-
form is trustworthy. Given b blocks and d districts there are bd possible ways of 
grouping the blocks ( 53710145db =  for California). Given the enormity of the 
computational requirement at hand—choosing the best out of bd options—it is 
far from easy to justify the trust in the correctness of the output. 

One approach to enhance trust in the integrity of platforms is to minimize the 
trusted computing base (TCB), the minimal amount of hardware/software that 
needs to be trusted [8] to guarantee platform integrity. In von Neumann (VN) 
computers—which is almost every computing platform today—each step in the 
execution of any process (a machine instruction) requires memory access. If data 
previously stored in some memory location at time ts is retrieved later at time tr, 
it is simply assumed that the memory contents were not modified between times 
ts and tr. This potential time-of-check-time-of-use (TOCTOU) [9] vulnerability 
is simply ignored in the VN model, by including external memory inside the 
TCB.  

Unfortunately, trust in external memory is unjustifiable in modern computers 
with a complex hardware/software stack [10] [11] [12] [13]. A significant number of 
attacks that exploit this weakness, such as RAM scraping [14], buffer overflow[15], 
file-less malware [16], DMA malware attacks [17], invasive or semi-invasive attacks 
[18] etc., have repeatedly demonstrated exploits that illegitimately read/write 
memory. 
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1.2. Proposed Solution 

The proposed solution is motivated by the fact that one does not have to be 
concerned about how the computation was actually performed, as long as one 
can verify the results of the computation. For NP optimization problems, while 
computing a solution may have exponential complexity, verifying the correct-
ness of a proposed solution is typically a polynomial time algorithm. However, 
even while verification is substantially easier, the scale of data can make it hard 
to promote confidence in computing platforms used for verification. 

A blockchain network is essentially a computing platform where no compo-
nent needs to be included inside the TCB [19] [20] [21]. In the proposed ap-
proach, the verification algorithm is executed in a blockchain network. Specifi-
cally, the verification algorithm computes a goodness metric [22] for any pro-
posed solution. 

Anyone can submit a solution. In order to deter submission of incorrect solu-
tions, it can be mandated that each submission should explicitly indicate the fi-
nal metric, and be accompanied by a stake. The entity submitting the solution 
will lose the stake if the computed metric does not match the claimed metric. If 
the stake is high enough to serve as a deterrent, only one proposed solution (the 
one that claims the best metric) will need to be executed in the blockchain net-
work. 

1.3. Organization 

The rest of the paper is organized as follows. Section 2 begins with a discussion 
of various measures of optimality of redistricting plans. Section 2.1 provides a 
overview of an important component of the proposed solution, viz., hash tree 
based authenticated data structures (ADSes). Section 2.2 is an overview of 
blockchain networks as a platform for computing. More specifically, executing a 
process in a blockchain calls for a state-machine model for the process, where 
permitted state-changes are well-formed transactions. 

Section 3 discusses 3 distinct steps involved in the verification of redistricting 
plans, and outlines the scope of different types of blockchain transactions in each 
step. Additional discussions and conclusions are offered in Section 4. 

2. Overview 

Let D be a simple polygon whose n sides are described by Cartesian coordinates 
( ) ( ) ( )( )0 0 1 1 1 1 0 0, , , , , , , ,n nx y x y x y x y− −�  in the counter clockwise (CCW) direc-
tion, along the perimeter of the polygon. The area A [23], the perimeter P, and 
the coordinates of the centroid ( ). , .C C x C y=  [24] of the polygon D, can be 
computed incrementally by considering 2 adjacent points at a time, as 

( )( )
1

1 1
0

1
2

n

i i i i
i

A x x y y
−

+ +
=

= + −∑                    (2) 

( ) ( )
1 2 2

1 1
0

n

i i i i
i

P x x y y
−

+ +
=

= − + −∑                  (3) 
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( )( )
1

1 1 1
0
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6
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i i i i i i
i

C x x x x y x y
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−

+ + +
=

= + +∑
 

( )( )
1

1 1 1
0

1.
6

n

i i i i i i
i

C y y y x y x y
A

−

+ + +
=

= + +∑                (4) 

Geometric compactness [25] [26] [27] is a commonly used metric for eva-
luating the suitability of a proposed solution. Several measures of compactness 
exist for a polygon D with area A and perimeter P: 

1). Iso-perimetric ratio, computed as ( ) 2 ;ipI D A P=  
2) Reock ratio CR A A=  [25] where CA  is the area of the smallest circle 

bounding the polygon D (with area A); 
3) The convex hull ratio 

DD HH A A=  where 
DHA  is the area of the convex 

hull of D. 
For a district D with k blocks, the moment of inertia is computed as 
( ) 2

1
k

i iiI D w d
=

= ∑ , where id  is the distance between the centroid of the district 
and the centroid of block i. The weight iw  for block i can be based on the area of 
the block, or the population of the block, or more often, a combination of both. 

2.1. Authenticated Data Structures 

An authenticated data structure (ADS) [28]-[32] is a mechanism for computing 
a cryptographic commitment s to any number of discrete data items in a collec-
tion S . Useful ADSes, typically based on hash trees, possess efficient strategies 
to incrementally update the commitment ( )s t , with incremental changes to 
( )tS . 
Commitments are hashes, computed using a cryptographic hash function h(). 

Given ( )y h x=  with pre-image x and digest y, it is impractical from a compu-
tational perspective to determine any x x′ ≠  satisfying ( )y h x′= . One can 
thus reasonably conclude that digest y was computed after x was chosen, or that 
x “existed before” its commitment y. 

2.1.1. Merkle Hash Tree 
A Merkle hash tree [33] is an example of an ADS where the root of the tree (a 
single hash) is a commitment to a set of dynamic leaves. Figure 2 depicts a tree 
with ( ) 0,0s t v=  (root of the inverted tree) and ( ) { }0 7t L L= �S  as the 8 
leaves of the tree. For a balanced tree with 2dN =  leaves, there are 2i  nodes 
in level = 0,1, ,i d� , where 2logd N=  is the maximum depth of the ba-
lanced tree. 

A node ,r kv  at depth r, 0 2rk≤ <  is computed as 

( ), 1,2 1,2 1, .r k r k r kv h v v+ + +=                     (5) 

A leaf-node is obtained by hashing the contents of the leaf. In Figure 2, 
leaf-node ( )3,5 5v h L= .  

Any node at depth r has r complementary nodes, and r ancestor nodes. The 3 
blue nodes in the figure are ancestors of node 3,5v . The red nodes—the node’s 
own “sibling” of 3,4v , and the siblings 2,3v  and 1,0v  of its ancestors—are  
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Figure 2. A Merkle hash tree of depth 3d =  with 2 8dN = =  leaves. 
 

complementary to 3,5v . The complementary nodes of 3,5v  are the verification 
objects (VOs) for node 3,5v . 

2.1.2. Prover-Verifier Protocols 
For any one with access to only the root 0,0v  of the tree, knowledge of VOs of 

3,5v , viz., { }3,4 2,3 1,0, ,v v v , constitutes proof of existence of 3,5v  in the tree. 
Note that setting 3,5x v=  and following it with a sequence of 3 hash operations 
using the VOs, viz., ( )3,4 ,x h v x= , ( )2,3,x h x v= , ( )1,0 ,x h v x=  will yield 

0,0x v=  (the known root of the tree). Due to the one-way property of crypto-
graphic hash functions, that ( )3,5 5v h L=  exists in the tree, is also proof of exis-
tence of leaf 5L . 

If there is a legitimate reason to update 3,5 3,5v v′→ , using the same sequence 
of hash operations starting with 3,5x v′=  instead, one can compute the new 
value of the root, using the same VOs { }3,4 2,3 1,0, ,v v v . It is important to note that 
VOs of 3,5v  are unaffected by changes to 3,5v . 

The need for an update to 3,5v  may be for purposes of changing the contents 
of leaf 5L , or adding a new leaf by increasing depth of 5L . For example, a new 
leaf (say) L′  can be inserted alongside 5L , making ( )4,10 5v h L=  the new leaf 
node of 5L , and ( )4,11v h L′=  the leaf-node for the new leaf, thus changing 

3,5v  to ( )35 4,10 4,11,v h v v= . Just as inserting a leaf promotes a leaf node to “a 
parent of 2 leaf nodes,” deletion of a leaf will result in “a parent of 2 leaf nodes” 
being demoted to a leaf node. 

For a tree with N leaves, 2log N  VOs can be used to prove 
1) the existence of a specific leaf ( )L t∈S , or 
2) that the new root is ( )s t+ , corresponding to an update L L′→  to a leaf, 

or 
3) that the new root is ( )s t+ , corresponding to insertion/deletion of a leaf. 
In prover-verifier protocols based on ADSes, provers store all leaves and 

nodes. Verifiers are assumed to know only the root ( )s t  of the tree. Provers 
can prove specific properties regarding a data collection ( )tS  (leaves of the 
tree) against the commitment ( )s t  (root of the tree). If the total number of 
leaves is ( )t N=S , the proof takes the form of ( )2log N  VOs. Verifiers can 
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verify the proof by computing ( )2log N  cryptographic hash operations using 
the ( )2log N  VOs, and comparing the end result to the known commitment 
( )s t . The proofs also permit verifiers to update the commitment ( )s t  corres-

ponding to legitimate updates to ( )tS  (changing the contents of leaves, insert-
ing/deleting leaves, etc.).  

2.1.3. Geographic Collections 
In the proposed approach, the leaves (of a hash tree/ADS) will correspond to one 
or more collections of geographic elements like 

1) a side of a polygon, specified by 2 points (2 sets of ( ),x y  coordinates), or 
2) a rectangular bounding box, also specified by 2 points (lower-left and up-

per-right corners), or 
3) a more general key-value (k-v) collection. 
For a geographic point ( ). , .p p x p y= , .p x  and .p y  are typically latitude 

and longitude coordinates. Collectively, geographic elements in a collection may 
represent more complex objects like a polygonal region [34]. 

Leaves in a boundary line collection are of the form [ ]1 2, ,p p v , representing a 
boundary line connecting the 2 points. The value v may provide some informa-
tion about the line. In such collections, an example of a meaningful update is to 
split a leaf [ ]1 2, ,p p v  (representing a boundary line) into 2 leaves as 

[ ] [ ] [ ]{ }1 2 1 2, , , , , , , ,p p v p p v p p v→                 (6) 

at a redundant point p on the line. Such an incremental operation replaces a leaf 
with 2 leaves (or a new leaf is added to the tree). 

In a rectangular bounding box collection, leaves are of the form [ ]1 2, ,c c v , 
specifying the lower-left corner point 1c  and the upper-right corner point 2c . 
A rectangular bounding box can also be split into 2, for example, by a vertical 
line at X coordinate value 1 2. .sc x x c x< <  as 

[ ] [ ]
[ ]

1
1 2 1 2

2

, ,
, , . . , . . , . . .

, , s

c c v
c c v c x c x x c y c y c y c y

c c v
 ′ ′→ = = = = ′

      (7) 

or across a horizontal line with Y-coordinate value 1 2. .sc y y c y< < , as 

[ ] [ ]
[ ]

1
1 2 1 2

2

, ,
, , . . , . . , . . .

, , s

c c v
c c v c y c y y c x c x c x c x

c c v
 ′ ′→ = = = = ′

       (8) 

2.1.4. Key-Value Collections 
In a key-value (k-v) collection [30] the leaves are of the form [ ], ,nk k v  corres-
ponding to a k-v pair { },k v  with next-key nk . 

The first leaf added to an empty tree should be of the form [ ], ,k k v . A k-v 
pair { },k v  can be added to the collection only if a leaf [ ], ,a b u —a k-v pair 
{ },a u  with next-key b—already exists in the collection such that 

( ) ( ) ( )OR OR .a k b b a k k b a< < ≤ < < ≤              (9) 

If the condition above is satisfied, the existing leaf [ ], ,a b u  is replaced with 
two leaves 
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1) [ ], ,a k u : old k-v pair { },a u , but with K as next-key, and 
2) [ ], ,k b v : new k-v pair { },k v  with b as next-key. 

2.1.5. Hierarchical Hash Trees 
ADSes constructed using hash trees can have hierarchical structures. For exam-
ple, one or more values in a leaf can themselves be a hash tree root. 

As an example, assume that the verifier knows only the root ξ  of a hierar-
chical ADS. Two sets of VOs can be used to prove that 

1) “boundary line [ ]1 2,p p  exists in a tree with root bξ ” and 
2) “ [ ], bb ξ  exists in a tree with root ξ .” 
Such hierarchical collections will be very useful for our purposes. For exam-

ple, the tree with root ξ  may have a leaf for every block in a region. The value 
of the leaf for a block iB  may include a root vξ  for a collection of boundary 
lines for the block. 

2.1.6. State-Change Functions 
The practical utility of such ADSes is that any entity with access to merely the 
root s of the hash tree (with such geometric objects as leaves), can verify proof 
(using VOs) that “a boundary line ( )1 2,p p  exists in a polygon represented by 
hash tree with root s, and that splitting the line into two lines ( )1,p p  and 
( )2,p p  will result in a new commitment s′ .” 

The ability to enable verification of useful properties regarding process specif-
ic data ( )tS , and more importantly, update commitments in step with incre-
mental changes to ( )tS , can be leveraged using “some external mechanism” to 
maintain universal consensus on the dynamic commitment ( )s t  at all times. 

Such a mechanism is a blockchain network, where updates to ( )tS  (and 
hence, the commitment ( )s t ) are due to well-formed transactions. Specifically, 
different types of transactions may be permitted for a process (for example, 
splitting a leaf, splitting a bounding box, etc.), each of which results in an easily 
calculable change to the commitment ( )s t . 

More generally, given a transaction T of type k, the current commitment 
( )s t , and a small set of VOs v, any one can reliably calculate the updated com-

mitment as 

( ) ( )( ), , .ks t F s t T+ = v                      (10) 

In other words, validating the correctness of a state-change function ( )kF  
(for a transaction type k) will call for 2log N  hash operations, using 2log N  
VOs v . In blockchain networks, the transaction T triggering the state-change, 
and the updated state ( )s t+  after the transaction, are logged in the blockchain 
ledger. 

2.2. Blockchain Networks 

A blockchain network is a mechanism that employs a broadcast channel for 
maintaining consensus on the contents of a blockchain ledger. Only well-formed 
transactions (also broadcast over the channel) can be added to the ledger. What 

https://doi.org/10.4236/jis.2022.133009


M. Ramkumar, N. Adhikari 
 

 

DOI: 10.4236/jis.2022.133009 148 Journal of Information Security 
 

makes a transaction well-formed will depend on process specific rules. 

2.2.1. Ideal vs Practical Blockchain Networks 
In an ideal blockchain network, participation is universal. The broadcast channel 
is ideal—every participant will hear every broadcast at the same time; every par-
ticipant can then decide on their own, if the transaction is well-formed, and if so, 
add the transaction to the ledger. Every ledger entry changes the ledger-hash—a 
cryptographic commitment to the entire ledger. Specifically, if the current ledger 
with i transactions has a ledger hash id , then the ledger hash after adding the 
next transaction 1iT +  is ( )1 1,i i id h d T+ += . 

If everyone is honest, everyone will maintain identical ledger copies, with the 
same ledger-hash. Broadcasting the succinct ledger hash makes it easy for every 
one to confirm that they do indeed maintain identical ledger copies. 

In practical blockchain networks a ledger entry is not a transaction, but a 
commitment to a block of transactions. More specifically, each transaction is 
seen as a leaf of a hash tree, and the root of the tree is the commitment to the en-
tire block; the ledger hash is thus a commitment to a “chain of block (hashes).” 

In practical networks, only a small fraction of users may participate actively at 
any time. The broadcast channel, typically realized using a multi-hop peer to 
peer network, is far from ideal. Broadcasts may be heard at different times by 
different participants depending on the number of hops. Some participants may 
never hear some broadcasts. Furthermore, we cannot simply assume all partici-
pants to be honest. Even honest participants may sometimes have genuine disa-
greements regarding the correctness of a transaction. Even differences in 
time-of-arrival of transactions can cause differences between blocks added to 
different copies of ledgers, thereby creating forks in the ledger. 

In spite of the practical limitations, it is possible to use well designed incentive 
mechanisms [35] to ensure that a) only well-formed transactions are added to 
the ledger, and b) close to universal consensus is maintained on the correctness 
of ledger entries. An incentive mechanism has three main goals a) motivate par-
ticipation to ensure a reasonably large number of participants at all times; b) 
serve as a mechanism for penalizing ill-formed ledger entries; and c) minimize 
the chance of long-term survival of a forked ledgers. 

2.2.2. Explicit vs Implicit States 
A blockchain ledger is a log of state-changes due to transactions. For example, in 
crypto-currency applications, a transaction ( ) : ,T t A B c→    at time t transfers 
c coins from wallet A to wallet B, reducing wallet A balance by c and increasing 
wallet B balance by c. The state of the application at any time t can be seen as the 
remaining balance is every wallet. 

For this application, the transaction is considered as well-formed only if a) the 
transaction is signed by A, and if b) A had c or more coins prior to the transac-
tion. Ill-formed transactions are simply ignored, and thus do not change the 
state of the application. As an example that is more relevant to this paper, a 
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transaction to split a boundary line [ ]1 2, ,p p v  into [ ]1, ,p p v  and [ ]2, ,p p v  is 
considered as well-formed only if p lies on the line connecting 1p  and 2p  (as 
splitting the line at a redundant point p does not change the shape or area inside 
the polygon). 

In some networks like Bitcoin [36] the process state after each transaction is 
not made explicit in the transactions. In Ethereum [37], on the other hand, every 
transaction is accompanied by a cryptographic commitment to the updated state 
of the application/process affected by the transaction. In this paper, we restrict 
ourselves to transactions with explicit states. 

2.2.3. Progression of Process States 
In general, any process  , with process states  , can be executed in a block-
chain network, if the process is modeled as state-machine. In such a model, a 
process   is defined by m types of transactions (or state-change functions). A 
transaction jT  of type j is executed only if jT  is well-formed. Execution if 

jT  results in a change in the process state  . The progression of states of 
process   can be represented as 

1 2
1 2

0 1 2 1 ,
j j jnnT T T

n n−→ → →� �                 (11) 

The utility of ADSes stems from their ability to capture any number of dy-
namic process states as leaves of a (possibly hierarchical) hash tree, whose root s 
is a commitment to all process states. The progression of states changes in Equa-
tion (11) can equivalently be represented as 

1 2
1 2

1 2

( ) ( ) ( )
0 1 2 1 , ,

j j jnn

n

T T T
n nVO VO VOs s s s s−→ → →� �            (12) 

where the VOS accompanying each transaction serves as “proof of correctness” 
of the state-change. 

3. Redistricting Verification Protocol 

Given a set of blocks 1 bB B�  of a region R and districts 1 dD D� , any solution 
to the redistricting problem can be seen as a collection of b key-value pairs 

{ }, ,1 ,1i jB D i b j d≤ ≤ ≤ ≤ . The conditions that need to be satisfied for the solu-
tion to be considered as correct are as follows: 

1) No block is left unassigned; 
2) No block is assigned to more than 1 district; 
3) Blocks assigned to a district are contiguous. 
While numerous soft restrictions can be imposed, in this paper we shall limit 

ourselves to equal-population and compactness metric. We shall use the norma-
lized standard deviation of the population as a measure for deviation of popula-
tion between districts. For the compactness metric we can use the moment of 
inertia I, or more specifically 

2

1 1

jnd

j i ij
j i

I d A
= =

= ∑∑                        (13) 

https://doi.org/10.4236/jis.2022.133009


M. Ramkumar, N. Adhikari 
 

 

DOI: 10.4236/jis.2022.133009 150 Journal of Information Security 
 

where jn  is the number of blocks in district jD , ijA  is the area of the ith 
block in district jD , and id  is the distance between the centroids of district 

jD  and the ith block. 

3.1. ADSes for Blocks, Districts and State 

As the input to the process may involve tens of millions of points, and as data 
stored on general purpose computers are far from secure, the process involves 
constructing different types of ADSes such that a single commitment can be 
used to verify the integrity of any geographic data item, and correctness of any 
transaction performed to change data. For geographic data involving a billion 
points (or 302N ≈ ), only of the order of ( )2log 30N =  VOS are required for 
verifying proof of integrity of any data item or proof of correctness of any trans-
action that makes an incremental change to data. 

The verification protocol can be seen as consisting of 3 steps, 
1) Constructing a block-ADS with b blocks, for validating the inputs, viz., 

points corresponding to every block. 
2) Constructing a district-ADS with d districts, for evaluating a proposal spe-

cified by a key-value collection (with b key-value pairs of the form { },i jB D , 
conveying that iB  is assigned to district jD ). 

3) Constructing a “state-level” ADS. 
Processes in the first step ensure that the possibly tens of millions of points 

representing possibly hundreds of thousands of blocks do indeed constitute a set 
of valid polygonal regions. For a block with n points, ( )n  transactions will be 
called for; the total number of transactions will be proportional to the total 
number of points in the entire state. Consequently, the first step is possibly the 
most expensive one. Fortunately, this step will need to be performed only once. 
Once a block ADS is available for all blocks in the state, any one can access the 
data and confirm the validity of the block boundaries. The same block ADS can 
be used for any number of future redistricting attempts, as block boundaries 
typically remain stable. 

The second step is a process for every district in the state. The complexity of 
such processes will depend on the number of district boundary points, which 
can be substantially less than the total number of points in the entire state. The 
purpose of the second step is to ensure that there are no overlaps between blocks 
included in any district, and to compute various metrics for each district. 

The third step is a process for the entire state. The number of transactions for 
this process will be proportional to the number of state boundary points. The 
purpose of this is to ensure that districts do not overlap, and to compute overall 
metric for the state, and verify that the proposed metric is indeed correct. 

The second and third steps will need to be repeated for every proposal. How-
ever, as mentioned earlier, if there is sufficient deterrent to incorrect proposals, 
only the solution with the best claimed metric will need to undergo the last 2 
steps. 
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3.1.1. ADS Structures and Notations 
The ADSes used at various steps include 

1) the block ADS with root Bξ , which is a collection with key-value pairs of 
the form { },i iB v ; 

2) the District-ADS with root Dξ , also a key-value collection with key-value 
pairs of the form { },j jD u ; 

3) the “redistricting proposal,” a key-value collection with root BDξ , with 
pairs of the form { },i jB D . 

4) a state ADS Sξ  with a single leaf [ ]s . 
Values like iv  for block iB  ({ },i iB v  in tree with root Bξ ) and ju  for 

district jD  ({ },j jD v  in tree with root Dξ ) and value s for the state, include 
several values like area, centroid, population, multiple hash tree roots (for 
boundary-line collections, bounding box collections, key-value collections), and 
multiple point values needed to keep track of the progress of the process. Values 
associated with each polygonal structure like a block or a district or a state are 
summarized in Table 1. 

For a block iB , iv  conveys 10 values (in the top 5 rows of Table 1). The 
value ju  of a district jD  conveys 14 values (4 additional values , ,u cuA p I  
and ctb ). The single state polygon is associated with 24 values. 

In the rest of the paper we shall use the following notations for such values 
associated with blocks, districts and the state. For example, .i bv p  represents a 
point ( ). , .b b bp p x p y=  in value iv  of block iB  (in the block-ADS Bξ ). Tree  

 
Table 1. Values associated with polygonal blocks, districts and state. 

Values for All (Blocks, Districts and State) Polygons 

A computed area bp  beginning of previous line 

n population bp  end of previous line 

cp  centroid vξ  root of validated boundaries 

sp  start point uξ  root of un-validated boundaries 

rξ  root of bounding boxes   

rξ  root of redundant points   

4 More Values for District Polygons and State Polygon 

uA  sum of block areas cup  unverified centroid; 

I moment of inertia ctb  block count 

10 More Values for State Polygon 

Bξ  root of block ADS Dξ  root of district ADS 

BDξ  redistricting plan (root of k-v collection) dξ  root of district k-v collection 

nv  normalized variance ctd  number of districts 

vm  validated mean population um  un-validated mean population 

G unverified metric vG  verified metric 
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roots in value iv  are represented as .i uv ξ , .i vv ξ , etc. Similarly, .j bu p , and 
.j uu ξ  represent a point and a tree root in the value ju  of district jD , in the 

district-ADS Dξ . For values associated with the state we shall use notations like 
. , . , .e vs p s n sξ , etc. 
All ADSes begin as empty trees (or 0B D BD Sξ ξ ξ ξ= = = = ), and are incre-

mentally constructed by blockchain transactions. In the rest of the paper we shall 
refer to “a tree with root ξ ” as simply “tree ξ .” We shall also use the notation 
L ξ∈  to imply that “L has been verified to exist in the tree with root ξ  (using 
appropriate VOs).” For hierarchical collections such as the block ADS with root 

Bξ , . .B i rL vξ ξ∈  implies .i rL v ξ∈ , where { },i i BB v ξ∈ . 

3.2. Validating Polygons 

A high level overview of the process for validating a polygonal region can be 
understood from Figure 3 with an eight sided polygon. By performing 2 types of 
simple operations, viz., splitting a rectangular bounding box (splits across red 
lines in the figure), and splitting boundary lines (at 6 bold points in the figure) it 
is possible to ensure that every boundary line fits wholly inside a rectangular 
box. 

Some restrictions are imposed on mapping boundary lines to bounding boxes 
[34] to ensure that lines cannot cross each other inside a box, and make it easy to 
set the value v of the box to convey the lines mapped to the box. The restrictions 
are 1) no more than 2 lines may be mapped to a bounding box; 2) every line 
should start and/or stop at a corner of the BB; 3) in boxes with 2 boundary lines, 
both lines should be adjacent, and meet at a corner of the bounding box. 

For the example in Figure 3, 6 transactions for splitting boundary lines at 
bold dots, and 20 transactions for splitting a bounding box vertically or hori-
zontally (along red lines) will be needed to create conditions necessary for other 
transactions that map 1 boundary line, or map 2 adjacent boundary lines, to a  

 

 
Figure 3. Process for validating a polygonal region. 
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bounding box. For the example in Figure 3, 8 transactions that map a single line, 
and 3 transactions that map 2 lines (3 red shaded boxes) are called for. 

The boundary lines are initially available in the un-validated collection uξ . 
When a line from this collection uξ  is shown to fit in a bounding box in rξ , 
the line is moved to a collection vξ  of verified boundary lines (i.e., a leaf is de-
leted from the tree with root uξ  and added to the tree with root vξ ). If all lines 
are mapped successfully, uξ  will become empty, and vξ  will hold all verified 
lines. 

Lines have to be mapped sequentially, in the CCW order of points. A point 
value sp  is used to remember the starting point; point values bp  and ep  
keep track of the beginning and end of the last-mapped line (by a previous 
transaction). To map a line [ ]1 2, ,p p v  it is necessary that 1 ep p=  (the begin-
ning of the current line is the end of the last-mapped line). An exception is the 
first line, for which 0e bp p= = , and causes 1sp p=  to be set. The last line, 
with 2 sp p= , will signify completion of mapping. 

A transaction that maps a line [ ]1 2, ,p p v  incrementally computes the area as 
in Equation (2), and the centroid as in Equation (4). Specifically, the value A and 
coordinates ( ). . .c cp x p y  of the centroid are incremented as 

( )( )
( )( )

1 2 2 1

1 2 1 2 2 1

1 2 1 2 2 1

. . . .
. . . . . . .

. . . . . . .
c

c

A p x p y p x p y
p x p x p x p x p y p x p y

p y p y p y p x p y p x p y

+ = −

+ = +

+ = +

             (14) 

Transactions that map 2 adjacent lines [ ]1 2, ,p p v  and [ ]2 3, ,p p v  lines will 
repeat the same computation for the second line. Unless the unverified boundary 
lines points were specified in the CCW order, the computed area will be negative. 

The constraints on mapping lines to bounding boxes prevent two lines from 
crossing each other inside a box. However, they do not prevent them from 
crossing at boundary points. Figure 4 illustrates such a situation with a bad po-
lygon ABCD, in which AD and CB cross each other at point E. As shown in the 
figure, even with the restrictions, the polygon can still be mapped by splitting 
bounding boxes along dotted lines, to create a corner at E. 

 

 
Figure 4. Redundant points in “bad” polygons. 
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Fortunately, unlike redundant points like D′  (added by splitting side DA) 
and A′  (by splitting side AB) in the figure, the redundant point E will occur 
twice in the polygon, as both DA and BC will need to be split at point E to “ille-
gally” map the lines. Imposing a restriction that redundant points should be 
unique (as a well-formedness condition for transactions that map lines) will 
make it impossible to map polygons with intersecting sides. 

When a line [ ]1 2, ,p p v  is mapped, the value bp  (of the last-mapped-line) 
can be used to determine if 1p  is a redundant point (i.e., if 1 ep p=  lies on the 
line connecting bp  and 2p ). If so, the point is added to a key-value collection 

tξ  as a key. If there are duplicate redundant points, the inability to add a re-
dundant point to the key-value collection will cause the transaction to be 
deemed as ill-formed. 

3.2.1. The “Value” of a Bounding Box 
The value v in a bounding box [ ]1 2, ,c c v  can be set by transactions that map 1 
or 2 lines to determine which areas inside the box fall inside the polygon [34]. 
The value v in every box with 1 or 2 mapped lines indicates i) a type τ ; ii) an 
offset o; and iii) traversal direction (a binary flag) r. The 3 values unambiguously 
convey which parts of the bounding box (above/below a diagonal, above/below 
or to the left/right of a side of the box, or inside/outside the wedge shape formed 
by 2 lines) fall inside/outside the district. 

15 types of bounding boxes can be created by mapping lines; type 0τ =  with 
no lines; 2 types (types 1 and 2), where the line is a diagonal (one with positive 
slope, one with negative slope); 4 types (types 3 to 6) where a vertical or hori-
zontal boundary line is one of the 4 sides of the box; and 8 types (types 7 to 14) 
with 2 lines in the box; the 8 different types are due to the 4 possible corners 
where the 2 lines meet, and if the shorter line is above/below the diagonal. 

To uniquely identify the coordinates of the mapped line(s) only the type is 
needed for types 0-6. For types 7-14 (boxes with two lines) we also need an offset 
corresponding to the shorter line; the offset is 0o =  if the shorter line is a side 
of the box (the offset o for a block labeled f is shown in Figure 3). 

Apart from the type τ  and offset o, the direction of traversal inside the block 
is required to identify which region(s) inside the box are inside the polygon. For 
example, in Figure 3 while both blocks marked a and b have the same type (pos-
itive-slope diagonal) the traversal direction in block a makes the region above 
the diagonal inside the polygon, while in box b the region below the diagonal is 
inside the polygon. Similarly, in box f the wedge formed by 2 lines is inside the 
polygon while in block g the wedge is outside the polygon. 

3.3. Transactions for Constructing Block ADS  

A transaction InitBlock( , , , ,i n uB k k nξ ) adds a k-v pair { },i iB v  for key iB  
(block identifier), by splitting an existing k-v pair for key k with next key nk . 
For the first InitBlock() transaction (to add the first block to an empty tree with 

0Bξ = ), n ik k B= = . 
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The value iv  in k-v pair { },i iB v  is initialized as follows: 

. , .

. . . 0

. . . . . 0

i u u i

i v i r i t

i i c i s i b i e

v v n n
v v v
v A v p v p v p v p

ξ ξ
ξ ξ ξ

= =

= = =

= = = = =
               (15) 

with all values set to 0—except the population n (specified by the transaction) 
and the root uξ  of unverified boundary lines.  

For a region R with b blocks, b InitBlock() transactions will need to be ex-
ecuted to create a leaf for every block in the block ADS. 

3.3.1. Validating Polygon Bi 
The types of transactions executed in the blockchain for validating any block is 
the same for every block. The order in which transactions are executed will be 
block specific (depending on which specific lines/boxes should be split). 

Transactions for validating block iB  affect only values in iv  (in the k-v pair 
{ },i i BB v ξ∈ ). For simplicity of notation, in this section, we shall simply refer to 
a root .i rv ξ  as simply rξ . 

Leaves in tree rξ  are rectangular bounding boxes of the form [ ]1 2, ,0c c , with 
lower left corner at ( )1 1 1,c x y=  and upper right corner at ( )2 2 2,c x y= . 

Leaves in tree uξ θ  and vξ  are boundary lines of the form [ ]1 2, ,p p v . 
The tree tξ  is a key-value collection. A leaf [ ]1 2, , tp p v ξ∈ , implies existence 

of keys 1p  and 2p  and absence of keys between 1p  and 2p  (the value v has 
no meaning). 

The 5 transaction types used for validating blocks are as follows: 
1) SplitLine( 1 2, , ,iB p p p ): Split boundary line [ ]1 2, , .i i up p B v ξ∈  at a point p; 

this transaction is well-formed only if p lies on the line; 
2) SplitBB ( 1 2, , , ,iB c c v dir ): Split BB [ ]1 2, ,0c c  in .i rv ξ  vertically at 

X-coordinate v or horizontally at v (depending on the value dir; 0 for vertical 
and 1 for horizontal). If the tree is empty, the value v is ignored to create the first 
leaf [ ]1 2, ,0c c ; 

3) MapLine ( 1 2 1 2, , , ,iB p p c c ): Delete leaf [ ]1 2, , .i i up p B v ξ∈  and add it to 
.i vv ξ ; this transaction is valid only if the line falls entirely inside box 

[ ]1 2, ,0 .i rc c v ξ∈ , and 1p  and/or 2p  is a corner of the bounding box; further-
more, if 1p  is found to be redundant, add k-v pair { }1,p x  to tξ  (the value x 
is irrelevant); update area and centroid; 

4) Map2Line ( 1 2 3 1 2, , , , ,iB p p p c c ): Move 2 leaves [ ]1 2, , ip p B  and [ ]2 3, , ip p B  
from tree .i uv ξ θ  to tree .i vv ξ , if both lines fall entirely inside box  
[ ]1 2, ,0 .i rc c v ξ∈ , and the common point 2p  is a corner of the box; if 1p  is 
found to be redundant, add k-v pair { }1,p x  to tξ ; if 2p  is found to be re-
dundant, add k-v pair { }2 ,p x  to tξ ; update area and centroid; 

5) Finalize ( iB ) This transaction is invoked to mark completion of verifica-
tion of the polygon/block iB . 

Only if the points in uξ  were specified in the CCW order, will the computed 
area be positive. A transaction Finalize ( iB ) is well-formed only if . .i s i ev p v p=  
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(mapping completed), 0A >  (mapping was performed in the CCW order) and 
. 0i uv ξ =  (all input lines were correct). The value A (area) is divided by 2 (see 

Equation (2)); values .cp x  and .cp y  are then divided 6A (see Equation (4)). 
This process is repeated for every block to complete the construction of the 

ADS Bξ . 

3.4. Creating and Verifying Proposals  

As a redistricting proposal, the proposer submits a claimed metric G, and the 
commitment Bξ  to the input to the process (the block ADS). 

A transaction Proposal ( , ,B g mξ ) is invoked, and results in creation of a 
commitment ξ  to 24 values in state-polygon information in s. This initializes 
21 values to 0; only 3 values are set to non zero values, using the input to the 
transaction: 

. Completed Block ADS

. Unverified Metric

. Unverified Population Mean

B B

u

s
s G g
s m m

ξ ξ=
=
=

             (16) 

Just as the block ADS with root Bξ  was created to summarize information 
regarding every block, the process of validating the redistricting proposal results 
in the creation of 

1) a district ADS with root ,Dξ  
2) a key value collection BDξ  with block identity as key and district identity 

as value, and 
3) the state ADS (with a single leaf), with root Sξ . 
On completion of the process, the district ADS will contain district wide in-

formation like area, centroid, population, number of blocks, moment of inertia, 
etc., for every district, and the statewide metrics will be available in Sξ . 

Successful execution of all block validation protocols simply demonstrates 
that every block is a valid polygon. Successful execution of processes for updat-
ing Dξ  and BDξ  for every district will confirm that no overlaps exist in any of 
the blocks in any specific district. This is due to the fact that the district area is 
computed in 2 ways, by summing up areas of all blocks included in the district, 
and by “walking” along the boundary of the district (computed using Equation 
(2)). 

However, it still does not rule out possible overlaps between blocks in differ-
ent districts (and consequently, overlaps between districts). The final process 
which directly manipulates values in the lone leaf [s] in Sξ  involves creation of 
boundary lines for the entire state to confirm that no overlap exists between dis-
tricts. Once again, this is achieved by computing the area in 2 ways. 

In other words, to prove that G G′=  (the correctness of his/her proposal) 
1) The proposer will need to execute different types of transactions that 

create/update the district ADS Dξ  and key value collection BDξ ; this will in-
volve processes for each district, for computing district-wide totals like popula-
tion, area, moment of inertia, etc. 
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2) The proposer will then need to execute transactions to verify the boundary 
lines of the entire state, and compute state-wide totals (total moment of inertia I, 
and the normalized variance nv , and the final metric G′ ). 

Every district that has been considered to create state-wise totals (population, 
area, etc.) will be added to a key-value collection . dsξ  to ensure that no district 
is double counted. It is in this final process that the a unverified mean popula-
tion . us m  is used to compute normalized variance . ns v , total moment of iner-
tia, total number of blocks/districts ( . cts b  and . cts d ) inside the state, and the 
computed metric .s G′  (which should be equal to .s G ). However, by the end 
of the process a mean . vs m  is computed and verified to be the same as unveri-
fied . us m . Once the proposal has been verified, all boundary lines of the state 
will be in a tree with root . vsξ . 

3.5. District ADS Construction  

The district ADS with root Dξ  has key-value pairs of the form { },j jD u ). A 

transaction InitDistrict ( , , ,j n cuD k k p ) is invoked to add a k-v pair for district 

jD  (for the first leaf n jk k D= = ). Only a single value in ju , viz., .j cuu p , is 
initialized by the transaction as the (unverified) centroid of the district. All other 
(13) values are set to 0. 

During the validation process, the area of the district will be computed incre-
mentally in 2 different ways in .ju A  (by MapLine and Map2Lines transactions) 
and .j uu A , by adding the areas of all blocks added to BDξ . The unverified cen-
troid in .j cuu p  will be ultimately validated by a computed centroid in .j cu p . 
The moment of inertia will be computed for each district using the unverified 
centroid .j cuu p , and the computed values of block centroids and block areas in 
the block ADS Bξ . The value .j ctu b  is the count of unique blocks added to the 
district. 

In the block validation process, a leaf for a block iB  was initialized with the 
root uξ  (collection of un-validated block lines). However, a transaction to in-
itialize a leaf for a district jD  sets 0uξ = . 

To populate .j uu ξ  with outer district lines for jD , the prover will need to 
choose appropriate lines from block-ADS Bξ . The prover is allowed to choose 
any validated boundary line [ ]1 2, , . .i B i vp p B vξ ξ∈ , for any block iB , and 

1) add the line to .j uu ξ , and 
2) add { },i jB D  to k-v collection BDξ  (only if k-v pair does not already ex-

ist). 
Any number of lines may be added from the same block iB . However, only 

for the first line from a specific block iB , the k-v pair { },i jB D  is added to 

BDξ . For subsequent lines, the existence of { },i j BDB D ξ∈  is merely confirmed. 
The fresh addition of a key-pair { },i j BDB D ξ∈  is accompanied by the following 
steps 

1) .j uu A  is incremented by the computed area of block iB , . .B iv Aξ ; 
2) .ju I  (moment of inertia) is incremented by using i) the unverified cen-
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troid 1 .j cc u p=  of the district, 2) computed centroid 2 . .B i cc v pξ=  of block 

iB  and 3) computed area . .B iA v Aξ=  of block iB . Specifically, .ju I  is in-
cremented by 2Ar  where r is the distance between the district centroid 1c  
and block centroid 2c ; 

3) .j ctu b  (number of blocks in the district) is incremented by 1. 
The prover can also merge 2 lines [ ]1 2, ,p p v  and [ ]2 3, ,p p v  in the tree 
.j uu ξ  of yet-to-be-verified boundary lines into [ ]1 3, ,p p v  if 2p  is found to be 

a redundant point. 
The purpose of such transactions are 2 fold: i) to form the boundary line of 

the district jD  in tree .j uu ξ , and 2) include at least one line from every block 
in the district. The process for validating the district polygon in .j uu ξ  will be 
very similar to the process for validating a block. Unless a line is chosen from 
every block inside the district, the values .ju A  (computed during district vali-
dation) and .j uu A  (computed by adding areas of unique blocks to BDξ ) will 
not match. 

Once all necessary border lines have been copied to the tree .j uu ξ , transac-
tions SplitLine(), SplitBB(), MapLine(), Map2Lines() can be used to ensure that 
the district lines of jD  in .j uu ξ  correspond to a simple polygon. 

However, after all border lines have been mapped to bounding boxes, some 
internal lines will still remain in .j uu ξ , as at least one line had to be added from 
every internal block in the district. To be able to remove such lines from .j uu ξ  
it is essential to demonstrate that such lines fall inside district iD . To make this 
possible, the transactions MapLine(), Map2Lines() set the value v of bounding 
box leaves [ ]1 2, , .j rc c v u ξ∈ . 

For internal bounding boxes with no lines, the value v will not be set by Map-
Line()/Map2Lines() transactions. A special transaction has to used to set the box 
value depending on the value of any adjacent box. For example the value of box 
c can be determined by examining the value of an adjacent box like d or e. With 
all boxes marked, in this manner, it is now possible to check if a point p lies in-
side the polygon (district jD ), by examining a single box in .j ru ξ  in which 
point p falls, and examining the value v of the bounding box. This test can be 
used to throw away remaining lines in .j uu ξ  that were mapped from internal 
blocks, but were not used to create the district boundary. 

The transactions for validating a district are as follows: A transaction Choose-
Line ( 1 2, , ,j iD p p B ) 

1) chooses a line [ ]1 2, , . .i B i vp p B vξ ξ∈  from the input ADS (a k-v pair 

{ },i i BB v ξ∈  indicates the root .i vv ξ  of a validated boundary tree, in which this 

leaf [ ]1 2, , ip p B  should exist); 

2) adds the line to tree .j uu ξ ; 
3) checks if { },i j BDB D ξ∈ , and adds the pair if it does not exist; 
4) if { },i jB D  was added by the transaction the following additional steps are 

performed; 
a) increment .j uu A  using the area of block iB  in the block ADS; 

https://doi.org/10.4236/jis.2022.133009


M. Ramkumar, N. Adhikari 
 

 

DOI: 10.4236/jis.2022.133009 159 Journal of Information Security 
 

b) increment population .ju n  by population of block iB  in block ADS; 
c) increment moment of inertia using unverified district centroid, and com-

puted centroid and area of block iB  in block ADS. 
After district lines have been input to .j uu ξ , they are validated using the fol-

lowing transactions 
1) SplitLine ( 1 2, , ,jD p p p ), for splitting boundary lines in . .j uu ξ  
2) SplitBB ( 1 2, , , ,jD c c v dir ), for splitting bounding boxes in . .j ru ξ  
3) MapLine ( 1 2 1 2, , , ,jD p p c c ), for moving a line from .j uu ξ  to .j vu ξ  (sub-

ject to mapping constraints), and set the value v of bounding box in .j ru ξ . 
4) Map2Lines ( 1 2 3 1 2, , , , ,jD p p p c c ), for moving 2 adjacent lines from .j uu ξ  

to .j vu ξ  (subject to mapping constraints), and set the value v of bounding box 
in .j ru ξ . 

5) InnerBox ( 1 2 1 2, , , ,c c c c v′ ′ ′ ), to set the value of an interior box [ ]1 2, , 0c c v =  
using the value v′  of an adjacent box [ ]1 2, , .c c v′ ′ ′  

6) RemLine ( 1 2 1 2, , ,p p c c ) to remove a line with end points 1 2,p p  from the 
tree .j uu ξ  by demonstrating that 1p  falls inside bounding box [ ]1 2, ,c c v , and 
examining the value v. 

Finally, a transaction Finalize ( jD ) is recognized as well-formed only if 
. .j s j eu p u p=  (mapping completed), 0A >  (mapping was performed in the 

CCW order) and . 0j uu ξ =  (all input lines were correct). It resets points 
. , . , .j s j b j eu p u p u p  to zero. The value .ju A  (area) is divided by 2; values 
. .j cu p x  and . .j cu p y  are then divided by 6A. Another requirement for this 

transaction to be well-formed is that the computed centroid .j cu p  should be 
the same as the unverified value .j cuu p  used for computing the moment of in-
ertia .ju I  of the district. 

On completion of the Finalize ( jD ) transaction for every district, the metrics 
like moment of inertia and total population are available for each district. At this 
stage it is guaranteed that no block can appear in multiple districts as the only 
blocks in the key-value collection BDξ  can be added to a district, and duplicate 
keys (block identities) are ruled out in a key-value collection. 

As the same block cannot be included in two different districts it follows that 
districts cannot have overlaps. More specifically, overlaps in districts can happen 
only if there are overlaps between blocks. However, by confirming that the sum 
of the areas of all blocks in any district is the same as the area of the district, we 
can conclude that blocks in the same district do not overlap. 

To rule out overlaps between blocks in different districts we have one more 
step—to confirm that the area of the state is the sum of areas of all districts. Just 
as boundaries of each district were constructed using block boundary lines in the 
block ADS, the boundary lines of the state can be constructed using boundary 
lines in the district ADS Dξ . 

3.6. Constructing State Boundary Lines  

Unlike processes for initialing leaves for each block in Bξ  or each district in 
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Dξ , the “tree” Sξ  with a single leaf [s] was already initialized by the transaction 
Proposal() to create a proposal. 

A transaction ChooseLine ( 1 2, ,jD p p ) can be invoked to add any line from 
any district jD  (from the verified boundary line tree . .D j vuξ ξ ). If no entry ex-
ists in the k-v collection . dsξ  for key jD , an entry is added. Every time an en-
try is added in the collection 

1) . us A  is incremented by the area of district jD  ( . .D ju Aξ ); 
2) .s I  is incremented by the moment of inertia of jD  ( . .D ju Iξ ); 
3) .s n  is incremented by . .D jn u nξ= , the population of district jD , and 
. nvΞ  is incremented adding ( )2

u un m m− ; 
4) . cts d , the number of unique districts added to the k-v collection is incre-

mented by 1; 
5) . cts b , the number of unique blocks is incremented by the block-count of 

the district . .D j ctu bξ . 
After the required lines are added to . usξ  for creating the state boundary 

(along with other lines needed to ensure that at least one line from each district 
is added to . usξ ), the following transactions can be used to map lines in . usξ  
to create a verified collection of boundary lines in . vsξ . 

1) SplitLine ( 1 2, ,p p p → ), for splitting boundary lines in . ;usξ  
2) SplitBB ( 1 2, , ,c c v dir ), for splitting bounding boxes in . ;rsξ  
3) MapLine ( 1 2 1 2, , ,p p c c ⊃ ), for moving a line from . usξ  to . vsξ  (subject 

to mapping constraints), and set the value v of bounding box in . ;rsξ  
4) Map2Lines ( 1 2 3 1 2, , , ,p p p c c ), for moving 2 adjacent lines from . usξ  to 

. vsξ  (subject to mapping constraints), and set the value v of bounding box in 

. rsξ ; 

5) InnerBox ( 1 2 1 2, , , ,c c c c v′ ′ ′ ), to set the value of an interior box [ ]1 2, , 0c c v =  
in . rsξ  using the value v′  of an adjacent box [ ]1 2, ,c c v′ ′ ′ ; 

6) RemLine ( 1 2 1 2, , ,p p c c ) to remove a line with end points 1 2,p p  from the 
tree . usξ  by demonstrating that 1p  falls inside a box [ ]1 2, ,c c v  and examin-
ing the value v. 

Finally, a transaction ReportMetric() is considered well-formed only if 
. .s G s G′= , and v um m=  where 

. .u v ctm m n d= = Ξ Ξ  

1 2. nG G w I w v′= = Ξ +                     (17) 

If ReportMetric() is well-formed the commitment to Sξ  (to all values in s) is 
indicated as the state following the transaction. As s includes commitment to all 
other ADSes, it is also a commitment to all information regarding and all boun-
dary lines, and all bounding boxes, and all other block/district/state specific in-
formation in Table 1. 

4. Discussions  

The strategy proposed in this paper is a significant improvement over a previous 
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strategy in [38]. The salient differences between the two stem from a new strate-
gy for point-location queries proposed in [34]. 

In [38] the strategy for verifying that there are no intersections between lines 
of a polygon, used the traditional algorithmic approach (sweep-line) [39] with 
( )logn n  complexity for n points. A state-machine model of this process will 

also call for ( )logn n  state-changes (or transactions). In this paper, the ap-
proach of mapping lines to bounding boxes in [34] was used instead. It calls for 
linear dependency between number of transactions and number of points. The 
number of operations will depend on how many redundant points will need to 
be created, and/or the number of bounding box cuts. Our observations with 
real-world data from [6] suggest a constant factor between 1.5n to 3.2n. 

Secondly, apart from being more efficient compared to [38], the end result of 
the transactions, viz., creation of “map” like structures rξ  for every polygon, 
can be used for purposes other than redistricting, for example, determine in 
which block/district a particular point ( ),x y  falls [34]. 

Finally, this paper addresses a minor flaw in [38]. Validating the district/state 
area merely by “walking” around the district/state boundary (incremental area 
computation using Equation (2)), and by adding up all block/district areas, still 
opens up the possibility of being able to swap a block inside the district with an 
equal area block outside the district. By constructing bounding box maps and 
checking at that least one point from every included block actually lies inside the 
district, this flaw in [38] is addressed in this paper. 

To keep the discussion simple we have focused on a single compactness me-
tric and a single population metric. Additions necessary to substitute metrics are 
trivial. 

5. Conclusions 

This paper presented a strategy for blockchain based redistricting to enhance 
public trust. Every step in the construction of useful geographic ADSes—a 
transaction—can be verified by anyone to be correct, using VOs that accompany 
every transaction. 

Apart from improving public trust in the redistricting process, the authenti-
cated data structures produced by the process can have utility in several other 
applications. For example, ADSes of different states could be combined after 
every redistricting to create nationwide maps. 

In the description for validating blocks in Section 3.3 there was no need to set 
the values of bounding boxes to facilitate reliable point-location queries 
(point-location capabilities were only needed at district and state levels to throw 
out internal boundary lines from the collection of un-validated lines). However, 
it may be advantageous to do so, even at the block level to support further sub-
divisions of blocks. For example, blocks could be further subdivided into zones, 
parcels, etc., for use by local governments. 

One practical limitation of the proposed approach is that it does not take into 
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account the fact that some districts/states may need to be discontinuous (for 
example, islands separated by water). This would call for additional transactions 
to handle such scenarios. Another practical issue not addressed in this paper is 
the validation of an important nongeographic input—the population of each 
block. As the process for constructing block ADS should be performed by a re-
levant government authority, the specific nature of authentication mechanisms 
is beyond the scope of this paper. Our current efforts include strategies for ad-
dressing some practical limitations of the proposed approach. More generally, 
the approach of merely verifying solutions to NP hard optimization problems in 
a blockchain network, can be extended to several other application scenarios. 
Our ongoing research includes other useful application scenarios. 
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