
Journal of Information Security, 2022, 13, 140-164
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2022.133009 Jul. 11, 2022 140 Journal of Information Security

Blockchain Based Redistricting with Public
Participation

Mahalingam Ramkumar1, Naresh Adhikari2

1Mississippi State University, Starkville, MS, USA
2Slippery Rock University, Slippery Rock, PA, USA

Abstract
Redistricting is the process of grouping all census blocks within a region to
form larger subdivisions, or districts. The process is typically subject to some
hard rules and some (soft) preferences to improve fairness of the solution.
Achieving public consensus on the fairness of proposed redistricting plans is
highly desirable. Unfortunately, fair redistricting is an NP hard optimization
problem. The complexity of the process makes it even more challenging to
convince the public of the fairness of the proposed solution. This paper pro-
poses a completely transparent blockchain based strategy to promote public
participation in the redistricting process, to increase public confidence in the
outcome of the process. The proposed approach is based on the fact that one
does not have to worry about how the NP hard problem was solved, as long
as it is possible for anyone to compute a “goodness” metric for the proposed
plan. In the proposed approach, anyone can submit a plan along with the ex-
pected metric. Only the plan with the best claimed metric needs to be eva-
luated in a blockchain network.

Keywords
Redistricting, Authenticated Data Structures, Blockchain Ledger

1. Introduction

Redistricting is a process of subdividing a geographical region into districts such
that each district meets similarity criteria such as geographic contiguity, equality
of population, etc. Some of the basic principles [1] underlying the congressional
redistricting process include 1) contiguity of districts, 2) equality of population
size, 3) geographic compactness, 4) protection against vote dilution of minori-
ties, 5) preservation of the boundaries of other political subdivisions, 6) promo-

How to cite this paper: Ramkumar, M.
and Adhikari, N. (2022) Blockchain Based
Redistricting with Public Participation. Jour-
nal of Information Security, 13, 140-164.
https://doi.org/10.4236/jis.2022.133009

Received: May 23, 2022
Accepted: July 8, 2022
Published: July 11, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2022.133009
https://www.scirp.org/
https://doi.org/10.4236/jis.2022.133009
http://creativecommons.org/licenses/by/4.0/

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 141 Journal of Information Security

tion of electoral competition, 7) prohibition of partisan considerations, etc.
In the United States, congressional redistricting is performed every 10 years to

account for dynamics in population. Specific redistricting principles, however,
may differ among states. Congressional redistricting may be performed by a
commission of political representatives, or by independent experts. Redistricting
by a politically biased committee may lead to what is known as gerrymandering
[2]. A gerrymandered redistricting process produces districts that give an ad-
vantage [3] [4] to one party over another in elections.

Ideally, redistricting seeks to create equal-population districts that are opti-
mally compact, thereby optimizing some cost. A redistricting plan that maps b
blocks to d districts has bd possible solutions, making it an NP-hard problem [5].
While the notion of using sophisticated computer algorithms to automate redi-
stricting to produce a fair district plan is appealing, the public often lacks trust in
the computer platforms and algorithms. The lack of trust is not unjustifiable,
especially for complex platforms needed to solve NP-hard problems. Sophisti-
cated computer algorithms have been known to be misused to produce visually
satisfying, but with subtle deliberate sub-optimal tweaks to create politically bi-
ased districts [5].

1.1. Problem Statement

Let the b blocks in a region R be 1 bB B� . Any block iB is a polygon with in
sides, typically represented by a sequence of 1in + boundary points (or vertices
of a polygon) in the counter clockwise (CCW) order, viz.,

() () () (){ }1 1 2 2 1 1, , , , , , , , .
i ii n nB x y x y x y x y= � (1)

The last point is the same as the first point. Traversing the polygon in the CCW
direction leaves the area enclosed by the polygon to the left. Figure 1 depicts a re-
gion R with 10 blocks, grouped into 3 districts.

Assigning the b blocks to d districts is a process of creating d groups 1 dD D�
among the b blocks, subject to some hard and soft constraints. For our purposes
we shall assume that the region is a state, and the districts are congressional dis-
tricts. Hard constraints dictate that the blocks in a group should be contiguous
(a block should share at least one side with another block in the same group), no

Figure 1. A region R with 10 blocks grouped into 3 districts.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 142 Journal of Information Security

overlap between blocks, and no overlap between districts. Some soft constraints
include equal-population, compactness, convexity, and proximity of blocks in a
district to the “center” of the district. The center, could be a geographic centroid,
or the population centroid (which pulls the geographic centroid closer to more
populated blocks). Other soft constraints may include consideration of racial
mix, annual income, political leanings, etc.

In the United States, census blocks are public data [6], available in shapefile
(.shp) format [7]. The shapefiles for states range from 4MB for the District of
Colombia, to 760 MB for Texas. The total number of census blocks in the U.S.A
is over 6 million. For example, the state of California has 710145b = blocks
grouped into 53d = districts.

1.1.1. The Challenge
The computing process of interest to us in this paper is required to take possibly
up to a million blocks as input, where each block is represented by possibly
hundreds or even thousands of points. Each block may also be associated with
non geographic data like population, racial mix, average annual income, political
leanings, etc. The input will also include a set of weights i nw w� applied to
various soft metrics to influence the output of the process, viz., the allocation of
blocks to each group.

The utility of any computing process is ultimately limited by the extent of
trust in the correctness of output of the process. In general, higher the complex-
ity of the platform, the harder it is to ensure that every component of the plat-
form is trustworthy. Given b blocks and d districts there are bd possible ways of
grouping the blocks (53710145db = for California). Given the enormity of the
computational requirement at hand—choosing the best out of bd options—it is
far from easy to justify the trust in the correctness of the output.

One approach to enhance trust in the integrity of platforms is to minimize the
trusted computing base (TCB), the minimal amount of hardware/software that
needs to be trusted [8] to guarantee platform integrity. In von Neumann (VN)
computers—which is almost every computing platform today—each step in the
execution of any process (a machine instruction) requires memory access. If data
previously stored in some memory location at time ts is retrieved later at time tr,
it is simply assumed that the memory contents were not modified between times
ts and tr. This potential time-of-check-time-of-use (TOCTOU) [9] vulnerability
is simply ignored in the VN model, by including external memory inside the
TCB.

Unfortunately, trust in external memory is unjustifiable in modern computers
with a complex hardware/software stack [10] [11] [12] [13]. A significant number of
attacks that exploit this weakness, such as RAM scraping [14], buffer overflow[15],
file-less malware [16], DMA malware attacks [17], invasive or semi-invasive attacks
[18] etc., have repeatedly demonstrated exploits that illegitimately read/write
memory.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 143 Journal of Information Security

1.2. Proposed Solution

The proposed solution is motivated by the fact that one does not have to be
concerned about how the computation was actually performed, as long as one
can verify the results of the computation. For NP optimization problems, while
computing a solution may have exponential complexity, verifying the correct-
ness of a proposed solution is typically a polynomial time algorithm. However,
even while verification is substantially easier, the scale of data can make it hard
to promote confidence in computing platforms used for verification.

A blockchain network is essentially a computing platform where no compo-
nent needs to be included inside the TCB [19] [20] [21]. In the proposed ap-
proach, the verification algorithm is executed in a blockchain network. Specifi-
cally, the verification algorithm computes a goodness metric [22] for any pro-
posed solution.

Anyone can submit a solution. In order to deter submission of incorrect solu-
tions, it can be mandated that each submission should explicitly indicate the fi-
nal metric, and be accompanied by a stake. The entity submitting the solution
will lose the stake if the computed metric does not match the claimed metric. If
the stake is high enough to serve as a deterrent, only one proposed solution (the
one that claims the best metric) will need to be executed in the blockchain net-
work.

1.3. Organization

The rest of the paper is organized as follows. Section 2 begins with a discussion
of various measures of optimality of redistricting plans. Section 2.1 provides a
overview of an important component of the proposed solution, viz., hash tree
based authenticated data structures (ADSes). Section 2.2 is an overview of
blockchain networks as a platform for computing. More specifically, executing a
process in a blockchain calls for a state-machine model for the process, where
permitted state-changes are well-formed transactions.

Section 3 discusses 3 distinct steps involved in the verification of redistricting
plans, and outlines the scope of different types of blockchain transactions in each
step. Additional discussions and conclusions are offered in Section 4.

2. Overview

Let D be a simple polygon whose n sides are described by Cartesian coordinates
() () ()()0 0 1 1 1 1 0 0, , , , , , , ,n nx y x y x y x y− −� in the counter clockwise (CCW) direc-
tion, along the perimeter of the polygon. The area A [23], the perimeter P, and
the coordinates of the centroid (). , .C C x C y= [24] of the polygon D, can be
computed incrementally by considering 2 adjacent points at a time, as

()()
1

1 1
0

1
2

n

i i i i
i

A x x y y
−

+ +
=

= + −∑ (2)

() ()
1 2 2

1 1
0

n

i i i i
i

P x x y y
−

+ +
=

= − + −∑ (3)

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 144 Journal of Information Security

()()
1

1 1 1
0

1.
6

n

i i i i i i
i

C x x x x y x y
A

−

+ + +
=

= + +∑

()()
1

1 1 1
0

1.
6

n

i i i i i i
i

C y y y x y x y
A

−

+ + +
=

= + +∑ (4)

Geometric compactness [25] [26] [27] is a commonly used metric for eva-
luating the suitability of a proposed solution. Several measures of compactness
exist for a polygon D with area A and perimeter P:

1). Iso-perimetric ratio, computed as () 2 ;ipI D A P=
2) Reock ratio CR A A= [25] where CA is the area of the smallest circle

bounding the polygon D (with area A);
3) The convex hull ratio

DD HH A A= where
DHA is the area of the convex

hull of D.
For a district D with k blocks, the moment of inertia is computed as
() 2

1
k

i iiI D w d
=

= ∑ , where id is the distance between the centroid of the district
and the centroid of block i. The weight iw for block i can be based on the area of
the block, or the population of the block, or more often, a combination of both.

2.1. Authenticated Data Structures

An authenticated data structure (ADS) [28]-[32] is a mechanism for computing
a cryptographic commitment s to any number of discrete data items in a collec-
tion S . Useful ADSes, typically based on hash trees, possess efficient strategies
to incrementally update the commitment ()s t , with incremental changes to
()tS .
Commitments are hashes, computed using a cryptographic hash function h().

Given ()y h x= with pre-image x and digest y, it is impractical from a compu-
tational perspective to determine any x x′ ≠ satisfying ()y h x′= . One can
thus reasonably conclude that digest y was computed after x was chosen, or that
x “existed before” its commitment y.

2.1.1. Merkle Hash Tree
A Merkle hash tree [33] is an example of an ADS where the root of the tree (a
single hash) is a commitment to a set of dynamic leaves. Figure 2 depicts a tree
with () 0,0s t v= (root of the inverted tree) and () { }0 7t L L= �S as the 8
leaves of the tree. For a balanced tree with 2dN = leaves, there are 2i nodes
in level = 0,1, ,i d� , where 2logd N= is the maximum depth of the ba-
lanced tree.

A node ,r kv at depth r, 0 2rk≤ < is computed as

(), 1,2 1,2 1, .r k r k r kv h v v+ + += (5)

A leaf-node is obtained by hashing the contents of the leaf. In Figure 2,
leaf-node ()3,5 5v h L= .

Any node at depth r has r complementary nodes, and r ancestor nodes. The 3
blue nodes in the figure are ancestors of node 3,5v . The red nodes—the node’s
own “sibling” of 3,4v , and the siblings 2,3v and 1,0v of its ancestors—are

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 145 Journal of Information Security

Figure 2. A Merkle hash tree of depth 3d = with 2 8dN = = leaves.

complementary to 3,5v . The complementary nodes of 3,5v are the verification
objects (VOs) for node 3,5v .

2.1.2. Prover-Verifier Protocols
For any one with access to only the root 0,0v of the tree, knowledge of VOs of

3,5v , viz., { }3,4 2,3 1,0, ,v v v , constitutes proof of existence of 3,5v in the tree.
Note that setting 3,5x v= and following it with a sequence of 3 hash operations
using the VOs, viz., ()3,4 ,x h v x= , ()2,3,x h x v= , ()1,0 ,x h v x= will yield

0,0x v= (the known root of the tree). Due to the one-way property of crypto-
graphic hash functions, that ()3,5 5v h L= exists in the tree, is also proof of exis-
tence of leaf 5L .

If there is a legitimate reason to update 3,5 3,5v v′→ , using the same sequence
of hash operations starting with 3,5x v′= instead, one can compute the new
value of the root, using the same VOs { }3,4 2,3 1,0, ,v v v . It is important to note that
VOs of 3,5v are unaffected by changes to 3,5v .

The need for an update to 3,5v may be for purposes of changing the contents
of leaf 5L , or adding a new leaf by increasing depth of 5L . For example, a new
leaf (say) L′ can be inserted alongside 5L , making ()4,10 5v h L= the new leaf
node of 5L , and ()4,11v h L′= the leaf-node for the new leaf, thus changing

3,5v to ()35 4,10 4,11,v h v v= . Just as inserting a leaf promotes a leaf node to “a
parent of 2 leaf nodes,” deletion of a leaf will result in “a parent of 2 leaf nodes”
being demoted to a leaf node.

For a tree with N leaves, 2log N VOs can be used to prove
1) the existence of a specific leaf ()L t∈S , or
2) that the new root is ()s t+ , corresponding to an update L L′→ to a leaf,

or
3) that the new root is ()s t+ , corresponding to insertion/deletion of a leaf.
In prover-verifier protocols based on ADSes, provers store all leaves and

nodes. Verifiers are assumed to know only the root ()s t of the tree. Provers
can prove specific properties regarding a data collection ()tS (leaves of the
tree) against the commitment ()s t (root of the tree). If the total number of
leaves is ()t N=S , the proof takes the form of ()2log N VOs. Verifiers can

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 146 Journal of Information Security

verify the proof by computing ()2log N cryptographic hash operations using
the ()2log N VOs, and comparing the end result to the known commitment
()s t . The proofs also permit verifiers to update the commitment ()s t corres-

ponding to legitimate updates to ()tS (changing the contents of leaves, insert-
ing/deleting leaves, etc.).

2.1.3. Geographic Collections
In the proposed approach, the leaves (of a hash tree/ADS) will correspond to one
or more collections of geographic elements like

1) a side of a polygon, specified by 2 points (2 sets of (),x y coordinates), or
2) a rectangular bounding box, also specified by 2 points (lower-left and up-

per-right corners), or
3) a more general key-value (k-v) collection.
For a geographic point (). , .p p x p y= , .p x and .p y are typically latitude

and longitude coordinates. Collectively, geographic elements in a collection may
represent more complex objects like a polygonal region [34].

Leaves in a boundary line collection are of the form []1 2, ,p p v , representing a
boundary line connecting the 2 points. The value v may provide some informa-
tion about the line. In such collections, an example of a meaningful update is to
split a leaf []1 2, ,p p v (representing a boundary line) into 2 leaves as

[] [] []{ }1 2 1 2, , , , , , , ,p p v p p v p p v→ (6)

at a redundant point p on the line. Such an incremental operation replaces a leaf
with 2 leaves (or a new leaf is added to the tree).

In a rectangular bounding box collection, leaves are of the form []1 2, ,c c v ,
specifying the lower-left corner point 1c and the upper-right corner point 2c .
A rectangular bounding box can also be split into 2, for example, by a vertical
line at X coordinate value 1 2. .sc x x c x< < as

[] []
[]

1
1 2 1 2

2

, ,
, , . . , . . , . . .

, , s

c c v
c c v c x c x x c y c y c y c y

c c v
 ′ ′→ = = = = ′

 (7)

or across a horizontal line with Y-coordinate value 1 2. .sc y y c y< < , as

[] []
[]

1
1 2 1 2

2

, ,
, , . . , . . , . . .

, , s

c c v
c c v c y c y y c x c x c x c x

c c v
 ′ ′→ = = = = ′

 (8)

2.1.4. Key-Value Collections
In a key-value (k-v) collection [30] the leaves are of the form [], ,nk k v corres-
ponding to a k-v pair { },k v with next-key nk .

The first leaf added to an empty tree should be of the form [], ,k k v . A k-v
pair { },k v can be added to the collection only if a leaf [], ,a b u —a k-v pair
{ },a u with next-key b—already exists in the collection such that

() () ()OR OR .a k b b a k k b a< < ≤ < < ≤ (9)

If the condition above is satisfied, the existing leaf [], ,a b u is replaced with
two leaves

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 147 Journal of Information Security

1) [], ,a k u : old k-v pair { },a u , but with K as next-key, and
2) [], ,k b v : new k-v pair { },k v with b as next-key.

2.1.5. Hierarchical Hash Trees
ADSes constructed using hash trees can have hierarchical structures. For exam-
ple, one or more values in a leaf can themselves be a hash tree root.

As an example, assume that the verifier knows only the root ξ of a hierar-
chical ADS. Two sets of VOs can be used to prove that

1) “boundary line []1 2,p p exists in a tree with root bξ ” and
2) “ [], bb ξ exists in a tree with root ξ .”
Such hierarchical collections will be very useful for our purposes. For exam-

ple, the tree with root ξ may have a leaf for every block in a region. The value
of the leaf for a block iB may include a root vξ for a collection of boundary
lines for the block.

2.1.6. State-Change Functions
The practical utility of such ADSes is that any entity with access to merely the
root s of the hash tree (with such geometric objects as leaves), can verify proof
(using VOs) that “a boundary line ()1 2,p p exists in a polygon represented by
hash tree with root s, and that splitting the line into two lines ()1,p p and
()2,p p will result in a new commitment s′ .”

The ability to enable verification of useful properties regarding process specif-
ic data ()tS , and more importantly, update commitments in step with incre-
mental changes to ()tS , can be leveraged using “some external mechanism” to
maintain universal consensus on the dynamic commitment ()s t at all times.

Such a mechanism is a blockchain network, where updates to ()tS (and
hence, the commitment ()s t) are due to well-formed transactions. Specifically,
different types of transactions may be permitted for a process (for example,
splitting a leaf, splitting a bounding box, etc.), each of which results in an easily
calculable change to the commitment ()s t .

More generally, given a transaction T of type k, the current commitment
()s t , and a small set of VOs v, any one can reliably calculate the updated com-

mitment as

() ()(), , .ks t F s t T+ = v (10)

In other words, validating the correctness of a state-change function ()kF
(for a transaction type k) will call for 2log N hash operations, using 2log N
VOs v . In blockchain networks, the transaction T triggering the state-change,
and the updated state ()s t+ after the transaction, are logged in the blockchain
ledger.

2.2. Blockchain Networks

A blockchain network is a mechanism that employs a broadcast channel for
maintaining consensus on the contents of a blockchain ledger. Only well-formed
transactions (also broadcast over the channel) can be added to the ledger. What

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 148 Journal of Information Security

makes a transaction well-formed will depend on process specific rules.

2.2.1. Ideal vs Practical Blockchain Networks
In an ideal blockchain network, participation is universal. The broadcast channel
is ideal—every participant will hear every broadcast at the same time; every par-
ticipant can then decide on their own, if the transaction is well-formed, and if so,
add the transaction to the ledger. Every ledger entry changes the ledger-hash—a
cryptographic commitment to the entire ledger. Specifically, if the current ledger
with i transactions has a ledger hash id , then the ledger hash after adding the
next transaction 1iT + is ()1 1,i i id h d T+ += .

If everyone is honest, everyone will maintain identical ledger copies, with the
same ledger-hash. Broadcasting the succinct ledger hash makes it easy for every
one to confirm that they do indeed maintain identical ledger copies.

In practical blockchain networks a ledger entry is not a transaction, but a
commitment to a block of transactions. More specifically, each transaction is
seen as a leaf of a hash tree, and the root of the tree is the commitment to the en-
tire block; the ledger hash is thus a commitment to a “chain of block (hashes).”

In practical networks, only a small fraction of users may participate actively at
any time. The broadcast channel, typically realized using a multi-hop peer to
peer network, is far from ideal. Broadcasts may be heard at different times by
different participants depending on the number of hops. Some participants may
never hear some broadcasts. Furthermore, we cannot simply assume all partici-
pants to be honest. Even honest participants may sometimes have genuine disa-
greements regarding the correctness of a transaction. Even differences in
time-of-arrival of transactions can cause differences between blocks added to
different copies of ledgers, thereby creating forks in the ledger.

In spite of the practical limitations, it is possible to use well designed incentive
mechanisms [35] to ensure that a) only well-formed transactions are added to
the ledger, and b) close to universal consensus is maintained on the correctness
of ledger entries. An incentive mechanism has three main goals a) motivate par-
ticipation to ensure a reasonably large number of participants at all times; b)
serve as a mechanism for penalizing ill-formed ledger entries; and c) minimize
the chance of long-term survival of a forked ledgers.

2.2.2. Explicit vs Implicit States
A blockchain ledger is a log of state-changes due to transactions. For example, in
crypto-currency applications, a transaction () : ,T t A B c→ at time t transfers
c coins from wallet A to wallet B, reducing wallet A balance by c and increasing
wallet B balance by c. The state of the application at any time t can be seen as the
remaining balance is every wallet.

For this application, the transaction is considered as well-formed only if a) the
transaction is signed by A, and if b) A had c or more coins prior to the transac-
tion. Ill-formed transactions are simply ignored, and thus do not change the
state of the application. As an example that is more relevant to this paper, a

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 149 Journal of Information Security

transaction to split a boundary line []1 2, ,p p v into []1, ,p p v and []2, ,p p v is
considered as well-formed only if p lies on the line connecting 1p and 2p (as
splitting the line at a redundant point p does not change the shape or area inside
the polygon).

In some networks like Bitcoin [36] the process state after each transaction is
not made explicit in the transactions. In Ethereum [37], on the other hand, every
transaction is accompanied by a cryptographic commitment to the updated state
of the application/process affected by the transaction. In this paper, we restrict
ourselves to transactions with explicit states.

2.2.3. Progression of Process States
In general, any process , with process states , can be executed in a block-
chain network, if the process is modeled as state-machine. In such a model, a
process is defined by m types of transactions (or state-change functions). A
transaction jT of type j is executed only if jT is well-formed. Execution if

jT results in a change in the process state . The progression of states of
process can be represented as

1 2
1 2

0 1 2 1 ,
j j jnnT T T

n n−→ → →� � (11)

The utility of ADSes stems from their ability to capture any number of dy-
namic process states as leaves of a (possibly hierarchical) hash tree, whose root s
is a commitment to all process states. The progression of states changes in Equa-
tion (11) can equivalently be represented as

1 2
1 2

1 2

() () ()
0 1 2 1 , ,

j j jnn

n

T T T
n nVO VO VOs s s s s−→ → →� � (12)

where the VOS accompanying each transaction serves as “proof of correctness”
of the state-change.

3. Redistricting Verification Protocol

Given a set of blocks 1 bB B� of a region R and districts 1 dD D� , any solution
to the redistricting problem can be seen as a collection of b key-value pairs

{ }, ,1 ,1i jB D i b j d≤ ≤ ≤ ≤ . The conditions that need to be satisfied for the solu-
tion to be considered as correct are as follows:

1) No block is left unassigned;
2) No block is assigned to more than 1 district;
3) Blocks assigned to a district are contiguous.
While numerous soft restrictions can be imposed, in this paper we shall limit

ourselves to equal-population and compactness metric. We shall use the norma-
lized standard deviation of the population as a measure for deviation of popula-
tion between districts. For the compactness metric we can use the moment of
inertia I, or more specifically

2

1 1

jnd

j i ij
j i

I d A
= =

= ∑∑ (13)

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 150 Journal of Information Security

where jn is the number of blocks in district jD , ijA is the area of the ith
block in district jD , and id is the distance between the centroids of district

jD and the ith block.

3.1. ADSes for Blocks, Districts and State

As the input to the process may involve tens of millions of points, and as data
stored on general purpose computers are far from secure, the process involves
constructing different types of ADSes such that a single commitment can be
used to verify the integrity of any geographic data item, and correctness of any
transaction performed to change data. For geographic data involving a billion
points (or 302N ≈), only of the order of ()2log 30N = VOS are required for
verifying proof of integrity of any data item or proof of correctness of any trans-
action that makes an incremental change to data.

The verification protocol can be seen as consisting of 3 steps,
1) Constructing a block-ADS with b blocks, for validating the inputs, viz.,

points corresponding to every block.
2) Constructing a district-ADS with d districts, for evaluating a proposal spe-

cified by a key-value collection (with b key-value pairs of the form { },i jB D ,
conveying that iB is assigned to district jD).

3) Constructing a “state-level” ADS.
Processes in the first step ensure that the possibly tens of millions of points

representing possibly hundreds of thousands of blocks do indeed constitute a set
of valid polygonal regions. For a block with n points, ()n transactions will be
called for; the total number of transactions will be proportional to the total
number of points in the entire state. Consequently, the first step is possibly the
most expensive one. Fortunately, this step will need to be performed only once.
Once a block ADS is available for all blocks in the state, any one can access the
data and confirm the validity of the block boundaries. The same block ADS can
be used for any number of future redistricting attempts, as block boundaries
typically remain stable.

The second step is a process for every district in the state. The complexity of
such processes will depend on the number of district boundary points, which
can be substantially less than the total number of points in the entire state. The
purpose of the second step is to ensure that there are no overlaps between blocks
included in any district, and to compute various metrics for each district.

The third step is a process for the entire state. The number of transactions for
this process will be proportional to the number of state boundary points. The
purpose of this is to ensure that districts do not overlap, and to compute overall
metric for the state, and verify that the proposed metric is indeed correct.

The second and third steps will need to be repeated for every proposal. How-
ever, as mentioned earlier, if there is sufficient deterrent to incorrect proposals,
only the solution with the best claimed metric will need to undergo the last 2
steps.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 151 Journal of Information Security

3.1.1. ADS Structures and Notations
The ADSes used at various steps include

1) the block ADS with root Bξ , which is a collection with key-value pairs of
the form { },i iB v ;

2) the District-ADS with root Dξ , also a key-value collection with key-value
pairs of the form { },j jD u ;

3) the “redistricting proposal,” a key-value collection with root BDξ , with
pairs of the form { },i jB D .

4) a state ADS Sξ with a single leaf []s .
Values like iv for block iB ({ },i iB v in tree with root Bξ) and ju for

district jD ({ },j jD v in tree with root Dξ) and value s for the state, include
several values like area, centroid, population, multiple hash tree roots (for
boundary-line collections, bounding box collections, key-value collections), and
multiple point values needed to keep track of the progress of the process. Values
associated with each polygonal structure like a block or a district or a state are
summarized in Table 1.

For a block iB , iv conveys 10 values (in the top 5 rows of Table 1). The
value ju of a district jD conveys 14 values (4 additional values , ,u cuA p I
and ctb). The single state polygon is associated with 24 values.

In the rest of the paper we shall use the following notations for such values
associated with blocks, districts and the state. For example, .i bv p represents a
point (). , .b b bp p x p y= in value iv of block iB (in the block-ADS Bξ). Tree

Table 1. Values associated with polygonal blocks, districts and state.

Values for All (Blocks, Districts and State) Polygons

A computed area bp beginning of previous line

n population bp end of previous line

cp centroid vξ root of validated boundaries

sp start point uξ root of un-validated boundaries

rξ root of bounding boxes

rξ root of redundant points

4 More Values for District Polygons and State Polygon

uA sum of block areas cup unverified centroid;

I moment of inertia ctb block count

10 More Values for State Polygon

Bξ root of block ADS Dξ root of district ADS

BDξ redistricting plan (root of k-v collection) dξ root of district k-v collection

nv normalized variance ctd number of districts

vm validated mean population um un-validated mean population

G unverified metric vG verified metric

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 152 Journal of Information Security

roots in value iv are represented as .i uv ξ , .i vv ξ , etc. Similarly, .j bu p , and
.j uu ξ represent a point and a tree root in the value ju of district jD , in the

district-ADS Dξ . For values associated with the state we shall use notations like
. , . , .e vs p s n sξ , etc.
All ADSes begin as empty trees (or 0B D BD Sξ ξ ξ ξ= = = =), and are incre-

mentally constructed by blockchain transactions. In the rest of the paper we shall
refer to “a tree with root ξ ” as simply “tree ξ .” We shall also use the notation
L ξ∈ to imply that “L has been verified to exist in the tree with root ξ (using
appropriate VOs).” For hierarchical collections such as the block ADS with root

Bξ , . .B i rL vξ ξ∈ implies .i rL v ξ∈ , where { },i i BB v ξ∈ .

3.2. Validating Polygons

A high level overview of the process for validating a polygonal region can be
understood from Figure 3 with an eight sided polygon. By performing 2 types of
simple operations, viz., splitting a rectangular bounding box (splits across red
lines in the figure), and splitting boundary lines (at 6 bold points in the figure) it
is possible to ensure that every boundary line fits wholly inside a rectangular
box.

Some restrictions are imposed on mapping boundary lines to bounding boxes
[34] to ensure that lines cannot cross each other inside a box, and make it easy to
set the value v of the box to convey the lines mapped to the box. The restrictions
are 1) no more than 2 lines may be mapped to a bounding box; 2) every line
should start and/or stop at a corner of the BB; 3) in boxes with 2 boundary lines,
both lines should be adjacent, and meet at a corner of the bounding box.

For the example in Figure 3, 6 transactions for splitting boundary lines at
bold dots, and 20 transactions for splitting a bounding box vertically or hori-
zontally (along red lines) will be needed to create conditions necessary for other
transactions that map 1 boundary line, or map 2 adjacent boundary lines, to a

Figure 3. Process for validating a polygonal region.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 153 Journal of Information Security

bounding box. For the example in Figure 3, 8 transactions that map a single line,
and 3 transactions that map 2 lines (3 red shaded boxes) are called for.

The boundary lines are initially available in the un-validated collection uξ .
When a line from this collection uξ is shown to fit in a bounding box in rξ ,
the line is moved to a collection vξ of verified boundary lines (i.e., a leaf is de-
leted from the tree with root uξ and added to the tree with root vξ). If all lines
are mapped successfully, uξ will become empty, and vξ will hold all verified
lines.

Lines have to be mapped sequentially, in the CCW order of points. A point
value sp is used to remember the starting point; point values bp and ep
keep track of the beginning and end of the last-mapped line (by a previous
transaction). To map a line []1 2, ,p p v it is necessary that 1 ep p= (the begin-
ning of the current line is the end of the last-mapped line). An exception is the
first line, for which 0e bp p= = , and causes 1sp p= to be set. The last line,
with 2 sp p= , will signify completion of mapping.

A transaction that maps a line []1 2, ,p p v incrementally computes the area as
in Equation (2), and the centroid as in Equation (4). Specifically, the value A and
coordinates (). . .c cp x p y of the centroid are incremented as

()()
()()

1 2 2 1

1 2 1 2 2 1

1 2 1 2 2 1

. . . .
.

.
c

c

A p x p y p x p y
p x p x p x p x p y p x p y

p y p y p y p x p y p x p y

+ = −

+ = +

+ = +

 (14)

Transactions that map 2 adjacent lines []1 2, ,p p v and []2 3, ,p p v lines will
repeat the same computation for the second line. Unless the unverified boundary
lines points were specified in the CCW order, the computed area will be negative.

The constraints on mapping lines to bounding boxes prevent two lines from
crossing each other inside a box. However, they do not prevent them from
crossing at boundary points. Figure 4 illustrates such a situation with a bad po-
lygon ABCD, in which AD and CB cross each other at point E. As shown in the
figure, even with the restrictions, the polygon can still be mapped by splitting
bounding boxes along dotted lines, to create a corner at E.

Figure 4. Redundant points in “bad” polygons.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 154 Journal of Information Security

Fortunately, unlike redundant points like D′ (added by splitting side DA)
and A′ (by splitting side AB) in the figure, the redundant point E will occur
twice in the polygon, as both DA and BC will need to be split at point E to “ille-
gally” map the lines. Imposing a restriction that redundant points should be
unique (as a well-formedness condition for transactions that map lines) will
make it impossible to map polygons with intersecting sides.

When a line []1 2, ,p p v is mapped, the value bp (of the last-mapped-line)
can be used to determine if 1p is a redundant point (i.e., if 1 ep p= lies on the
line connecting bp and 2p). If so, the point is added to a key-value collection

tξ as a key. If there are duplicate redundant points, the inability to add a re-
dundant point to the key-value collection will cause the transaction to be
deemed as ill-formed.

3.2.1. The “Value” of a Bounding Box
The value v in a bounding box []1 2, ,c c v can be set by transactions that map 1
or 2 lines to determine which areas inside the box fall inside the polygon [34].
The value v in every box with 1 or 2 mapped lines indicates i) a type τ ; ii) an
offset o; and iii) traversal direction (a binary flag) r. The 3 values unambiguously
convey which parts of the bounding box (above/below a diagonal, above/below
or to the left/right of a side of the box, or inside/outside the wedge shape formed
by 2 lines) fall inside/outside the district.

15 types of bounding boxes can be created by mapping lines; type 0τ = with
no lines; 2 types (types 1 and 2), where the line is a diagonal (one with positive
slope, one with negative slope); 4 types (types 3 to 6) where a vertical or hori-
zontal boundary line is one of the 4 sides of the box; and 8 types (types 7 to 14)
with 2 lines in the box; the 8 different types are due to the 4 possible corners
where the 2 lines meet, and if the shorter line is above/below the diagonal.

To uniquely identify the coordinates of the mapped line(s) only the type is
needed for types 0-6. For types 7-14 (boxes with two lines) we also need an offset
corresponding to the shorter line; the offset is 0o = if the shorter line is a side
of the box (the offset o for a block labeled f is shown in Figure 3).

Apart from the type τ and offset o, the direction of traversal inside the block
is required to identify which region(s) inside the box are inside the polygon. For
example, in Figure 3 while both blocks marked a and b have the same type (pos-
itive-slope diagonal) the traversal direction in block a makes the region above
the diagonal inside the polygon, while in box b the region below the diagonal is
inside the polygon. Similarly, in box f the wedge formed by 2 lines is inside the
polygon while in block g the wedge is outside the polygon.

3.3. Transactions for Constructing Block ADS

A transaction InitBlock(, , , ,i n uB k k nξ) adds a k-v pair { },i iB v for key iB
(block identifier), by splitting an existing k-v pair for key k with next key nk .
For the first InitBlock() transaction (to add the first block to an empty tree with

0Bξ =), n ik k B= = .

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 155 Journal of Information Security

The value iv in k-v pair { },i iB v is initialized as follows:

. , .

. . . 0

. 0

i u u i

i v i r i t

i i c i s i b i e

v v n n
v v v
v A v p v p v p v p

ξ ξ
ξ ξ ξ

= =

= = =

= = = = =
 (15)

with all values set to 0—except the population n (specified by the transaction)
and the root uξ of unverified boundary lines.

For a region R with b blocks, b InitBlock() transactions will need to be ex-
ecuted to create a leaf for every block in the block ADS.

3.3.1. Validating Polygon Bi
The types of transactions executed in the blockchain for validating any block is
the same for every block. The order in which transactions are executed will be
block specific (depending on which specific lines/boxes should be split).

Transactions for validating block iB affect only values in iv (in the k-v pair
{ },i i BB v ξ∈). For simplicity of notation, in this section, we shall simply refer to
a root .i rv ξ as simply rξ .

Leaves in tree rξ are rectangular bounding boxes of the form []1 2, ,0c c , with
lower left corner at ()1 1 1,c x y= and upper right corner at ()2 2 2,c x y= .

Leaves in tree uξ θ and vξ are boundary lines of the form []1 2, ,p p v .
The tree tξ is a key-value collection. A leaf []1 2, , tp p v ξ∈ , implies existence

of keys 1p and 2p and absence of keys between 1p and 2p (the value v has
no meaning).

The 5 transaction types used for validating blocks are as follows:
1) SplitLine(1 2, , ,iB p p p): Split boundary line []1 2, , .i i up p B v ξ∈ at a point p;

this transaction is well-formed only if p lies on the line;
2) SplitBB (1 2, , , ,iB c c v dir): Split BB []1 2, ,0c c in .i rv ξ vertically at

X-coordinate v or horizontally at v (depending on the value dir; 0 for vertical
and 1 for horizontal). If the tree is empty, the value v is ignored to create the first
leaf []1 2, ,0c c ;

3) MapLine (1 2 1 2, , , ,iB p p c c): Delete leaf []1 2, , .i i up p B v ξ∈ and add it to
.i vv ξ ; this transaction is valid only if the line falls entirely inside box

[]1 2, ,0 .i rc c v ξ∈ , and 1p and/or 2p is a corner of the bounding box; further-
more, if 1p is found to be redundant, add k-v pair { }1,p x to tξ (the value x
is irrelevant); update area and centroid;

4) Map2Line (1 2 3 1 2, , , , ,iB p p p c c): Move 2 leaves []1 2, , ip p B and []2 3, , ip p B
from tree .i uv ξ θ to tree .i vv ξ , if both lines fall entirely inside box
[]1 2, ,0 .i rc c v ξ∈ , and the common point 2p is a corner of the box; if 1p is
found to be redundant, add k-v pair { }1,p x to tξ ; if 2p is found to be re-
dundant, add k-v pair { }2 ,p x to tξ ; update area and centroid;

5) Finalize (iB) This transaction is invoked to mark completion of verifica-
tion of the polygon/block iB .

Only if the points in uξ were specified in the CCW order, will the computed
area be positive. A transaction Finalize (iB) is well-formed only if . .i s i ev p v p=

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 156 Journal of Information Security

(mapping completed), 0A > (mapping was performed in the CCW order) and
. 0i uv ξ = (all input lines were correct). The value A (area) is divided by 2 (see

Equation (2)); values .cp x and .cp y are then divided 6A (see Equation (4)).
This process is repeated for every block to complete the construction of the

ADS Bξ .

3.4. Creating and Verifying Proposals

As a redistricting proposal, the proposer submits a claimed metric G, and the
commitment Bξ to the input to the process (the block ADS).

A transaction Proposal (, ,B g mξ) is invoked, and results in creation of a
commitment ξ to 24 values in state-polygon information in s. This initializes
21 values to 0; only 3 values are set to non zero values, using the input to the
transaction:

. Completed Block ADS

. Unverified Metric

. Unverified Population Mean

B B

u

s
s G g
s m m

ξ ξ=
=
=

 (16)

Just as the block ADS with root Bξ was created to summarize information
regarding every block, the process of validating the redistricting proposal results
in the creation of

1) a district ADS with root ,Dξ
2) a key value collection BDξ with block identity as key and district identity

as value, and
3) the state ADS (with a single leaf), with root Sξ .
On completion of the process, the district ADS will contain district wide in-

formation like area, centroid, population, number of blocks, moment of inertia,
etc., for every district, and the statewide metrics will be available in Sξ .

Successful execution of all block validation protocols simply demonstrates
that every block is a valid polygon. Successful execution of processes for updat-
ing Dξ and BDξ for every district will confirm that no overlaps exist in any of
the blocks in any specific district. This is due to the fact that the district area is
computed in 2 ways, by summing up areas of all blocks included in the district,
and by “walking” along the boundary of the district (computed using Equation
(2)).

However, it still does not rule out possible overlaps between blocks in differ-
ent districts (and consequently, overlaps between districts). The final process
which directly manipulates values in the lone leaf [s] in Sξ involves creation of
boundary lines for the entire state to confirm that no overlap exists between dis-
tricts. Once again, this is achieved by computing the area in 2 ways.

In other words, to prove that G G′= (the correctness of his/her proposal)
1) The proposer will need to execute different types of transactions that

create/update the district ADS Dξ and key value collection BDξ ; this will in-
volve processes for each district, for computing district-wide totals like popula-
tion, area, moment of inertia, etc.

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 157 Journal of Information Security

2) The proposer will then need to execute transactions to verify the boundary
lines of the entire state, and compute state-wide totals (total moment of inertia I,
and the normalized variance nv , and the final metric G′).

Every district that has been considered to create state-wise totals (population,
area, etc.) will be added to a key-value collection . dsξ to ensure that no district
is double counted. It is in this final process that the a unverified mean popula-
tion . us m is used to compute normalized variance . ns v , total moment of iner-
tia, total number of blocks/districts (. cts b and . cts d) inside the state, and the
computed metric .s G′ (which should be equal to .s G). However, by the end
of the process a mean . vs m is computed and verified to be the same as unveri-
fied . us m . Once the proposal has been verified, all boundary lines of the state
will be in a tree with root . vsξ .

3.5. District ADS Construction

The district ADS with root Dξ has key-value pairs of the form { },j jD u). A

transaction InitDistrict (, , ,j n cuD k k p) is invoked to add a k-v pair for district

jD (for the first leaf n jk k D= =). Only a single value in ju , viz., .j cuu p , is
initialized by the transaction as the (unverified) centroid of the district. All other
(13) values are set to 0.

During the validation process, the area of the district will be computed incre-
mentally in 2 different ways in .ju A (by MapLine and Map2Lines transactions)
and .j uu A , by adding the areas of all blocks added to BDξ . The unverified cen-
troid in .j cuu p will be ultimately validated by a computed centroid in .j cu p .
The moment of inertia will be computed for each district using the unverified
centroid .j cuu p , and the computed values of block centroids and block areas in
the block ADS Bξ . The value .j ctu b is the count of unique blocks added to the
district.

In the block validation process, a leaf for a block iB was initialized with the
root uξ (collection of un-validated block lines). However, a transaction to in-
itialize a leaf for a district jD sets 0uξ = .

To populate .j uu ξ with outer district lines for jD , the prover will need to
choose appropriate lines from block-ADS Bξ . The prover is allowed to choose
any validated boundary line []1 2, , . .i B i vp p B vξ ξ∈ , for any block iB , and

1) add the line to .j uu ξ , and
2) add { },i jB D to k-v collection BDξ (only if k-v pair does not already ex-

ist).
Any number of lines may be added from the same block iB . However, only

for the first line from a specific block iB , the k-v pair { },i jB D is added to

BDξ . For subsequent lines, the existence of { },i j BDB D ξ∈ is merely confirmed.
The fresh addition of a key-pair { },i j BDB D ξ∈ is accompanied by the following
steps

1) .j uu A is incremented by the computed area of block iB , . .B iv Aξ ;
2) .ju I (moment of inertia) is incremented by using i) the unverified cen-

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 158 Journal of Information Security

troid 1 .j cc u p= of the district, 2) computed centroid 2 . .B i cc v pξ= of block

iB and 3) computed area . .B iA v Aξ= of block iB . Specifically, .ju I is in-
cremented by 2Ar where r is the distance between the district centroid 1c
and block centroid 2c ;

3) .j ctu b (number of blocks in the district) is incremented by 1.
The prover can also merge 2 lines []1 2, ,p p v and []2 3, ,p p v in the tree
.j uu ξ of yet-to-be-verified boundary lines into []1 3, ,p p v if 2p is found to be

a redundant point.
The purpose of such transactions are 2 fold: i) to form the boundary line of

the district jD in tree .j uu ξ , and 2) include at least one line from every block
in the district. The process for validating the district polygon in .j uu ξ will be
very similar to the process for validating a block. Unless a line is chosen from
every block inside the district, the values .ju A (computed during district vali-
dation) and .j uu A (computed by adding areas of unique blocks to BDξ) will
not match.

Once all necessary border lines have been copied to the tree .j uu ξ , transac-
tions SplitLine(), SplitBB(), MapLine(), Map2Lines() can be used to ensure that
the district lines of jD in .j uu ξ correspond to a simple polygon.

However, after all border lines have been mapped to bounding boxes, some
internal lines will still remain in .j uu ξ , as at least one line had to be added from
every internal block in the district. To be able to remove such lines from .j uu ξ
it is essential to demonstrate that such lines fall inside district iD . To make this
possible, the transactions MapLine(), Map2Lines() set the value v of bounding
box leaves []1 2, , .j rc c v u ξ∈ .

For internal bounding boxes with no lines, the value v will not be set by Map-
Line()/Map2Lines() transactions. A special transaction has to used to set the box
value depending on the value of any adjacent box. For example the value of box
c can be determined by examining the value of an adjacent box like d or e. With
all boxes marked, in this manner, it is now possible to check if a point p lies in-
side the polygon (district jD), by examining a single box in .j ru ξ in which
point p falls, and examining the value v of the bounding box. This test can be
used to throw away remaining lines in .j uu ξ that were mapped from internal
blocks, but were not used to create the district boundary.

The transactions for validating a district are as follows: A transaction Choose-
Line (1 2, , ,j iD p p B)

1) chooses a line []1 2, , . .i B i vp p B vξ ξ∈ from the input ADS (a k-v pair

{ },i i BB v ξ∈ indicates the root .i vv ξ of a validated boundary tree, in which this

leaf []1 2, , ip p B should exist);

2) adds the line to tree .j uu ξ ;
3) checks if { },i j BDB D ξ∈ , and adds the pair if it does not exist;
4) if { },i jB D was added by the transaction the following additional steps are

performed;
a) increment .j uu A using the area of block iB in the block ADS;

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 159 Journal of Information Security

b) increment population .ju n by population of block iB in block ADS;
c) increment moment of inertia using unverified district centroid, and com-

puted centroid and area of block iB in block ADS.
After district lines have been input to .j uu ξ , they are validated using the fol-

lowing transactions
1) SplitLine (1 2, , ,jD p p p), for splitting boundary lines in . .j uu ξ
2) SplitBB (1 2, , , ,jD c c v dir), for splitting bounding boxes in . .j ru ξ
3) MapLine (1 2 1 2, , , ,jD p p c c), for moving a line from .j uu ξ to .j vu ξ (sub-

ject to mapping constraints), and set the value v of bounding box in .j ru ξ .
4) Map2Lines (1 2 3 1 2, , , , ,jD p p p c c), for moving 2 adjacent lines from .j uu ξ

to .j vu ξ (subject to mapping constraints), and set the value v of bounding box
in .j ru ξ .

5) InnerBox (1 2 1 2, , , ,c c c c v′ ′ ′), to set the value of an interior box []1 2, , 0c c v =
using the value v′ of an adjacent box []1 2, , .c c v′ ′ ′

6) RemLine (1 2 1 2, , ,p p c c) to remove a line with end points 1 2,p p from the
tree .j uu ξ by demonstrating that 1p falls inside bounding box []1 2, ,c c v , and
examining the value v.

Finally, a transaction Finalize (jD) is recognized as well-formed only if
. .j s j eu p u p= (mapping completed), 0A > (mapping was performed in the

CCW order) and . 0j uu ξ = (all input lines were correct). It resets points
. , . , .j s j b j eu p u p u p to zero. The value .ju A (area) is divided by 2; values
. .j cu p x and . .j cu p y are then divided by 6A. Another requirement for this

transaction to be well-formed is that the computed centroid .j cu p should be
the same as the unverified value .j cuu p used for computing the moment of in-
ertia .ju I of the district.

On completion of the Finalize (jD) transaction for every district, the metrics
like moment of inertia and total population are available for each district. At this
stage it is guaranteed that no block can appear in multiple districts as the only
blocks in the key-value collection BDξ can be added to a district, and duplicate
keys (block identities) are ruled out in a key-value collection.

As the same block cannot be included in two different districts it follows that
districts cannot have overlaps. More specifically, overlaps in districts can happen
only if there are overlaps between blocks. However, by confirming that the sum
of the areas of all blocks in any district is the same as the area of the district, we
can conclude that blocks in the same district do not overlap.

To rule out overlaps between blocks in different districts we have one more
step—to confirm that the area of the state is the sum of areas of all districts. Just
as boundaries of each district were constructed using block boundary lines in the
block ADS, the boundary lines of the state can be constructed using boundary
lines in the district ADS Dξ .

3.6. Constructing State Boundary Lines

Unlike processes for initialing leaves for each block in Bξ or each district in

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 160 Journal of Information Security

Dξ , the “tree” Sξ with a single leaf [s] was already initialized by the transaction
Proposal() to create a proposal.

A transaction ChooseLine (1 2, ,jD p p) can be invoked to add any line from
any district jD (from the verified boundary line tree . .D j vuξ ξ). If no entry ex-
ists in the k-v collection . dsξ for key jD , an entry is added. Every time an en-
try is added in the collection

1) . us A is incremented by the area of district jD (. .D ju Aξ);
2) .s I is incremented by the moment of inertia of jD (. .D ju Iξ);
3) .s n is incremented by . .D jn u nξ= , the population of district jD , and
. nvΞ is incremented adding ()2

u un m m− ;
4) . cts d , the number of unique districts added to the k-v collection is incre-

mented by 1;
5) . cts b , the number of unique blocks is incremented by the block-count of

the district . .D j ctu bξ .
After the required lines are added to . usξ for creating the state boundary

(along with other lines needed to ensure that at least one line from each district
is added to . usξ), the following transactions can be used to map lines in . usξ
to create a verified collection of boundary lines in . vsξ .

1) SplitLine (1 2, ,p p p →), for splitting boundary lines in . ;usξ
2) SplitBB (1 2, , ,c c v dir), for splitting bounding boxes in . ;rsξ
3) MapLine (1 2 1 2, , ,p p c c ⊃), for moving a line from . usξ to . vsξ (subject

to mapping constraints), and set the value v of bounding box in . ;rsξ
4) Map2Lines (1 2 3 1 2, , , ,p p p c c), for moving 2 adjacent lines from . usξ to

. vsξ (subject to mapping constraints), and set the value v of bounding box in

. rsξ ;

5) InnerBox (1 2 1 2, , , ,c c c c v′ ′ ′), to set the value of an interior box []1 2, , 0c c v =
in . rsξ using the value v′ of an adjacent box []1 2, ,c c v′ ′ ′ ;

6) RemLine (1 2 1 2, , ,p p c c) to remove a line with end points 1 2,p p from the
tree . usξ by demonstrating that 1p falls inside a box []1 2, ,c c v and examin-
ing the value v.

Finally, a transaction ReportMetric() is considered well-formed only if
. .s G s G′= , and v um m= where

. .u v ctm m n d= = Ξ Ξ

1 2. nG G w I w v′= = Ξ + (17)

If ReportMetric() is well-formed the commitment to Sξ (to all values in s) is
indicated as the state following the transaction. As s includes commitment to all
other ADSes, it is also a commitment to all information regarding and all boun-
dary lines, and all bounding boxes, and all other block/district/state specific in-
formation in Table 1.

4. Discussions

The strategy proposed in this paper is a significant improvement over a previous

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 161 Journal of Information Security

strategy in [38]. The salient differences between the two stem from a new strate-
gy for point-location queries proposed in [34].

In [38] the strategy for verifying that there are no intersections between lines
of a polygon, used the traditional algorithmic approach (sweep-line) [39] with
()logn n complexity for n points. A state-machine model of this process will

also call for ()logn n state-changes (or transactions). In this paper, the ap-
proach of mapping lines to bounding boxes in [34] was used instead. It calls for
linear dependency between number of transactions and number of points. The
number of operations will depend on how many redundant points will need to
be created, and/or the number of bounding box cuts. Our observations with
real-world data from [6] suggest a constant factor between 1.5n to 3.2n.

Secondly, apart from being more efficient compared to [38], the end result of
the transactions, viz., creation of “map” like structures rξ for every polygon,
can be used for purposes other than redistricting, for example, determine in
which block/district a particular point (),x y falls [34].

Finally, this paper addresses a minor flaw in [38]. Validating the district/state
area merely by “walking” around the district/state boundary (incremental area
computation using Equation (2)), and by adding up all block/district areas, still
opens up the possibility of being able to swap a block inside the district with an
equal area block outside the district. By constructing bounding box maps and
checking at that least one point from every included block actually lies inside the
district, this flaw in [38] is addressed in this paper.

To keep the discussion simple we have focused on a single compactness me-
tric and a single population metric. Additions necessary to substitute metrics are
trivial.

5. Conclusions

This paper presented a strategy for blockchain based redistricting to enhance
public trust. Every step in the construction of useful geographic ADSes—a
transaction—can be verified by anyone to be correct, using VOs that accompany
every transaction.

Apart from improving public trust in the redistricting process, the authenti-
cated data structures produced by the process can have utility in several other
applications. For example, ADSes of different states could be combined after
every redistricting to create nationwide maps.

In the description for validating blocks in Section 3.3 there was no need to set
the values of bounding boxes to facilitate reliable point-location queries
(point-location capabilities were only needed at district and state levels to throw
out internal boundary lines from the collection of un-validated lines). However,
it may be advantageous to do so, even at the block level to support further sub-
divisions of blocks. For example, blocks could be further subdivided into zones,
parcels, etc., for use by local governments.

One practical limitation of the proposed approach is that it does not take into

https://doi.org/10.4236/jis.2022.133009

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 162 Journal of Information Security

account the fact that some districts/states may need to be discontinuous (for
example, islands separated by water). This would call for additional transactions
to handle such scenarios. Another practical issue not addressed in this paper is
the validation of an important nongeographic input—the population of each
block. As the process for constructing block ADS should be performed by a re-
levant government authority, the specific nature of authentication mechanisms
is beyond the scope of this paper. Our current efforts include strategies for ad-
dressing some practical limitations of the proposed approach. More generally,
the approach of merely verifying solutions to NP hard optimization problems in
a blockchain network, can be extended to several other application scenarios.
Our ongoing research includes other useful application scenarios.

Acknowledgements

Mahalingam Ramkumar was partially funded by the United States Department
of Agriculture, Agricultural Research Service (USDA-ARS): 58-0200-0-002,
“Advancing Agricultural Research through High Performance Computing”.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Crocker, R. (2012) Congressional Redistricting: An Overview. CRS Report for Con-

gress (R42831).

[2] Altman, M. (1998) Districting Principles and Democratic Representation. Ph.D.
Thesis, California Institute of Technology, Pasadena.

[3] Saxon, J. (2020) Reviving Legislative Avenues for Gerrymandering Reform with a
Flexible, Automated Tool. Political Analysis, 28, 372-394.
https://doi.org/10.1017/pan.2019.45

[4] Cohen-Addad, V., Klein, P.N. and Young, N.E. (2018) Balanced Centroidal Power
Diagrams for Redistricting. Proceedings of the 26th ACM SIGSPATIAL Interna-
tional Conference on Advances in Geographic Information Systems, Seattle, 6-9
November 2018, 389-396. https://doi.org/10.1145/3274895.3274979

[5] Altman, M. and McDonald, M.P. (2010) The Promise and Perils of Computers in
Redistricting. Duke Journal of Constitutional Law & Public Policy, 5, 69-159.

[6] United States Census Bureau. Topologically Integrated Geographic Encoding and
Referencing (TIGER) Database.
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodataba
se-file.html

[7] ESRI (1998) ESRI Shapefile Technical Description: An ESRI White Paper.
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[8] Rushby, J.M. (1981) Design and Verification of Secure Systems. 8th ACM Sympo-
sium on Operating System Principles, Pacific Grove, 14-16 December 1981, 12-21.
https://doi.org/10.1145/800216.806586

[9] Wei, J. and Pu, C. (2005) TOCTOU Vulnerabilities in UNIX-Style File Systems: An

https://doi.org/10.4236/jis.2022.133009
https://doi.org/10.1017/pan.2019.45
https://doi.org/10.1145/3274895.3274979
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-geodatabase-file.html
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://doi.org/10.1145/800216.806586

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 163 Journal of Information Security

Anatomical Study. 4th USENIX Conference on File and Storage Technologies, San
Francisco, 13-16 December 2005, 155-167.

[10] Bright, P. (2018) Meltdown and Spectre: Here’s What Intel, Apple, Microsoft, Oth-
ers Are Doing about It. Ars Technica.

[11] De Lucia, M.J. (2017) A Survey on Security Isolation of Virtualization, Containers,
and Unikernels. US Army Research Laboratory, ARL-TR-8029.

[12] Percival, C. (2005) Cache Missing for Fun and Profit. BSDCan.
https://www.bsdcan.org/2015/

[13] Lipp, M., Gruss, D., Spreitzer, R., et al. (2016) ARMageddon: Cache Attacks on Mo-
bile Devices. 25th USENIX Security Symposium, Austin, 10-12 August 2016, 549-564.

[14] Saini, H., Rao, Y.S. and Panda, T.C. (2012) Cyber-Crimes and Their Impacts: A Re-
view. International Journal of Engineering Research and Applications, 2, 202-209.

[15] Larochelle, D. and Evans, D. (2001) Statically Detecting Likely Buffer Overflow
Vulnerabilities. 10th USENIX Security Symposium, Washington DC, 13-17 August
2001, 177-190.

[16] Patten, D. (2017) The Evolution to Fileless Malware.
http://www.infosecwriters.com/Papers/DPatten Fileless.pdf

[17] Stewin, P. and Bystrov, I. (2012) Understanding DMA Malware. International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment, c,
d, 21-41. https://doi.org/10.1007/978-3-642-37300-8_2

[18] Samyde, D., Skorobogatov, S., Anderson, R. and Quisquater, J.J. (2002) On a New
Way to Read Data from Memory. First International IEEE Proceedings of Security
in Storage Workshop, 11 December 2002, 65-69.

[19] Ramkumar, M. (2018) Scalable Computing in a Blockchain. 2018 IEEE 39th Sarnoff
Symposium, Newark, NJ, 24-25 September 2018, 1-6.
https://doi.org/10.1109/SARNOF.2018.8720499

[20] Dotan, M., Pignolet, Y.A., Schmid, S., et al. (2021) Survey on Blockchain Network-
ing: Context, State-of-the-Art, Challenges. ACM Computing Surveys, 54, Article No.
107. https://doi.org/10.1145/3453161

[21] Ramkumar, M. (2018) Executing Large Scale Processes in a Blockchain. Journal of
Capital Market Studies, 2, 106-120. https://doi.org/10.1108/JCMS-05-2018-0020

[22] Hendrix, E.M.T. and Toth, B.G. (2010) Goodness of Optimization Algorithms. In:
Introduction to Nonlinear and Global Optimization, Springer, New York, 67-90.
https://doi.org/10.1007/978-0-387-88670-1_4

[23] Braden, B. (1986) The Surveyor’s Area Formula. The College Mathematics Journal,
17, 326-337. https://doi.org/10.1080/07468342.1986.11972974

[24] Bourke, P. (1988) Calculating the Area and Centroid of a Polygon.
http://paulbourke.net/geometry/polygonmesh/

[25] Reock Jr., E.C. (1961) A Note: Measuring Compactness as a Requirement of Legisla-
tive Apportionment. Midwest Journal of Political Science, 5, 70-74.
https://doi.org/10.2307/2109043

[26] Polsby, D. and Popper, R. (1991) The Third Criterion: Compactness as a Procedural
Safeguard against Partisan Gerrymandering. Yale Law & Policy Review, 9, 301-353.
https://doi.org/10.2139/ssrn.2936284

[27] Young, H.P. (1988) Measuring the Compactness of Legislative Districts. Legislative
Studies Quarterly, 13, 105-115. https://doi.org/10.2307/439947

[28] Anagnostopoulos, A., Goodrich, M.T. and Tamassia, R. (2001) Persistent Authenti-

https://doi.org/10.4236/jis.2022.133009
https://www.bsdcan.org/2015/
http://www.infosecwriters.com/Papers/DPatten%20Fileless.pdf
https://doi.org/10.1007/978-3-642-37300-8_2
https://doi.org/10.1109/SARNOF.2018.8720499
https://doi.org/10.1145/3453161
https://doi.org/10.1108/JCMS-05-2018-0020
https://doi.org/10.1007/978-0-387-88670-1_4
https://doi.org/10.1080/07468342.1986.11972974
http://paulbourke.net/geometry/polygonmesh/
https://doi.org/10.2307/2109043
https://doi.org/10.2139/ssrn.2936284
https://doi.org/10.2307/439947

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133009 164 Journal of Information Security

cated Dictionaries and Their Applications. Proceedings of the 4th International
Conference on Information Security, Malaga, 1-3 October 2001, 379-393.
https://doi.org/10.1007/3-540-45439-X_26

[29] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A. and Stubblebine, S.
(2001) A General Model for Authentic Data Publication. VC Davis Department of
Computer Science Technical Report.

[30] Ramkumar, M. (2014) Symmetric Cryptographic Protocols. Springer, Berlin.
https://doi.org/10.1007/978-3-319-07584-6

[31] Adhikari, N., Bushra, N. and Ramkumar, M. (2019) Complete Merkle Hash Trees
for Large Dynamic Spatial Data. 2019 International Conference on Computational
Science and Computational Intelligence (CSCI’19), Las Vegas, 5-7 December 2019,
1318-1323. https://doi.org/10.1109/CSCI49370.2019.00246

[32] Chelladurai, U. and Pandian, S. (2021) HARE: A New Hash-Based Authenticated
Reliable and Efficient Modified Merkle Tree Data Structure to Ensure Integrity of
Data in the Healthcare Systems. Journal of Ambient Intelligence and Humanized
Computing, 1-15. https://doi.org/10.1007/s12652-021-03085-0

[33] Merkle, R.C. (1987) A Digital Signature Based on a Conventional Encryption Func-
tion. In: Pomerance, C., Ed., Advances in Cryptology—CRYPTO’87. CRYPTO 1987.
Lecture Notes in Computer Science, Vol. 293. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-48184-2_32

[34] Adhikari, N. (2020) Authoritative and Unbiased Responses to Geographic Queries.
Ph.D. Thesis, Mississippi State University, Starkville.

[35] Xiao, Y., Zhang, N., Lou, W. and Hou, Y.T. (2020) A Survey of Distributed Con-
sensus Protocols for Blockchain Networks. IEEE Communications Surveys & Tuto-
rials, 22, 1432-1465. https://doi.org/10.1109/COMST.2020.2969706

[36] Nakamoto, S. (2008) A Peer-to-Peer Electronic Cash System. Bitcoin.org.

[37] Buterin, V. (2015) A Next-Generation Smart Contract and Decentralized Applica-
tion Platform. Ethereum White-Paper, 36 p.

[38] Adhikari, N., Bushra, N. and Ramkumar, M. (2019) Redistricting Using Blockchain
Network. 2019 First IEEE International Conference on Trust, Privacy and Security
in Intelligent Systems and Applications (TPS-ISA), Los Angeles, 12-14 December
2019, 150-159. https://doi.org/10.1109/TPS-ISA48467.2019.00026

[39] Shamos, M.I. and Hoey, D. (1976) Geometric Intersection Problems. 17th Annual
Symposium on Foundations of Computer Science (SFCS 1976), Houston, 25-27
October 1976, 208-215. https://doi.org/10.1109/SFCS.1976.16

Abbreviations

TCB Trusted Computing Base ADS Authenticated Data Structure

VN Von Neumann CCW Counter-clockwise

VO Verification Objects BB Bounding Box

https://doi.org/10.4236/jis.2022.133009
https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/978-3-319-07584-6
https://doi.org/10.1109/CSCI49370.2019.00246
https://doi.org/10.1007/s12652-021-03085-0
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1109/COMST.2020.2969706
https://doi.org/10.1109/TPS-ISA48467.2019.00026
https://doi.org/10.1109/SFCS.1976.16

	Blockchain Based Redistricting with Public Participation
	Abstract
	Keywords
	1. Introduction
	1.1. Problem Statement
	1.1.1. The Challenge

	1.2. Proposed Solution
	1.3. Organization

	2. Overview
	2.1. Authenticated Data Structures
	2.1.1. Merkle Hash Tree
	2.1.2. Prover-Verifier Protocols
	2.1.3. Geographic Collections
	2.1.4. Key-Value Collections
	2.1.5. Hierarchical Hash Trees
	2.1.6. State-Change Functions

	2.2. Blockchain Networks
	2.2.1. Ideal vs Practical Blockchain Networks
	2.2.2. Explicit vs Implicit States
	2.2.3. Progression of Process States

	3. Redistricting Verification Protocol
	3.1. ADSes for Blocks, Districts and State
	3.1.1. ADS Structures and Notations

	3.2. Validating Polygons
	3.2.1. The “Value” of a Bounding Box

	3.3. Transactions for Constructing Block ADS
	3.3.1. Validating Polygon Bi

	3.4. Creating and Verifying Proposals
	3.5. District ADS Construction
	3.6. Constructing State Boundary Lines

	4. Discussions
	5. Conclusions
	Acknowledgements
	Conflicts of Interest
	References
	Abbreviations

