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Abstract 
The main purpose of this paper is to give an extension on learning with errors 
problem (LWE) based cryptosystem about the probability of decryption error 
with more general disturbance. In the first section, we introduce the LWE 
cryptosystem with its application and some previous research results. Then 
we give a more precise estimation probability of decryption error based on 
independent identical Gaussian disturbances and any general independent 
identical disturbances. This upper bound probability could be closed to 0 if 
we choose applicable parameters. It means that the probability of decryption 
error for the cryptosystem could be sufficiently small. So we verify our core 
result that the LWE-based cryptosystem could have high security. 
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1. Introduction 

In this section we describe a cryptosystem based on the learning with errors 
problem (LWE) [1] [2]. First we introduce the LWE problem. Let p  be a prime 
number, ,m n  be positive integers and consider a list of equations with error as 
follows: 
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Here n

ps∈� , 1 2, , , ma a a�  are chosen independently and uniformly from 
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n
p� , and 1 2, , , m pv v v ∈� � . , is a  is the inner product of two vectors s  and 

ia . The errors in these equations are generated from a probability distribution 
: pχ +→� �  on p� , i.e. for each equation, we have ,i i iv s a e= +  and 

i pe ∈�  is chosen independently based on the probability distribution χ . The 
problem of finding n

ps∈�  from such equations is called ,LWE p χ . There is an 
equivalent description for the LWE problem. The input has a pair ( ),A v  where 

m n
pA ×∈�  is chosen uniformly, and the choices of v  have two cases. One case 

for v  is chosen uniformly from m
p� , the other case is As e+  for a uniformly 

chosen n
ps∈�  and vector m

pe∈�  chosen according to mχ . The goal is to 
distinguish between these two cases with non-negligible probability. It is also 
equivalent with a decoding problem in q-ary lattices [1]. 

The short integer solution (SIS) problem was first introduced in the seminal 
work of Ajtai [3], and has served as the foundation for one-way and colli-
sion-resistant hash functions, identification schemes, digital signatures, and 
other “minicrypt” primitives. A very important work of Regev from 2005 intro-
duced the LWE problem, which is the “encryption-enabling” analogue of the SIS 
problem [4]. In fact, the two problems are very similar, and can meaningfully be 
seen as duals of each other. 

The LWE problem is a very robust problem and can be viewed as an extension 
of a well-known problem in learning theory. It remains hard even if the attacker 
learns extra information about the secret and errors. Regev gave the worst-case 
hardness theorem for LWE [4]. The complexity of the best known algorithm is 
running in exponential time in n [5] [6] [7]. This theorem is proved by giving a 
quantum polynomial-time reduction that uses an oracle for LWE to solve 
GapSVPγ  and SIVPγ  in the worst case, thereby transforming any algorithm 
that solves LWE into a quantum algorithm for lattice problems. The quantum 
nature of the reduction is meaningful since there are no known quantum algo-
rithms for GapSVPγ  and SIVPγ  that significantly outperform classical ones, 
beyond generic quantum speedups. It would be very useful to have a completely 
classical reduction to give further confidence in the hardness of LWE, which was 
given in 2009 by Peikert [8]. Regev also gave a public-key cryptosystem whose 
semantic security can provably be based on the LWE problem, and hence on the 
conjectured quantum hardness of GapSVPγ  and SIVPγ  for ( )3 2O nγ =  [4]. 
LWE problem has close relationship with decoding problems in coding theory 
[9]-[18]. Regev’s cryptosystem is secure against passive eavesdroppers since the 
LWE problem is hard. 

Another application of LWE is fully homomorphic encryption (FHE) [19]. 
The earliest FHE constructions were based on average-case assumptions about 
ideal lattices [20] [21]. Later, Brakerski and Vaikuntanathan gave the second 
generation of FHE constructions, which were based on the LWE problem [22] 
[23]. In 2013, Gentry, Sahai, and Waters proposed an LWE-based FHE scheme 
that has some unique and advantageous properties, such as homomorphic mul-
tiplication does not require any key-switching step, and the scheme can be made 
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identity-based. This yields unbounded FHE based on LWE with just an in-
verse-polynomial ( )1On−  error rate [24]. 

Now we introduce the efficient lattice-based cryptosystem in the following 
which has strong theoretical security [2]. 
• Private key: n l

qS ×∈�  is uniformly chosen at random. 
• Public key: m n

qA ×∈�  is uniformly chosen at random and m l
qE ×∈�  is cho-

sen from the distribution αψ . The public key is ( ),A P AS E= + . 
• Encryption: Given l

tv∈�  from the message space and a public key ( ),A P , 
choose a vector { }, 1, , ma r r r∈ − − + �  uniformly at random, and compute 
the ciphertext ( )( )T T,u A a c P a f v= = + . 

• Decryption: Given a ciphertext ( ),u c  and a private key S , output  

( )1 Tf c S u− − . 
Here , , , , ,m n l t q r  are positive integers and 0α > . αψ  is defined to be the 

distribution on q�  obtained by sampling a normal variable with mean 0 and 
standard deviation 2qα π , rounding the result to the nearest integer and re-
duced modulo q . f  is defined as the function from l

t�  to l
q�  by multip-

lying each coordinate by q t  and rounding to the nearest integer. 1f −  is de-
fined to be the ‘inverse’ mapping of f  by multiplying each coordinate by t q  
and rounding to the nearest integer. The definitions of f  and 1f −  are in the 
next section. The probability of decryption error in one letter for this cryptosys-
tem is approximatively estimated in [2] as 

( )
1 6error probability per letter 2 1 ,

2 1t mr rα

  
 ≈ −Φ   +  

π
        (1) 

where Φ  is the cumulative distribution function of the standard normal dis-

tribution, i.e. ( )
2

21 e d
2

t
x

x t
−

−∞
Φ =

π∫ . We give a more precise upper bound esti-

mation here 

( )
6error probability 2 1 .

2 1
q tl

tq mr rα

  − ≤ −Φ   

π
+ 

           (2) 

This upper bound probability could be closed to 0 if we choose α  small 
enough. It means that the probability of decryption error for the cryptosystem 
could be sufficiently small. However, the above estimation is based on Gaussian 
disturbance. In our work, we also give the probability of decryption error for the 
LWE-based cryptosystem with more general disturbance. By central limit theo-
rem [25], general disturbance could be approximated as Gaussian disturbance, 
then we get the following probability estimation result which is more advanced 
than that in [2]. 

( )
3error probability 2 1 ,

2 1
q tl l

t mr r
δ

β

  − ≤ −Φ +   +  
         (3) 

here β  is the standard deviation of disturbance distribution, δ  is positive 
real number. 
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Innovation and Contribution 
Our work gives estimation probability of decryption error based on Gaussian 

disturbances and proves that the decryption error could be sufficiently small. 
The most salient innovation and contribution is that for any general distur-
bances, the decryption error could also be small enough. This indicates high se-
curity and reliability of LWE-based cryptosystem. In other words, this crypto-
system is secure enough against passive eavesdroppers and could be applied in 
many kinds of encryption process. 

2. Methodology 
2.1. Preliminary Property 

Definition 1: x∀ ∈� , let [ ]x  be the closest integer to x , specially, [ ]x  is 

defined to be 1
2

x −  if the fractional part of x  is 1
2

. It is trivial that 

[ ]1 1
2 2

x x− < − ≤  for all x∈� . 

Lemma 1: t  and q  are positive integers, t q≤ . ta∀ ∈� , let  

( ) q
qf a a
t

 = ∈  
� . qb∀ ∈� , let ( )1

t
tf b b
q

−  
= ∈ 
 

� . Then ( )( )1f f a a− =  

for ta∀ ∈�  holds. 

Remark: If ( )1 2 mod a a t≡ , we have ( ) ( )( )1 2 mod f a f a q≡ , so the defini-
tion of f  is well defined and reasonable. 

Proof of lemma 1: 1) If t q= , then we have ( ) [ ]f a a a= =  and 

( )( ) ( ) [ ]1 1 ,  .tf f a f a a a a− −= = = ∀ ∈�
 

2) If t q< , then 1
2 2
q
t
> , we know 

1 1 .
2 2

q q qa a a
t t t

 − ≤ < +    
It follows that 

1 1 .
2 2 2 2

q q q q q q qa a a a a
t t t t t t t

 − < − ≤ < + < +    
So we can get 

.
2 2

q q q q qa a a
t t t t t

 − < < +    
This is equivalent to 

1 1 .
2 2

t qa a a
q t
 − < < +    

and 

1 1 .
2 2

t q a a
q t
 − < − <    
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Thus, 

0,  and .t q t qa a a a
q t q t
      − = =              

This means that 

( )( )1 ,  .tf f a a a− = ∀ ∈�
                    �  

Lemma 2: t  and q  are positive integers, t q> . If a  is uniformly chosen 
in t� , then 

( )( ){ }1 1 .qP f f a a
t

− ≠ = −
 

Proof: t q> , from lemma 1 we have 

,  .q
q t b b b
t q

  
= ∀ ∈  

  
�

 
This is equivalent to 

,  .q
tf b b b
q

  
= ∀ ∈  

  
�

 
So we get 

( )1 1 ,  .q
t tf f b f b b b
q q

− −
     

= = ∀ ∈           
�

 

Here 
( )120, , , ,
q tt t

q q q
−    

    
     

�  are different from each other in t� . Next 

we prove that the number of a  in t�  satisfying ( )( )1f f a a− =  is no more 

than q . Let A  be the set containing all the elements satisfying  

( )( )1f f a a− =  in t� . 1 2,a a A∀ ∈ , 1 2a a≠  in t� , then we have  

( ) ( )1 2f a f a≠  in q� . This means the number of A  is no more than q . 

Above all, it shows that 
( )120, , , ,
q tt t

q q q
−    

    
     

�  are just all the numbers in 

t�  such that ( )( )1f f a a− = . Based on a  is uniformly chosen in t� , then 

( )( ){ }1 1 .qP f f a a
t

− ≠ = −
                     �  

Corollary 1: t , q  and l  are positive integers.  

( )1 2, , , l
l ta a a a∀ = ∈� � , let ( ) 1 2, , , l

l q
q q qf a a a a
t t t

      = ∈            
� � .  

( )1 2, , , l
l qb b b b∀ = ∈� � , let ( )1

1 2, , , l
l t

t t tf b b b b
q q q

−       
= ∈      

      
� � . If a  is  

uniformly chosen in l
t�  and 1 2, , , la a a�  are independent, then 

( )( ){ }1 max 0,1 .
lqP f f a a

t
−

   ≠ = −  
     
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Proof: If t q≤ , from lemma 1, we have 

( )( )1 ,  ,  1 .i i i tf f a a a i l− = ∀ ∈ ∀ ≤ ≤�
 

So 

( )( )1 ,  .l
tf f a a a− = ∀ ∈�  

( )( ){ }1 0 max 0,1 .
lqP f f a a

t
−

   ≠ = = −  
     

If t q> , from lemma 2, we have 

( )( ){ }1 ,  ,  1 .i i i t
qP f f a a a i l
t

− = = ∈ ∀ ≤ ≤�
 

Since 1 2, , , la a a�  are independent, therefore, 

( )( ){ }1 ,  .
l

l
t

qP f f a a a
t

−  = = ∈ 
 

�
 

( )( ){ }1 1 max 0,1 .
l lq qP f f a a

t t
−

     ≠ = − = −    
       

�  

2.2. Probability of Decryption Error Based on Gaussian  
Disturbance 

Now we can calculate the probability of decryption error for the LWE-based 
cryptosystem. As described in the first section, assume S  be the private key, 
( ),A P  be the public key, and we choose l

tv∈�  from the message space, en-
crypt v  and then decrypt it. The ciphertext is ( )( )T T,u A a c P a f v= = + . The 
decryption result is 

( ) ( )( )
( ) ( )( )

( )( )

1 T 1 T T

T1 T T

1 T .

f c S u f P a f v S u

f AS E a f v S A a

f E a f v

− −

−

−

− = + −

= + + −

= +
 

Here the decryption result ( )( )1 T l
tf E a f v− + ∈� . The decryption error oc-

curs if ( )( )1 Tf E a f v v− + ≠ . Since all the parameters are taken to guarantee 
security and efficiency of the cryptosystem, here we set q t>  and obtain the 
following theorem. 

Theorem 1: , , , ,t q l m r  are positive integers and q t> . l
tv∈� , f  is de-

fined in the previous section, m lE ×  is a Gaussian disturbance matrix with each 
element chosen independently from the Gaussian distribution with mean 0 and 
standard deviation 2qα π , { }, 1, , ma r r r∈ − − + �  is uniformly chosen at 
random. Then we have the following inequality of the probability of decryption 
error. 

( )( ){ } ( )
1 T 62 1 .

2 1
q tP f E a f v v l

tq mr rα
−

  − + ≠ ≤ −Φ   +  

π
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Here Φ  is the cumulative distribution function of the standard normal dis-

tribution, i.e. ( )
2

21 e d
2

t
x

x t
−

−∞
Φ =

π∫ . 

Proof: In order to compute the probability of decryption error, we consider 
one letter first, i.e. the probability of ( )( )1 T

i i if E a f v v− + ≠ , here iv  is the ith 
coordinate of v , ( )1 2, , ,m l lE E E E× = �  and ( )( )1 T

i if E a f v− +  is the ith 
coordinate of ( )( )1 Tf E a f v− + . From lemma 1 we know that ( )( )1

i if f v v− =  
for any i tv ∈�  under this condition. We have 

1 1 .
2 2i i

q qv v
t t

 − < − ≤    

.
2 2i i
t t q tv v
q q t q

 − ≤ − <    

So if T 1
2 2i

t tE a
q q

< − , we get 

T 1 1 .
2 2 2 2i i i

t t q t tE a v v
q q t q q

 + − < − + =    

T 0.i i i
t t qE a v v
q q t
  + − =      

T .i i i
t t qE a v v
q q t
  + =      

( )( )1 T .i i if E a f v v− + =
 

It means that if T 1
2 2i

t tE a
q q

< − , we can get ( )( )1 T
i i if E a f v v− + = . Equiva-

lently, if ( )( )1 T
i i if E a f v v− + ≠ , i.e. the decryption error occurs in the ith letter, 

then T 1
2 2i

t tE a
q q

≥ − . So the probability of decryption error in one letter is no 

more than the probability of T 1
2 2i

t tE a
q q

≥ − , i.e. 

( )( ){ }1 T T 1 .
2 2i i i i

t tP f E a f v v P E a
q q

−   + ≠ ≤ ≥ − 
    

The next step we estimate the probability of T 1
2 2i

t tE a
q q

≥ − . Since each  

coordinate of iE  is chosen independently from the Gaussian distribution with 
mean 0 and standard deviation 2qα π  and the sum of independent Gaussian 
variables is still a Gaussian variable, T

iE a  is also a Gaussian distribution varia-
ble. ( )1 2, , , ma a a a= �  and each ia  is chosen from { }, 1, ,r r r− − + �  un-
iformly at random, then 

( ) ( )1
0.

2 1i

r r r
E a

r
− + − + + +

= =
+
�
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( ) ( ) ( ) ( )2 2 21 1
.

2 1 3i

r r r r r
Var a

r
− + − + + + +

= =
+

�

 

( )T 0.iE E a =
 

( ) ( ) ( )2 2 2
T 1 1

.
3 62i

r r q mr rqVar E a m
αα + +

= ⋅
 



= ππ  

Therefore T
iE a  is treated as a normal distribution with mean 0 and standard 

deviation ( )1 6q mr rα + π . We have 

( )( ) ( )( )

( )( ) ( )

( )

T T

T

T

1
2 2 2

1 6 1 6
2

61 6
2 1

62 1 .
2 1

i i

i

i

t t q tP E a P E a
q q t

q tP E a q mr r q mr r
t

q tP E a q mr r
tq mr r

q t
tq mr r

α α

α
α

α

  −   ≥ − = ≥   
   

− = + ≥ + 
 
 − = + ≥ 

+  
  − = −Φ   + 

π

π



π

π
π

 

So we get the following inequality for probability of decryption error of the 
LWE-based cryptosystem 

( )( ){ }
( )( ){ }

( )

1 T

1 T

T 1
2 2

62 1 .
2 1

i i i

i

P f E a f v v

lP f E a f v v

t tlP E a
q q

q tl
tq mr rα

−

−

+ ≠

≤ + ≠

  ≤ ≥ − 
  
  − = −Φ   +  

π

 
�  

This upper bound probability estimation is more precise than (1). The upper 
bound could be as closed as 0 if we choose α  small enough. It means that the 
probability of decryption error for the LWE-based cryptosystem could be made 
very small with an appropriate setting of parameters. 

2.3. Probability of Decryption Error for General Disturbance 

In this section we estimate the probability of decryption error for the LWE-based 
cryptosystem when the noise matrix ( )ij m l

E E
×

=  is chosen independently from a 
general common variable. 

Theorem 2: , , ,t q l r  are positive integers and q t> , m  is a undetermined 
positive integer. l

tv∈� , f  is defined in the second section, m lE ×  is a general 
disturbance matrix with each element chosen independently from a common 
random variable of mean 0 and standard deviation β , { }, 1, , ma r r r∈ − − + �  
is uniformly chosen at random. For any 0δ > , we can find positive integer m , 
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such that the following inequality of the probability of decryption error holds. 

( )( ){ } ( )
1 T 32 1 .

2 1
q tP f E a f v v l l

t mr r
δ

β
−

  − + ≠ ≤ −Φ +   +    
Here Φ  is the cumulative distribution function of the standard normal dis-

tribution, i.e. ( )
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21 e d
2

t
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x t
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−∞
Φ =
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Proof: Similarly as the proof of theorem 1, we need to estimate the probability 

of T 1
2 2i

t tE a
q q

≥ − . Since the coordinates of T
iE  are independent identically  

distributed, T
iE  and a  are also independent, by central limit theorem [25], 

T
iE a  is approximately normal distribution with mean 0 and standard deviation 

( ) ( ) ( )1 3ij id mVar E Var a mr rβ= = + . Thus, for any sufficiently small 
0δ > , there is a positive integer m  such that 
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  − = −Φ +   +    

Here ε δ≤ . Then we get the following inequality for probability of decryp-
tion error of the LWE-based cryptosystem for general disturbance 
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  − ≤ −Φ +   +    

�  
This probability could be also closed to 0 if we choose the parameter mβ  

and δ  small enough. Therefore the probability of decryption error of the 
LWE-based cryptosystem for general disturbance could be made very small, 
which leads to high security. 

Example 1: Let 2t = , 5q = , 1l = , 1m = , 1r = , 310δ −= , 2v∈�  is un-
iformly chosen at random, the disturbance E  is a random variable with the  
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distribution βψ  such that { } e
2 !

k

P E k
k

ββ −= =
⋅

 for integer k  and 

{ }0 eP E β−= =  with parameter 310β −= , { }1,0,1a∈ −  is uniformly chosen 
at random. Then the probability of decryption error 
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On the other hand, 
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So it follows that 
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The inequality in theorem 2 holds. 
Example 2: Let 2t = , 5q = , 1l = , 1m = , 1r = , 410δ −= , 2v∈�  is un-

iformly chosen at random, the disturbance E  is a Laplace distribution variable 

with parameter 0.05λ =  and probability density function ( ) 1 e
2

x

f x λ

λ
−

=   

rounding to the nearest integer, { }1,0,1a∈ −  is uniformly chosen at random. 
Similarly as example 1, the probability of decryption error 
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On the other hand, 
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δ
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  − −Φ + >   +    
It follows that 

( )( ){ } ( )
1 32 1 .

2 1
q tP f Ea f v v l l

t mr r
δ

β
−

  − + ≠ ≤ −Φ +   +    
The inequality in theorem 2 holds. 

3. Results and Conclusion 

In this work we first introduce the LWE problem and LWE-based cryptosystem. 
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We give a more precise estimation probability of decryption error based on in-
dependent identical Gaussian disturbances. The salient significance of our work 
is that for any general independent identical disturbances, we also give the esti-
mation probability of decryption error using central limit theorem. The upper 
bound probability could be closed to 0 if we choose applicable parameters. It 
means that the probability of decryption error for the cryptosystem could be suf-
ficiently small. Then we confirm that the LWE-based cryptosystem could have 
high security. 

4. Discussion 
Future Work 

Although we have reached our objective in this work, there are still many inter-
esting works to study in this research area in the future. We will focus on the 
fully homomorphic encryption (FHE) based cryptosystem later, which is an ap-
plication of LWE [20] [21] [22] [23] [24]. Fully homomorphic encryption was 
known to have abundant applications in cryptography, but for three decades no 
plausibly secure scheme was known until 2009. To date, the FHE based crypto-
graphy has more than three generations. The third generation FHE scheme 
based on LWE problem is proved that has some unique and advantageous prop-
erties [24]. It also remains some improvable techniques which need to be studied 
in depth. 
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