
Journal of Information Security, 2022, 13, 101-126
https://www.scirp.org/journal/jis

ISSN Online: 2153-1242
ISSN Print: 2153-1234

DOI: 10.4236/jis.2022.133007 Jun. 30, 2022 101 Journal of Information Security

Authoritative and Unbiased Responses to
Geographic Queries

Mahalingam Ramkumar1, Naresh Adhikari2

1Mississippi State University, Starkville, MS, USA
2Slippery Rock University, Slippery Rock, PA, USA

Abstract
A protocol for processing geographic data is proposed to guarantee authori-
tative and unbiased responses to geographic queries, without the need to rely
on trusted third parties. The integrity of the proposed authoritative and un-
biased geographic services (AUGS) protocol is guaranteed by employing nov-
el hash tree based authenticated data structures (ADS) in conjunction with a
blockchain ledger. Hash tree based ADSes are used to incrementally compute
a succinct dynamic commitments to AUGS data. A blockchain ledger is used
to record 1) transactions that trigger updates to AUGS data, and 2) the up-
dated cryptographic commitments to AUGS data. Untrusted service provid-
ers are required to provide verification objects (VOs) as proof-of-correctness
of their responses to AUGS queries. Anyone with access to commitments in
ledger entries can verify the proof.

Keywords
Authenticated Data Structures, Blockchain Ledger, Geographic Information
Systems

1. Introduction

Information systems are composed of processes for collection, organization, storage
and communication of information. For information to be authoritative it is neces-
sary for the receiver to establish a) the source of the information, and that b) the
source does indeed have the authority to convey the information. Most often, the
authority is gained through a chain of delegations. For information to be unbiased,
it is necessary to establish that no relevant information was suppressed.

A well known example of an authoritative unbiased (AU) service is the Domain
Name System (DNS) [1]. When used in conjunction with the DNS security protocol

How to cite this paper: Ramkumar, M.
and Adhikari, N. (2022) Authoritative and
Unbiased Responses to Geographic Que-
ries. Journal of Information Security, 13,
101-126.
https://doi.org/10.4236/jis.2022.133007

Received: May 1, 2022
Accepted: June 27, 2022
Published: June 30, 2022

Copyright © 2022 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2022.133007
https://www.scirp.org/
https://doi.org/10.4236/jis.2022.133007
http://creativecommons.org/licenses/by/4.0/

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 102 Journal of Information Security

DNSSEC [2], DNS provides AU assurances for responses to DNS queries. DNSSEC
makes it possible to establish that (for example) the IP address of a domain name
cs.ms.edu did indeed originate from the authoritative DNS zone ms.edu. Further-
more, in response to a query for information regarding a non-existent name (say)
xyz.ms.edu, the response will provide proof of nonexistence.

In geographical information systems (GIS) [3], different types of information
may be associated with various geographic objects like a point1 (x,y), or a line
segment connecting two points, or all points inside a polygonal region. Cur-
rently, while service providers do exist for providing useful geographic informa-
tion (like one’s location, restaurants and other services nearby, zip code corres-
ponding to a location, current weather at a location, etc.), such services can not
be considered as AU—as we are required to trust the service provider. The main
contribution of this paper is a comprehensive Authoritative and Unbiased Geo-
graphic Services (AUGS) protocol, for guaranteeing AU responses from un-
trusted service providers, to geographic queries.

Organization

The rest of this paper is organized as follows. Section 2 provides a broad over-
view of the goals of AUGS. This is followed by a comparison of the goals of
AUGS with that of the DNS protocol for domain names. In particular, we point
out some of the unique challenges faced by AUGS due to the fact that the defini-
tion of a “geographic region” is substantially more complex than that of a
“name.” The former is a list of (x,y) coordinates on a 2-D plane, while the latter
can be considered as a point on the number line. It is argued that the challenges
can be overcome by using Merkle hash tree based authenticated data structures
(ADS) in conjunction with a blockchain ledger.

Section 3 illustrates with examples, 2 core AUGS processes, viz., map-con-
struction, and map-update. Both processes are described in terms of simple
steps involving incremental changes to AUGS data. Such simple steps are
blockchain transactions that modify AUGS data. Section 4 describes a family of
ADSes for computing/tracking a dynamic cryptographic commitment to differ-
ent types of data. Section 5 illustrates the use of such ADSes for AUGS specific
data like “list of boundary lines,” “set rectangular bounding blocks,” “set of
points,” and key-value pairs, etc. Section 5 also outlines different types of block-
chain transactions that trigger incremental updates to AUGS data, and conse-
quently, the ADS commitments. Finally, Section 5 outlines the steps involved in
verifying AU properties of responses to queries.

A discussion of related works and conclusions can be found in Section 6.

2. AUGS Overview

A geographical region [4] can be described as a simple2 n-sided polygon, where
the sides of the polygon are n-boundary line segments.

1A point is typically specified by latitude and longitude coordinates.
2Sides of a simple polygon do not cross each other.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 103 Journal of Information Security

More generally, a geographic region R may be a set of simple polygons—some
that enclose region R, and some that exclude region R. In Figure 1(a), regions
R2, R3 and R4 are represented by a one polygon each. Region R1 is described by 3
polygons—two enclosing polygons (shaded light gray), and an exclusion poly-
gon (darker gray region R4). For a geographical region R defined by q1 inclusion
polygons and q2 exclusion polygons, the region R lies to the left on counter
clockwise (CCW) traversal of points in the q1 polygons that enclose R (and to
the right in q2 polygons that exclude R).

In the rest of this paper we assume that a region is expressed as a list of
boundary lines of the form ()1, ,i ip p m+ where (),i i ip x y= represents point
coordinates, and m uniquely identifies one of the many simple polygons of the
region to which the boundary line belongs. We shall further assume that m is
odd for inclusion polygons, and even for exclusion polygons.

AUGS regions may be reshaped by adding new lines. For example, by adding
new lines, a polygon representing a country may be subdivided into smaller po-
lygons representing states. Most often, the reason for creating subdivisions are
for purposes of delegation of authority.

A region may be associated with different types of static and dynamic
attributes like zip code, name, voting precinct, tax rates, zoning restrictions,
weather information, etc. AUGS should enable anyone to

1) query such information regarding any point (x,y),
2) establish the source, and
3) establish the authority of the source (typically gained through a chain of

delegations).

2.1. DNS vs AUGS

The Domain Name System (DNS) [1] is a protocol for hierarchical delegation of
a name-space. A delegated DNS name is a DNS zone. Ownership of a DNS zone
(for example) ms.edu is acquired through delegation by the parent zone edu,
which was in turn acquired by delegation, from the root zone.

In this paper we shall use the notation a b∈ to signify that “a is a child of b.”
For example, in DNS ms.edu ∈ edu (as ms.edu is a child of edu).

The owner of ms.edu can create any number of child names ending with
ms.edu—for example, cs.ms.edu, ee.ms.edu, etc. Newly created names can be i)
associated with different types of information—by creating different types of
DNS records, or ii) delegated to create a new zone—by creating a special DNS
record of type NS.

Analogous to a zone name in DNS, is a region (described by 1 or more simple
polygons) in AUGS. An important difference between the DNS and AUGS is as
follows:

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 104 Journal of Information Security

An AUGS region P can create any number of non overlapping child regions.
A region P can delegate a child region (say) Q P∈ , or associate different types
of information with any point inside P, or any line segment inside P, or any po-
lygon Q P∈ .

2.2. AU DNS Responses

DNSSEC [2] associates every DNS zone with a public key. The public key of
zone . .x y z is certified by the parent zone .y z , whose public key is certified by
its parent zone z, whose public key is certified by the root zone (say, Φ). The
public key of the root zone is assumed to be public knowledge. In the rest of this
paper, we shall use the notation S A for “certification of public key of A by
S.”

Knowledge of the root public key is sufficient to track the authority of the
public key of any zone Z, by following a chain of delegations. That public key UZ
is authoritative for a DNS zone Z implies that all DNS information certified us-
ing UZ is authoritative for names that end with Z—but only as long as such
names have not been delegated. For example, the public key U of ms.edu is not
authoritative for the name dis.cs.ms.edu if either the name cs.ms.edu or the
name dis.cs.ms.edu have been delegated.

The response to a DNS query is a DNS record, along with a signature for
record (signed by the zone under which the name falls), and records needed to
verify the delegation chain. The steps necessary to establish AU properties of a
response nR for a name (say) n that falls in zone A where (say) A B C∈ ∈ are
as follows:

1) verify certificate nA R (DNS record nR signed by zone A),
2) verify delegation chain B A , C B , and CΦ ,
3) verify that i) name n ends with A; ii) name A ends with B, and iii) name B

ends with C,
4) if n ends with A, but n A≠ (for example, A = cs.ms.edu, but n =

se.cs.ms.edu) establish that name n has not been delegated by A.
The last step, viz., proof of non-existence of delegation records—or authorita-

tive denial—is facilitated by the NSEC/ NSEC3 [5] [6] component of DNSSEC.
Authoritative denial also serves to guarantee unbiasedness of DNS. The need to
prove non-existence implies that the responder (untrusted DNS servers) will not
be able to (accidentally or deliberately) hide the existence of a queried DNS
record.

2.3. AU Geographic Responses

Now consider the AUGS scenario with hierarchical region delegations A B C∈ ∈ .
The steps necessary for verifying the authoritativeness of some information pI
regarding a point (),p x y A= ∈ are as follows:

1) verify certificate pA I for the information provided;
2) verify the delegation chain B A , C B , BΦ ;
3) verify a) that (),x y A∈ ; b) A B∈ , and c) and B C∈ , and

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 105 Journal of Information Security

4) ensure that every point/region is uniquely delegated.
The first 2 steps (verification of certificates) are similar in both (DNS and

AUGS) scenarios; both involve verification of ()1 certificates (does not
depend on N, the total number of DNS records/AUGS data items). The third
and fourth steps are however substantially different. While it is trivial for the
DNS verifier to determine that “a name a ends with b” it is far from trivial in
the AUGS scenario to determine if (),x y A∈ ; it is even more difficult to de-
termine that region A B∈ (or all points in region A fall inside region B). This
is especially true in scenarios where regions may have tens of thousands of
sides3, may be defined by multiple polygons, and may include other delegated
sub-regions.

The point location problem, viz., determining if a point (x,y) lies inside a po-
lygon A, is an important problem for several application scenarios, like mouse
tracking, computer graphics, GIS etc., and has attracted substantial attention in
the literature [8] [9] [10] [11]. However, these algorithms were not designed
with the goal of being executed as blockchain transactions. Furthermore, the
problem of determining if all points inside a polygon A lie inside a polygon B
has not attracted much attention.

Even if efficient algorithms can be designed, they can never have a complexity
less than ()N for a polygon with N sides. Unlike the DNS scenario where it
is trivial for the verifier to determine that (for example) msu.edu ends with edu
in the case of AUGS, the verifier will first need to access to the N coordinate
values, and execute various point-location algorithms to establish that
(),x y A∈ , A B∈ , B C∈ , etc. This is obviously impractical for an average in-
formation querier. This is the central challenge addressed by the proposed pro-
tocol, by taking advantage of i) hash tree based authenticated data structures
(ADS), and ii) blockchain transactions that perform simple incremental changes
to ADSes.

In the proposed AUGS protocol, verification of AU properties of any query
regarding a point in a region with N sides will require only ()2log N hash
operations to be performed by the verifier. More specifically, if the service pro-
vider provides information regarding M different regions, the size of the proof
will be ()()2log max ,M N hashes.

The broad goal of the AUGS protocol is to permit anyone to obtain the au-
thoritative public key U for any point (x,y) in the globe. Towards this end, the
verifier will need the ability to verify that

1) (),x y R∈ , where R is an AUGS region;
2) (x,y) does not fall in a sub-region R R′∈ that has been delegated by R;

and
3) U is the public key of region R.
By leveraging the public key U, any information from the authoritative source

for point (x,y) can be verified.

3For example, in the official federal map [7], the state of Texas consists of over 600 different poly-
gons with over 144,500 sides.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 106 Journal of Information Security

2.4. Overview of AUGS Protocol

Authenticated data structures [12]-[17] enable incremental computation of a
succinct cryptographic commitment ()d t to dynamic data ()tD . Prov-
er-verifier protocols that leverage ADSes can be used to efficiently prove specific
properties4 regarding the data ()tD to verifiers. Specifically, for an ADS with
N data items, untrusted provers will need to provide ()2log N verification
objects (VOs) as proof. Verifiers, who trust only the current dynamic commit-
ment ()d t to the ADS, will need to perform ()2log N hash operations to
verify the proof. One novelty of the proposed approach is in utilizing a block-
chain network to maintain universal consensus on ADS commitments.

For our purposes, a blockchain network [18] [19] [20] [21] is a distributed in-
frastructure to maintain an append-only blockchain ledger. Incentive mechan-
isms in the distributed infrastructure ensure that only well-formed transactions
can be added to the ledger. The precise definition of “well-formed” will depend
on the application. As an example, in crypto-currency applications that cater for
transferring coins between crypto-wallets, a transaction to (say) “transfer n coins
from wallet A to a wallet B” will be considered as well-formed only if

1) the transaction is signed by A and
2) A had n or more coins before the transaction was executed.
By ensuring that only well-formed transactions can be added, the integrity of

current balances in all wallets is assured.
Execution of a transaction changes the state of the application. For cryp-

to-currency applications, the “current state” can be described by the remaining
balance in every wallet. Transferring coins from A to B changes the state of the
application (wallet balances in A and B will need to be updated). In blockchain
networks like Bitcoin, the state change caused by a transaction is not explicitly
indicated in the transaction added to the ledger. On the other hand, in the Ethe-
reum network, a cryptographic commitment to the new state(s) is made explicit
in ledger entries.

In the proposed approach, processes composed of simple blockchain transac-
tions will need to be executed by untrusted AUGS service providers to construct
and update “maps.” More specifically, a map construction process will involve
converting a region represented by a list L of boundary lines, to a “map” B
composed by a set of rectangular bounding boxes (BBs). A map update process
will involve modifying the map B to incorporate a child region represented by a
list of boundary lines Lc, and adding “legend” entries to BBs in the map to iden-
tify points inside the sub-region.

On successful completion of such processes, an AU response to any query re-
garding any point (x,y) is a single BB from the set B.

Specifically, for a region defined by N boundary lines, the service providers
will need to successfully execute ()N blockchain transactions that update

4Examples of such properties include existence of a specific item in ()tD , or non existence of an

item in ()tD , maximum/minimum value in ()tD , etc.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 107 Journal of Information Security

AUGS data like L and B. Such transactions will be considered well-formed only
if they satisfy a well-defined set of constraints C. The constraints C ensure that
untrusted service providers cannot successfully execute map construc-
tion/update processes in a way that leads to misleading/incorrect responses to
queries.

The dynamic commitment to AUGS data like L and B are captured by hash
tree based ADSes. The response from AUGS service providers (which is typically
a BB from B) will be accompanied by a “proof” in the form of a small number of
VOs (hashes) that can be verified against commitments in the blockchain ledger.

3. AUGS Processes

In this section we will illustrate with examples, two core AUGS processes, viz.,
map-construction, and map-update.

3.1. Map Construction

The AUGS map-construction process converts a list L of boundary line seg-
ments representing a region, into a collection of rectangular bounding boxes
(BBs). For simplicity we shall first assume a region defined by a single polygon,
represented by a list []1 2 2 3 1 1, , ,— —,— —n n np p p p p p p p−= �L . The map
construction process attempts to move every boundary line in a list L to a rec-
tangular BB in the collection B of rectangular BBs, such that the every boundary
line falls wholly inside a BB. Towards this end, the process is allowed to perform
simple operations like

1) split any boundary line in L into 2 segments (thereby increasing the total
number of lines by one),

2) split any BB in B (horizontally or vertically, thereby increasing the total
number of BBs by one), and

3) move a boundary line from the list L to an appropriate BB in B, subject to
constraints C (to be discussed soon).

Each such operation is executed as a transaction in a blockchain network.
Such transactions will be considered as well-formed only if they satisfy the con-
straints C, viz.,

C1. at most 2 boundary line segments can fall inside a BB;
C2. a single line mapped to a BB can only be a side or a diagonal of the BB;
C3. if 2 boundary line segments fall inside a BB, one should be a diagonal; the

other should be an adjacent boundary line;
C4. redundant boundary points should be unique;
C5. mapping should be performed in the CCW order of points;
C6. if 2 adjacent boundary lines are mirror images of each other both lines

should be removed from L and ignored.
Redundant boundary points are points that do not affect the enclosed region.

Given two adjacent boundary lines 1 —i ip p− and 1—i ip p + , the point ip is a
redundant point if ip lies on the line connecting 1ip − and 1ip + . While such

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 108 Journal of Information Security

points are created by splitting boundary lines, it is possible for such points to ex-
ist even in the input (the list L) to the process.

Mirror images of 2 adjacent boundary lines 1 —i ip p− , and 1—i ip p + where

1 1i ip p− += may be (as we shall see in Section 3.3.2) due to finite precision.
It is important to remember that service providers are not trusted, and might

attempt to create invalid regions for deliberately misrepresenting information.
The ability to include mirrored boundary lines and duplicate redundant points
can be used by provers to misrepresent map legend entries in BBs. The 6 restric-
tions C1 ∙∙∙ C6 ensure that the map-construction process can be successfully ex-
ecuted only if the input L to the process corresponds to a simple polygon. The
justification for the constraints are outlined in Section 3.3.

On successful completion of the process, the collection B of BBs will consist of
some BBs with no lines, some with one line, and some with 2 lines. More specif-
ically, the resulting BBs can be of up to 14 types as depicted in Figure 1:

1) type 0 with no lines (clear BBs);
2) types 1 and 2 with a single diagonal line (blue BBs);
3) types 3 to 6 where the line mapped to a BB is a side of the BB (green BBs),

and
4) types 7 to 14 (red BBs) where 2 adjacent boundary lines are mapped to a

BB—where one is a diagonal; the shorter line (between a side and a diagonal) is
associated with an offset o; the offset 0o = if the shorter line is a BB side.

That no more than 2 lines can be mapped to a BB, and that the lines can not
cross each other inside the BB, implies that areas within a BB can belong to at
most 3 different regions, captured by 3 region legends ,a bρ ρ and cρ . Enforc-
ing CCW order of mapping boundary lines to BBs is to ensure unambiguous
labeling of regions ,a bρ ρ and cρ inside each BB. Recall that for enclosing po-
lygons the triangular/rectangular area to the left is inside the region; for exclusion
polygons the area to the right is inside the region. The legend entries ,a bρ ρ and

cρ will be 0 for areas outside the region and 1 for areas inside the region.
After completion of the map-construction process, a query regarding any

point (x,y) can be answered by responding with a single BB in which (x,y) falls,
and examining the region markings inside the BB.

3.2. Map Construction Example

To keep the discussion simple, we shall first limit ourselves to regions defined by
a single polygon. Consider a polygonal region described by a list of boundary
lines {AB, BC, CD, DE, EF, FA} in Figure 2(a), bounded by a dashed rectangular
bounding box (BB).

By repeated use of appropriately chosen simple operations that split a boun-
dary line into 2 (creating a redundant boundary point), and split a BB into 2
(vertically or horizontally), we can fit every boundary line as a side or a diagonal
of a BB (Figure 2(b)). For the region with 6 boundary lines in Figure 2 we

1) split boundary line AB into AE' and E'A (adding a redundant boundary

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 109 Journal of Information Security

point E'), and
2) perform 8 BB splits (to result in 9 BBs marked 01 to 09), and
3) map boundary lines to BBs while strictly adhering to all constraints.
In this particular instance, 5 boundary lines become diagonals of BBs; 2 lines

become a BB side; two BBs (05 and 06) are empty.
As a second example, consider a region (Figure 2(c)) PDQ. In this instance, we

Figure 1. (a) Four geographic regions R1, R2 and R3 and R4; (b) An illegal region defined
by a non-simple polygon ABCD (sides BC and DA intersect at E); (c)-(e) Effect of finite
precision. Type 0 to Type 14: 15 BB types ({ }0 14c = �).

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 110 Journal of Information Security

Figure 2. AUGS points and bounding boxes (BBs). (a) Parent region; (b) AUGS BBs for
parent region; (c) Child region; (d) AUGS BBs for child region; (e) Altered parent region
to incorporate child.

1) create a redundant boundary point Q' to split boundary line PD into PQ'

and Q'D;
2) perform 3 BB splits; and
3) map boundary lines to BBs.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 111 Journal of Information Security

This time however we have to map two boundary lines (QP and PQ') to the
same (red) BB (Figure 2(d)). Mapping 2 boundary lines inside a BB is unavoid-
able in situations where projections of adjacent boundary lines overlap in both X
and Y directions.

On successful completion of the map construction process, any query regard-
ing any point (x,y) inside the original dashed BB can be answered by examining
a single BB (in the BB collection). Each BB conveys coordinates of up to 2 lines,
and up to 3 region codes, from which it is straight forward to determine the re-
gion code for point (x,y).

For the first example the region code corresponding to line BC mapped to BB
06 in Figure 2(b) will indicate that the region above the line is 1 and the region
below as 0. The red BB in Figure 2(d) will be associated with 3 region codes—0
for region below PQ', 1 for region below PQ (and above PQ'), and 0 for region
above PQ.

If the query point (x,y) lies inside a clear BB, it is sufficient to examine an ad-
ditional non-clear adjacent BB. For example, for a point (x,y) in BB 07, the re-
gion code is the same as the region code below the diagonal of BB 06 to the left,
or below the diagonal of the blue BB 08 above.

3.3. Rationale for the Constraints

The map construction process is deemed successful only if all boundary lines are
mapped to BBs. The 6 constraints ensure that only a sequence of points/sides
representing a simple polygon can lead to successful completion of this process.

Constraint C3 ensures that boundary line segments cannot cross inside any
BB. C4 ensures that lines do not cross at BB corners. Constraints C5 and C6 en-
sure unambiguous labeling of triangular/rectangular areas inside BBs.

To see the need for the constraint of uniqueness of redundant points (C4),
consider the non-simple polygon represented by 4 lines {AB, BC, CD, DA} in the
Figure 1(b), which obviously does not describe a valid region. Nevertheless, by
splitting boundary lines AB at A', BC at E, CD at D', and DA at E, all resulting
boundary lines (AA', A'B, BE, EC, CD', D'D, DE and EA) of this obviously
invalid region can be mapped to BBs—as the boundary lines do not intersect in-
side any BB. However, the redundant points A', E, D' and E are not unique (as E
occurs twice). This constraint will cause the map-construction process to fail.

Note that the situation would be different if the same region was described in-
stead by a list of six boundary lines {AB, BE, ED, DC, CE, EA}. In this case only
2 redundant points will need to be added (A' and D'), to map all boundary lines.
Mapping this sequence of boundary lines will be successful this time—as it
should be, as the boundary lines do describe a valid region (two triangular re-
gions meeting at E). While we have 2 instances of point E, they are not redun-
dant points in this case.

3.3.1. CCW Mapping
The constraint of CCW order is to ensure unambiguous assignment of region

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 112 Journal of Information Security

codes. Specifically, the region to the left/right of the line is labelled 1/0 for en-
closing polygons (0/1 for excluding polygons). On completion of the mapping,
the BB coordinates, BB type, 3 region labels, and offset o (for BB types 7 to 14 in
Figure 1) are sufficient to unambiguously determine the precise coordinates of
lines mapped to the BB, and consequently, determine the region legend for point
(x,y) (1 for inside the region and 0 for outside). To ensure that the mapping is
sequential it is verified that the next line starts where the last mapped line ended.
To ensure that the order is CCW (and not CW) the area of the polygon is in-
crementally computed using the shoe-lace formula [22]. As every line is mapped
sequentially, only CCW mapping will result in a positive value for the area (CW
mapping will result in a negative value).

The “shoelace area” A is initially set to 0; if a line segment () ()1 1 2 2—x y x y‚ ‚
is added to the map the shoelace area is incremented by 1 2 2 1A x y x yδ = − . On
completion of the mapping, the cumulative shoelace area5 A will be positive only
if the traversal in performed in CCW order. If 0A < the process is considered
to have failed (the ill-formed transaction will be rejected).

3.3.2. Implications of Finite Precision
There are obviously scenarios where it is necessary to map 2 lines to a BB (when
2 adjacent boundary lines have overlapping projections in both X and Y direc-
tions). Fortunately, even for maps with multiple polygons 2 lines to a BB is suffi-
cient.

Consider a scenario in Figure 1(c) where several boundary lines meet at a
corner of a BB. It might appear at first glance that how many every subdivisions
are performed to split boundary lines or BBs, a BB at the lower left corner, at
which all lines meet, will still have more than 2 lines mapped to it.

In practice, however, only a finite number of bits can be used to represent x
and y coordinates. For example, representing coordinates using unsigned 32-bits
is sufficient to realize a worst case resolution error (at the equator) of about 1
cm. With finite precision, in the smallest possible BB (), , 1, 1,x y x y v+ + at the
lower left corner, all lines will have to map to the bottom side or the diagonal, or
the left side of the BB (Figure 1(d)). In other words, at most 3 lines may need to
be mapped to a BB.

However, we have the option to map the bottom of the BB as the top side of
the BB below, or the left side as the right side of the BB to the left. In the worst
case scenario, only 8 lines will need to be mapped to 4 adjacent BBs (Figure
1(e)).

An important consequence of finite precision is in scenarios where boundary
lines meet at a point (say 2p) at highly acute angles. Let the two adjacent lines

1 2—p p , 2 3—p p fall inside the same BB, where 1p and 3p have the same
x-coordinate (where they meet a BB side). If the y coordinates of the two points
differ by less than half the smallest BB resolution, then 1p and 3p will be
quantized to the same point 1 3p p p′≈ ≈ , thereby creating two adjacent boun-

5A/2 is the actual area of the polygon.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 113 Journal of Information Security

dary lines —p p′ and —p p′ , that mirror each other, creating a zero-area re-
gion between them. Mapping such lines will result in inconsistent region codes.
Fortunately, removing such lines (and not mapping them) will have no practical
effect on the geometry of the region. Such adjacent pairs, if present (either due to
precision issues, or deliberately added by untrusted provers), will be ignored.

3.4. Map Update

The map-update process modifies the map of a region (created by a
map-construction process) to include a sub-region. This process may need to
split BB’s created by the map-construction process further, add new lines inside
BBs, and update legend labels for areas inside BBs. While region label 1 is used
for the region created by the map construction process, region codes 2 and
higher are used for labeling sub-regions created by the map-update process. This
process can be performed any number of times to create any number of non
overlapping child regions, with unique region legend labels.

Consider a scenario in Figure 2(e) where the polygon PDQ in Figure 2(c) is
actually a child of region ABCDEFA in Figure 2(a). In this specific case, by fur-
ther splitting BBs 09 and 08 in Figure 2(b) as in Figure 2(e) we can incorporate
the second region too in the map of the first region. More generally, the map
update process can be seen as consisting of the following steps:

1) Move some existing lines from some BBs in the parent map to a temporary
list; in this case lines ED (BB 09 in Figure 2(b)) and CD (BB 08 in Figure 2(b))
will be moved to the temporary list.

2) Split (now empty) BBs as necessary; in this case BB 08 in Figure 2(b) was
split into 4 BBs (08, 13, 14 and 15 in Figure 2(e)); BB 09 in Figure 2(b) was split
into 5 BBs (09, 10, 11, 16, 12 in Figure 2(e))

3) Split lines in the temporary list as necessary; line CD was split into CP and
PD; line ED was split into EQ and QD.

4) Map all lines from the temporary list back to BBs; 4 lines CP, PD, DQ and
QE will be re-mapped (to BBs 08, 14, 12 and 09 respectively, in Figure 2(e)).

5) Split boundary lines of the child polygon as necessary; QP was split into QR
and RP.

6) Map all child boundary lines to the altered parent’s map, one by one, in
CCW order, and update region codes as necessary.

If the legend index assigned to the child is 2, on completion of the map update
process the region codes in BBs 12 will be 0aρ = , 2bρ = (region cρ not
present in blue BBs). In BB 16 the region code will be 1aρ = , 2bρ = ; in BB 14
the region codes will be 2aρ = , 0bρ = , 1cρ = .

As the child boundary lines are mapped to BBs of the parent, the region codes
to the left of the line (or right of the line for island polygons) are modified from
“1” to the unique legend label (for example, 2) assigned to the child.

As mentioned earlier the list of boundary lines L and set of BBs B are hash
tree based ADSes outlined in the next section.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 114 Journal of Information Security

4. Authenticated Data Structures

Given a cryptograpic hash function h(), and

() { } { }*, 0,1 , 0,1 ,ny h x x y= ∈ ∈ (1)

it is safe to conclude that “pre-image x existed before hash y.” This is due to the
fact that if y were chosen first it is computationally impractical to come up with
a suitable pre-image.

Cryptographic hash functions lie at the core of several hash tree based ADSes
that enable incremental computation of a succinct cryptographic commitment
()d t to dynamic data ()tD .
In prover-verifier protocols that leverage such ADSes, irrespective of the

number of items N in dynamic data ()tD , it is sufficient for the verifiers to
track a single dynamic hash ()d t . Provers (who actually store all data ()tD)
can prove specific properties of the ()tD to verifiers by providing ()2log N
VOs. The verifiers, who do not trust the prover, can verify the proof by per-
forming ()2log N hash operations and comparing the result with the current
commitment ()d t .

4.1. Ordered Merkle Trees

A binary Merkle hash tree [23] of depth d can have up to 2dN = leaves and

02 1 2d d i
iN N −
=

− = ∑ nodes. Each leaf is a data record. The N leaf-nodes at
depth d are leaf hashes; the N/2 nodes at depth 1d − are obtained by hashing 2
nodes in depth d together, and so on. The 2 nodes at depth 1, are finally hashed
together to result in a lone node—the root of the tree—at depth 0. The root is a
commitment to all leaves and nodes.

Corresponding to any node v at depth k are k complementary nodes 1 kc c�
—one each at depths , 1, ,1k k − � . The complementary nodes are VOs that
permit any entity with access only to the root 00v ξ= of the tree to verify exis-
tence of node v, at depth k, in a tree with root ξ . Proof of existence of a
leaf-node is proof of existence of its preimage, viz., a leaf. By performing 2log N
hash operations using 2log N VOs, a verifier with access to the root can verify
the existence of any leaf in the tree, and/or compute the new root corresponding
to an incremental update like a) modification to a leaf, or b) insertion/deletion of
a leaf.

Unfortunately, the Merkle hash tree does not enable the prover to efficiently
prove absence of a specific leaf/record. This limitation is addressed by ordered
Merkle trees (OMT) [14] [15] which imposes well defined rules for inser-
tion/deletion of leaves. The rules for insertion/deletion guarantee completeness
of the collection represented by leaves of the tree, at all times.

Each leaf in an OMT corresponds to an interval on the number line. An in-
terval/leaf [[,a b represents

1) (if a b<): all a x b≤ < ;
2) (if b a≤): all x a≤ and all x b> (note that if b a= the interval

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 115 Journal of Information Security

represents the entire number line x a≤ and all x a>).
Leaves can be inserted only by splitting an interval into 2—thereby, replacing

a leaf with 2 leaves. Merging 2 adjacent intervals results in removal of a leaf.
These restrictions ensure that leaves of an OMT form a complete collection at all
times. More specifically, a unique leaf will exist for every point on the number
line.

The first leaf inserted into an empty OMT will correspond to an interval
[[,x x (all values greater than equal to x and all values less than x). To create a
new interval from x to y where y x> we can split the leaf [[,x x into 2—one
corresponding to the desired interval [[,x y and the second corresponding to a
wrapped around interval [[,y x . As an example, the 3 leaves [[2,9 , [[9,22
and [[22,2 for a complete collection.

An OMT can also be interpreted as a key-value collection. With this interpre-
tation, the start k of an interval [[,k k ′ is seen as a unique key. Under this in-
terpretation, existence of a leaf [[(), ,k k v′ in a hash tree with root ξ implies

1) existence of a key-value pair { },k v ; and
2) that the next-key is k ′ implying non-existence of all other keys that fall in

the interval. Note that if x x′> , then x and x′ are the highest and lowest keys
(respectively).

Thus, by demonstrating the existence of a leaf, the prover can now demon-
strate non-existence of specific keys, highest/lowest keys, etc. Elementary OMT
operations like insertion, deletion, and leaf updates have the same ()2log N
complexity as Merkle tree operations.

4.2. 2-D OMT

One important contribution of this paper is a 2-D extension of OMTs. A 2-D
OMT can be seen as a complete collection of 2-D intervals (or bounding boxes)
of the form () (), , ,x y x y′ ′ . Specifically, () (), , ,x y x y′ ′ represents a planar
rectangular region extending between [[,x x′ in one dimension and between
[[,y y′ in the second dimension. A collection with a single BB will specify a
wrapped around interval () (), , ,x y x y representing the entire 2-D plane.

The first leaf (BB) inserted into an empty 2-D OMT should be of the form
() (), , ,x y x y , (representing the entire 2-D plane). A leaf for interval (say)
() ()2,3 , 5,6 can be split into two (for example)
1) horizontally as () ()2,3 , 5, y and () ()2, , 5,6y , where 3 6y< < , or
2) vertically as () ()2,3 , ,6x and () (),3 , 5,6x , where 2 5x< < .
A leaf for a wrapped around interval () ()9,6 , 5,8 may be split
1) along a vertical into () ()9,6 , ,8x and () (),6 , 5,8x where 9x > or

5x < ; or
2) horizontally as () ()9,6 , 5, y and () ()9, , 5,8y where 6 8y< < .
For our purposes, leaves of a 2-D OMT are five-tuples that convey the four

values , , ,x y x y′ ′ (BB coordinates), and a value v associated with the BB. A 2-D
OMT is guaranteed to include a leaf for every point (),x y on the plane. More

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 116 Journal of Information Security

specifically, a query regarding any point (),x y on a plane can be answered by
providing a single leaf from a 2-D OMT (along with 2log N VOs, where N is
the total number of BBs).

5. Process States and Transactions

AUGS employs a variety of Merkle tree and OMT based data structures to com-
pute dynamic commits to AUGS process states.

5.1. Process States

AUGS process states that are incrementally updated by AUGS transactions are
as follows:

1) region data: leaves of a Merkle tree with commitment rξ ;
2) map data: leaves of a 2-D OMT (BBs) with commitment bξ ;
3) redundant-points: a key-value collection with commitment pξ ; and
4) temporary-lines: leaves of a Merkle tree with commitment tξ .
For simplicity of notations, in the rest of this paper, we will use the following

conventions:
1) A collection (leaves of a hash tree with root ξ) will simply be referred to as

“collection ξ .”
2) L ξ∈ implies “a leaf L in collection ξ .”
3) k ξ∉ indicates “key k does not exist in collection ξ .”

5.1.1. AUGS Regions
An AUGS region (composed of one or more polygons) consists of boundary
lines of the form ()1 2, ,p p m where i) m is a polygon identifier; and ii)

()1 1 1,p x y= and ()2 2 2,p x y= are the start and end points of a boundary line
(when the polygon is traversed in the CCW order). The polygon identifier m is
odd for polygons that enclose the region and even for polygons that exclude the
region.

Each boundary line is a leaf of a hash tree with root rξ . A region described by
u polygons, each with 1 2, , , un n n� sides respectively, is a tree with 1 ii

u n
=∑

leaves.
Transaction SplitLine ()1 2, , ,p p m p splits a line ()1 2, , rp p m ξ∈ into

()1, ,p p m and ()2, ,p p m , only if p lies on 1 2—p p . This operation replaces
one leaf with 2.

Transaction SkipLines (1 2, ,p p m) removes two adjacent boundary lines
()1 2, , rp p m ξ∈ and ()2 1, , rp p m ξ∈ that are mirror images.

5.1.2. AUGS “Map”
An AUGS map is a complete 2-D OMT collection with root bξ . A leaf

(), , , ,l l h hx y x y v=b in this tree represents a rectangular bounding box (BB).
The value v assigned to a BB depends on the line(s) mapped to the BB, and is of
the form

,a b cv c oρ ρ ρ= � � � � (2)

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 117 Journal of Information Security

where c is the BB type, , ,a b cρ ρ ρ are region codes, and o is an offset.
Transaction SplitBB() splits an empty BB in bξ into 2 (vertically or horizon-

tally). If 0bξ = , then this transaction sets (), , , ,0b h x y x yξ = corresponding to
a lone BB that spans the entire 2-D plane.

5.1.3. Mapping Lines and Redundant Points
The hash tree with root pξ is a key-value collection where each key corres-
ponds to a (redundant) point, and the value is unused (and thus, omitted).
Leaves of this tree are of the form (),k k ′ where k x y= � , k x y′ ′ ′= � . Points
determined to be redundant are added to this collection by a transaction Map-
Line(). This collection is used to guarantee uniqueness of redundant points (as
keys have to be unique).

Transaction MapLine(1 2, , ,p p m b) i) removes a boundary line ()1 2, , rp p m ξ∈
and maps it to a BB in bξ∈b by updating the value v of the BB and ii) if 1p is
determined to be a redundant point, adds key 1p to collection pξ . Transac-
tion MapLine will be ill-formed if the redundant point already exists in pξ .

5.1.4. AUGS Temporary Boundary Lines
The hash tree with root tξ is used to temporarily store some boundary lines dur-
ing the map update process. Leaves of this tree are of the form ()1 2, , a bp p ρ ρ�
and convey region codes above and below the line 1 2—p p (for vertical lines

aρ is the region code to the left).
Transaction UnmapLine() removes (up to 2) existing lines from a BB bξ∈b ,

sets the value of the BB b to indicate BB type 0, and adds the line(s) to the tree
with root tξ .

Transaction SplitTmpline(1 2, ,p p p) splits a line ()1 2, , a bp p u ρ ρ= � into
()1, ,p p u and ()2, ,p p u (only if p lies on the line segment 1 2—p p).

Transaction RemapLine() removes a line from ()1 2, , a b tp p ρ ρ ξ∈� and
maps it back to a BB in bξ (and updates the BB type and region codes).

5.2. Macro-Transaction ConstructMap()

The state of a map construction process is captured by seven dynamic values,
viz.,

{ }, , , , , , ,mc r b p s b ep p p Aξ ξ ξ= (3)

where rξ is the commitment to a region (with any number of polygons), bξ is
the commitment to a map, pξ is a commitment to a collection of unique re-
dundant points.

Tracking the 3 point values , ,s e bp p p , and the “shoelace area” A, makes it
possible to i) identify redundant points and mirrored boundary lines ii) ensure
that all polygons in rξ are closed; and iii) ensure that traversal was performed
in the CCW order. All 4 values are affected by the MapLine (1 2, , ,p p m b) trans-
action.

The shoelace area A is initially set to 0. As a line 1 2—p p is added to the map

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 118 Journal of Information Security

where 1.p x , 1.p y , 2 .p x and 2 .p y are the respective coordinates of 1p and

2p , the elemental shoelace area is

()1 2 1 2 2 1,slf p p p x p y p x p y= − (4)

On completion of the mapping the cumulative shoelace area6 A will be posi-
tive only if the traversal in performed in CCW order.

If 0sp = the implication is that the line ()1 2, ,p p m to be mapped is the
first line of polygon m in rξ . Consequently, sp is initialized to 1p (and will
be reset to 0 when a line (), ,sp p m is mapped). In addition, all leaves in the
tree pξ (redundant points) are removed by setting 0pξ = . The values bp
and ep are set to 1p and 2p (end points of the most recently mapped line).

If 0sp ≠ , MapLine (1 2, , ,p p m b) expects 1ep p= , and 2 bp p≠ . Recall that
scenarios (involving two adjacent lines of the form ()1 2, ,p p m and
()2 1, ,p p m) can only be handled using transaction SkipLines. If 1p lies on the
line 2—bp p , 1p is a redundant point, and should be added as a key to pξ .
Inability to do so (if 1p already exists in pξ) will result in failure of the trans-
action. If 2 sp p= MapLine recognizes end of the current polygon and sets

0sp = . The pseudo-code for transaction MapLine() is depicted in Figure 3.

Figure 3. Micro-transaction MapLine().

Figure 4. Micro transaction MapChildline().

6A/2 is the actual area of the polygon.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 119 Journal of Information Security

The map construction process can be seen as a macro-transaction, consisting
of a sequence of micro transactions of 4 types: viz., SplitLine, SplitBB, and Map-
Line, and SkipLines().

The macro transaction ConstructMap (, ,r bv vξ) constructs a map (with
commitment) bv for a region (with commitment) rv , by performing a se-
quence of micro-transactions specified as leaves of a hash tree with root ξ . The
commitment rv R= to the region (root of a Merkle tree with boundary lines as
leaves) also serves as a unique region identifier.

The initial state of the process is set to

{ }, 0 .mc r r b p s b ev p p p Aξ ξ ξ= = = = = = = = (5)

From this point onwards, the micro-transactions in the Merkle tree with root
ξ are executed sequentially to split lines in rξ , split BBs in bξ , remove mir-
rored lines from rξ , and map lines in CCW order to bξ . At the end of the
process, 0rξ = (implying that all lines have been mapped) and 0sp = (the
last polygon is closed). In other words, the macro-transaction is well-formed if

1) every micro-transaction in ξ is well-formed, and
2) the final state is

{ }0, , , 0, , , 0 .mc r b b p s b ev p p p Aξ ξ ξ= = = = > (6)

On successful completion of the process the region rR v= is determined to
be valid, and is associated with a map (with root) bξ .

5.3. Macro-Transaction UpdateMap()

The state of the map update process is captured by five values, viz,

{ }, , , , ,mc r b t s ep pξ ξ ξ= (7)

where rξ is the commitment to a child region (which has already undergone a
map-construction process), bξ is the commitment to the map of the parent re-
gion, and tξ is a commitment to a collection temporary lines. As earlier, sp is
the first mapped point of a polygon in rξ , and ep is the end point of the pre-
viously mapped boundary line.

UpdateMap (0, , , ,f
r b bv v v nξ) modifies a map 0

bv to f
bv to incorporate a

child region rv , using a sequence of micro-transactions in a hash tree with root
ξ . The value n is legend label to be assigned to the child region.

Seven types of micro-transactions are used by the map update process: Split-
Line, SplitBB, SkipLines(), UnmapLine, SplitTmpLine, RemapLine, and Map-
Childline. The initial state of the process is

{ }0, ,0,0 ,mu r r b bv vξ ξ= = = (8)

From now on, the micro-transactions remove lines from bξ and map them
to tξ , split lines in tξ as necessary, split BBs in bξ , and finally, map lines in

rξ to bξ , in CCW order. At the end of the process 0rξ = , implying that all
lines have been mapped. The micro-transactions also update values , ,s b ep p p
to ensure that lines are mapped in the CCW order.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 120 Journal of Information Security

Transaction MapLine (used in the construction process) is intended for
boundary lines of regions that have not yet been verified to be valid. On the oth-
er hand, boundary lines of a child region mapped by MapChildline have already
been confirmed to correspond to a valid region (by a prior successful execution
of the map-construction process on the child region). Consequently, MapChil-
dline does not need to check for uniqueness of redundant points, or that the
points are arranged in the CCW order. The pseudo code for this transaction is
shown in Figure 4.

The macro-transaction is well-formed if every micro-transaction in ξ is
well-formed, and execution of all micro-transactions results in final state

{ }0, , 0, 0, .f
mu r b b t s ev p pξ ξ ξ= = = = = (9)

On successful completion of the process on a existing map of a region R, a re-
gion rR v′ = is recognized a genuine child of region R with legend n in the map
of region R. The commitment to the modified map of R is updated to f

bv .

5.4. Global AUGS States

The state of all AUGS data for any number of regions is captured by 4 key-value
collections that specify relationships between regions, maps, parent-child rela-
tionships, and public keys of regions. The collections include

1) static region collection with root sr : a key-value pair { }, bR v in this col-
lection implies that R has been verified to be a valid region (defined by 1 or more
simple polygons).

2) dynamic region collection with root dr : { }, ||b dR v n r∈ indicates that the
region R has 1n − sub-regions with legend entries 2 to n.

3) parent-child collection with root cr : { }, ||p cR R n r∈ indicates that region
R is the child of a parent Rp with legend entry n in the map of parent Rp;

4) public key collection with root ur : { }, uR U r∈ conveys that U is the au-
thorized public key for every point in region R.

The broad goal of the AUGS protocol is to permit anyone to obtain the au-
thoritative public key U for any point (x,y) in the globe. Using the public key,
any information from the authoritative source can be verified.

AUGS ledger entries provide a record of transactions, that include commit-
ments to AUGS states after each AUGS transaction. While micro-transactions
for a specific region updates up to 7 temporary region-specific states in the Con-
structMap (or 5 temporary region-specific states for UpdateMap) process, suc-
cessful execution of macro transactions result in updates to the 4 AUGS states

, ,s d cr r r and ur .
Successful execution of ConstructMap (, ,r bv vξ) for a region with root

rR v= resulting in a map with root bv , is proof that the list of boundary lines
with commitment rv constitute a valid region (described by 1 or more simple
polygons). The end result is addition of a key-value pair { }, bR v to the static
region collection (which updates state sr).

Before the map bv of a region R can be updated, it is necessary to assign a

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 121 Journal of Information Security

public key for region R, as updates to the region R will need to be authorized.
This process will be discussed shortly, in Section 5.5.

Execution of UpdateMap (0, , , , , , ,f
b b p p pR v v n R Uξ Σ) for updating the map of

a parent Rp to incorporate a child region R with legend entry n in the map of
parent Rp will commence only if

1) { }0, || 1p b dR v n r− ∈ , indicating 1n − as the highest legend entry;
2) { },p p uR U r∈ indicating that the region Rp has the authority to create it’s

own child regions;
3) the signature Σp for the transaction is verifiable using public key Up.
On successful execution of UpdateMap (0, , , , , , ,f

b b p p pR v v n R Uξ Σ) for updat-
ing the dynamic map of parent region Rp

1) { }0, || 1p b dR v n r− ∈ is updated to { }, ||f
p bR v n ;

2) { }, ||pR R n is added to the parent-child collection to convey that R is a va-
lid child of region Rp, and is associated with region legend n in the dynamic map
of the parent.

A successful UpdateMap (0, , , ,f
b bR v v nξ) transaction results in updates to

AUGS states dr and cr .

5.5. Certifying Public Keys of Regions

Just as a DNS zone A can authenticate the public key of child zone B A∈ (or
name B ends with A), AUGS regions can certify public keys of child regions to
delegate responsibility of authenticating responses regarding points inside the
child zone. Public key certificates are added to the key-value collection with root

ur .
Specifically, the public-key collection has key-value pairs of the form { },R U .

A transaction CertifyPK (, , , , , ,p c c c p pR R v n U U Σ) can be invoked by parent re-
gion Rp (with public key Up) to certify the public key Uc of child region Rc. This
transaction is deemed to be well-formed only if

1) { },p pR U exists in public key collection;
2) key Rc does not exist in public key collection ur ;
3) key Rc does not exist in the dynamic region collection dr ;
4) { },c cR v exists in the static region collection sr ;
5) { }, ||c pR R n exists in the parent-child collection cr ; and
6) signature pΣ for the transaction is consistent with public key Up of the

parent region Rp.
This transaction results in
1) addition of a key-value pair { },c cR U to the public key collection ur ;
2) addition of a key-value pair { }, || 0c cR v to the dynamic region collection

dr ; from this point on, the map of child region Rc may be updated by the child to
create sub-regions inside Rc.

A transaction RootCertify (, , ,bR v U φΣ) is used to assign a public key U to a
region R that does not have a parent region. The public key is signed by the root
Φ .

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 122 Journal of Information Security

This transaction verifies that key R does not exist in the parent-child collec-
tion or dynamic collection, but { }, bR v does exist in the static collection (indi-
cating that R is a valid region). Furthermore, the signature for the transaction
should be consistent with the root public key.

The root public key is initialized as the first entry in the public key collection,
as a key value pair { },UφΦ corresponding to a special region identifier (say,

1Φ =). The result of this transaction is
1) addition of a key-value pair { },R U to the public key collection;
2) addition of a key-value pair { }, || 0bR v to the dynamic region collection;
3) addition of a key-value pair { },R Φ to the parent-child collection to con-

vey the creation of a special region by the root Φ .

5.6. Verifying Responses

Reliable current values of the dynamic AUGS states , ,s d cr r r and ur can be
obtained by any verifier at any time from the blockchain network. Armed with
this, one can proceed to obtain the authoritative public key U for any point
(x,y).

To prove AU properties of the response “U is the public key for point (x,y),”
the response includes

1) a key-value pair { }, ||bR v n from the dynamic region collection (along
with 2log M VOs, where M is the number of AUGS regions) with root dr ;

2) a leaf (BB) from a BB collection with root bv (along with 2log N VOs,
where N is the number of BBs in the map of region R);

3) a key-value pair { },R U from the collection with root ur (along with

2log M VOs).
4) additionally, if the legend corresponding to point (), 1x y m= > in the BB,

a key-value pair { }, ||cR R m from the parent-child collection and non exis-
tence proof of key Rc in the public key collection are also required.

Having verified the first 2 key-value pairs and the BB, using the VOs, the ve-
rifier can proceed to verify that (x,y) does indeed fall inside the rectangle (BB),
and that the region code for the (x,y) is 1.

Recall that each BB specifies the enclosing x and y coordinates, and a value v
which indicates the BB type, offset o (for types 7-14), up to three region codes
for triangular/rectangular areas inside the BB. If the region code is 0, then (x,y)
is not a point in region R. The response will not be accepted as AU.

Similarly, if the region code is 1m > , then (x,y) is a point inside a sub-region
Rc of R (as indicated by the key-value pair { }, ||cR R m). However, the proof of
non-existence of a public key for the child region Rc is proof that the region has
not been delegated. In other words, the public key U of the parent R still remains
authoritative for the sub-region Rc with legend m.

Finally, if U is deemed authoritative for point (x,y), the verifier can then ac-
cept any information regarding point (x,y), as long as it is duly authenticated
using a signature verifiable using public key U.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 123 Journal of Information Security

6. Related Work

Several hash tree based authenticated data structures (ADS) [12]-[17] have been
proposed in the literature which enables an untrusted prover to prove a wide va-
riety of properties regarding a wide variety of data to verifiers who have access
only to the succinct commitment for all data. Most often, in application scena-
rios relying on ADSes, the creator/owner of the data constructs a suitable ADS,
and disseminates the commitment to the tree by signing the commitment (root
of the tree). An important novelty in AUGS protocol is that of combining the
utility of ADSes with the power of blockchain networks to maintain consensus
on the dynamic commitment at all times.

A precursor to the AUGS protocol is the secure queryable dynamic maps
(SQDM) [24] protocol. Both SQDM and AUGS rely on simple state-change
functions that convert a vector representation of a region (a sequence of boun-
dary lines or points) to a map representation. The main differences between
SQDM and AUGS are three-fold.

The first difference lies in the data structures used for capturing succinct
commitments to regions and maps. SQDM [24] employed nested 1-D OMTs
where two-dimensional space was first split into vertical bars and each vertical
bar was then split into multiple BBs. Compared to the 2-D BBs in AUGS, the
SQDM approach calls for a substantially larger number of BBs to represent a
map. The second is the strategy for ensuring correctness of state-change func-
tions; SQDM relied on trusted hardware (instead of blockchain). Thirdly, SQDM
was intended to merely guarantee integrity of responses to point-location [8],
[11] queries. SQDM did not have the ability to cater for delegated sub-regions.

7. Conclusions

AUGS is a comprehensive protocol that can serve as a foundation for any appli-
cation where information is tied to geography. Just as the domain name system
[1] permits authenticated and unbiased responses to queries regarding names
and types, AUGS caters for AU responses to queries regarding any point (x,y) in
a 2-D plane. More specifically, the DNS security protocol DNSSEC [2] permits
any one to determine the authoritative public key UZ of the zone Z under which
the queried name A falls. This public key UZ can then be used to verify authen-
ticity of specific types of information regarding the name A. In AUGS, the re-
sponse to any query regarding (x,y) is the public key UR of the region R in which
point (x,y) falls. The main challenge addressed by AUGS is that while determin-
ing that “name a.b.c belongs to zone b.c” is trivial, it is far from trivial to deter-
mine that (x,y) falls inside a non-delegated portion of region R, where a region R
may be described by one or more polygons with possibly tens of thousands of
sides, and that any number of non-overlapping polygonal sub-regions inside re-
gion R could have been delegated.

That AUGS guarantees authoritative geographic information implies that a
wide range of government services can be moved completely to the digital realm.

https://doi.org/10.4236/jis.2022.133007

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 124 Journal of Information Security

Just as one can buy/surrender a domain name by performing purely digital
transactions, one can a) buy/sell land parcels or farms, b) assume control over a
region for a specific purpose, c) propagate authoritative information associated
with the region (for example, information necessary for emergency responders
[25], local laws, tax rates, roadwork in progress), d) delegate authority over
sub-regions to other entities for specific purposes (for example, a utility district
serviced by a power company), etc.

That AUGS can guarantee unbiased information regarding availability of dif-
ferent types of services at/near specific points/regions implies that a wide range
of commercial (location-sensitive) services can be readily and reliably pro-
vided/discovered by any one, without the need to trust middle-men.

In practice, the several public keys may be authoritative for a point (x,y) de-
pending on the context of the query. For example, the authority for responses
to different queries like a) current weather at (x,y) or b) the polling location for a
resident at (x,y) or c) the prevailing local tax-rate at (x,y) or d) zoning restric-
tions at (x,y) or e) the zip code of (x,y) or f) the owner of (x,y) or g) utility pipes
buried near (x,y), or h) hazardous material storage location near (x,y), will be
different. One way to cater for different contexts is to maintain independent
AUGS infrastructures for each context. However, a single infrastructure capable
of supporting multiple contexts can be more efficient. Such context specific ad-
ditions to AUGS are one of our ongoing research topics.

Acknowledgements

This research was partially funded by the United States Department of Agricul-
ture, Agricultural Research Service (USDA-ARS): 58-0200-0-002, “Advancing
Agricultural Research through High Performance Computing.”

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Mockapetris, P.V. (1987) Domain Names—Concepts and Facilities. RFC Editor.

https://doi.org/10.17487/rfc1034

[2] Arends, R., Austein, R., Larson, M., Massey, D. and Rose, S. (2005) RFC 4033: DNS
Security Introduction and Requirements. https://doi.org/10.17487/rfc4033

[3] Chang, K. and Tsung, K. (2016) Introduction to Geographic Information Systems.
9th Edition, McGraw-Hill, New York.

[4] ESRI White Paper (1998) ESRI Shapefile Technical Description.
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

[5] Weiler, S. and Ihren, J. (2006) RFC 4470: Minimally Covering NSEC Records and
DNSSEC On-Line Signing. https://doi.org/10.17487/rfc4470

[6] Laurie, B., et al. (2008) DNS Security (DNSSEC) Hashed Authenticated Denial of
Existence. RFC 5155. https://doi.org/10.17487/rfc5155

https://doi.org/10.4236/jis.2022.133007
https://doi.org/10.17487/rfc1034
https://doi.org/10.17487/rfc4033
https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
https://doi.org/10.17487/rfc4470
https://doi.org/10.17487/rfc5155

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 125 Journal of Information Security

[7] Topologically Integrated Geographic Encoding and Referencing (TIGER) Database,
United States Census Bureau.
https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html

[8] Baugmgarten, H., Jung, H. and Mehlhorn, K. (1994) Dynamic Point Location in
General Subdivisions. Journal of Algorithms, 17, 342-380.
https://doi.org/10.1006/jagm.1994.1040

[9] Dobkin, D. and Lipton, R.J. (1976) Multidimensional Searching Problems. SIAM
Journal on Computing, 5, 181-186. https://doi.org/10.1137/0205015

[10] Nekrich, Y. (2021) Dynamic Planar Point Location in Optimal Time. Proceedings of
the 53rd Annual ACM SIGACT Symposium on Theory of Computing, Rome, 21-25
June 2021, 1003-1014. https://doi.org/10.1145/3406325.3451100

[11] Arya, S. and Mount, D.M. (2005) Computational Geometry: Proximity and Loca-
tion. In: Mehta, D. and Sahni, S., Eds., Handbook of Data Structures and Applica-
tions, Chapman & Hall/CRC, Boca Raton, 22.

[12] Anagnostopoulos, A., Goodrich, M.T. and Tamassia, R. (2001) Persistent Authenti-
cated Dictionaries and Their Applications. Information Security Conference (ISC),
Vol. 2200, 379-393. https://doi.org/10.1007/3-540-45439-X_26

[13] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M., Kwong, A. and Stubblebine, S.
(2001) A General Model for Authentic Data Publication. VC Davis Department of
Computer Science Technical Report.

[14] Ramkumar, M. (2014) Symmetric Cryptographic Protocols. Springer, Berlin.
https://doi.org/10.1007/978-3-319-07584-6

[15] Adhikari, N., Bushra, N. and Ramkumar, M. (2019) Complete Merkle Hash Trees
for Large Dynamic Spatial Data. The 2019 International Conference on Computa-
tional Science and Computational Intelligence (CSCI’19), Las Vegas, 5-7 December
2019, 1318-1323. https://doi.org/10.1109/CSCI49370.2019.00246

[16] Chelladurai, U. and Pandian, S. (2021) HARE: A New Hash-Based Authenticated
Reliable and Efficient Modified Merkle Tree Data Structure to Ensure Integrity of
Data in the Healthcare Systems. Journal of Ambient Intelligence and Humanized
Computing, 1-15. https://doi.org/10.1007/s12652-021-03085-0

[17] Goodrich, M.T., Tamassia, R. and Schwerin, A. (2001) Implementation of an Au-
thenticated Dictionary with Skip Lists and Commutative Hashing. DARPA Infor-
mation Survivability Conference and Exposition, Volume 2, 68-82.

[18] Ramkumar, M. (2018) Executing Large-Scale Processes in a Blockchain. Journal of
Capital Market Studies, 2, 106-120. https://doi.org/10.1108/JCMS-05-2018-0020

[19] Ramkumar, M. (2018) Scalable Computing in a Blockchain. The 2018 IEEE Sarnoff
Symposium, Newark, 23-24 September 2018, 1-6.
https://doi.org/10.1109/SARNOF.2018.8720499

[20] Dotan, M., et al. (2021) Survey on Blockchain Networking: Context, State-of-the-Art,
Challenges. ACM Computing Surveys (CSUR), 54, 1-34.
https://doi.org/10.1145/3453161

[21] Ramkumar, M. (2019) A Blockchain Based Framework for Information System In-
tegrity. China Communications, 16, 1-17.

[22] Braden, B. (1986) The Surveyor’s Area Formula. The College Mathematics Journal,
17, 326-337. https://doi.org/10.1080/07468342.1986.11972974

[23] Merkle, R.C. (1987) A Digital Signature Based on a Conventional Encryption Func-
tion. Conference on the Theory and Application of Cryptographic Techniques,
Santa Barbara, 16-20 August 1987, 369-378.

https://doi.org/10.4236/jis.2022.133007
https://www.census.gov/geo/maps-data/data/cbf/cbf_state.html
https://doi.org/10.1006/jagm.1994.1040
https://doi.org/10.1137/0205015
https://doi.org/10.1145/3406325.3451100
https://doi.org/10.1007/3-540-45439-X_26
https://doi.org/10.1007/978-3-319-07584-6
https://doi.org/10.1109/CSCI49370.2019.00246
https://doi.org/10.1007/s12652-021-03085-0
https://doi.org/10.1108/JCMS-05-2018-0020
https://doi.org/10.1109/SARNOF.2018.8720499
https://doi.org/10.1145/3453161
https://doi.org/10.1080/07468342.1986.11972974

M. Ramkumar, N. Adhikari

DOI: 10.4236/jis.2022.133007 126 Journal of Information Security

https://doi.org/10.1007/3-540-48184-2_32

[24] Adhikari, N., Bushra, N. and Ramkumar, M. (2017) Secure Queryable Dynamic
Maps. Enterprise Information Systems, and e-Government (EEE’17), Las Vegas, 17-20
July 2017, pages.

[25] Reyes, I., Rollins, T., Mahnke, A. and Kadolph, C. (2014) Farm Mapping to Assist,
Protect, and Prepare Emergency Responders: Farm MAPPER. Journal of Agrome-
dicine, 19, 232-233. https://doi.org/10.1080/1059924X.2014.888024

https://doi.org/10.4236/jis.2022.133007
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1080/1059924X.2014.888024

	Authoritative and Unbiased Responses to Geographic Queries
	Abstract
	Keywords
	1. Introduction
	Organization

	2. AUGS Overview
	2.1. DNS vs AUGS
	2.2. AU DNS Responses
	2.3. AU Geographic Responses
	2.4. Overview of AUGS Protocol

	3. AUGS Processes
	3.1. Map Construction
	3.2. Map Construction Example
	3.3. Rationale for the Constraints
	3.3.1. CCW Mapping
	3.3.2. Implications of Finite Precision

	3.4. Map Update

	4. Authenticated Data Structures
	4.1. Ordered Merkle Trees
	4.2. 2-D OMT

	5. Process States and Transactions
	5.1. Process States
	5.1.1. AUGS Regions
	5.1.2. AUGS “Map”
	5.1.3. Mapping Lines and Redundant Points
	5.1.4. AUGS Temporary Boundary Lines

	5.2. Macro-Transaction ConstructMap()
	5.3. Macro-Transaction UpdateMap()
	5.4. Global AUGS States
	5.5. Certifying Public Keys of Regions
	5.6. Verifying Responses

	6. Related Work
	7. Conclusions
	Acknowledgements
	Conflicts of Interest
	References

