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Abstract 
A protocol for processing geographic data is proposed to guarantee authori-
tative and unbiased responses to geographic queries, without the need to rely 
on trusted third parties. The integrity of the proposed authoritative and un-
biased geographic services (AUGS) protocol is guaranteed by employing nov-
el hash tree based authenticated data structures (ADS) in conjunction with a 
blockchain ledger. Hash tree based ADSes are used to incrementally compute 
a succinct dynamic commitments to AUGS data. A blockchain ledger is used 
to record 1) transactions that trigger updates to AUGS data, and 2) the up-
dated cryptographic commitments to AUGS data. Untrusted service provid-
ers are required to provide verification objects (VOs) as proof-of-correctness 
of their responses to AUGS queries. Anyone with access to commitments in 
ledger entries can verify the proof. 
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1. Introduction 

Information systems are composed of processes for collection, organization, storage 
and communication of information. For information to be authoritative it is neces-
sary for the receiver to establish a) the source of the information, and that b) the 
source does indeed have the authority to convey the information. Most often, the 
authority is gained through a chain of delegations. For information to be unbiased, 
it is necessary to establish that no relevant information was suppressed. 

A well known example of an authoritative unbiased (AU) service is the Domain 
Name System (DNS) [1]. When used in conjunction with the DNS security protocol 
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DNSSEC [2], DNS provides AU assurances for responses to DNS queries. DNSSEC 
makes it possible to establish that (for example) the IP address of a domain name 
cs.ms.edu did indeed originate from the authoritative DNS zone ms.edu. Further-
more, in response to a query for information regarding a non-existent name (say) 
xyz.ms.edu, the response will provide proof of nonexistence. 

In geographical information systems (GIS) [3], different types of information 
may be associated with various geographic objects like a point1 (x,y), or a line 
segment connecting two points, or all points inside a polygonal region. Cur-
rently, while service providers do exist for providing useful geographic informa-
tion (like one’s location, restaurants and other services nearby, zip code corres-
ponding to a location, current weather at a location, etc.), such services can not 
be considered as AU—as we are required to trust the service provider. The main 
contribution of this paper is a comprehensive Authoritative and Unbiased Geo-
graphic Services (AUGS) protocol, for guaranteeing AU responses from un-
trusted service providers, to geographic queries. 

Organization 

The rest of this paper is organized as follows. Section 2 provides a broad over-
view of the goals of AUGS. This is followed by a comparison of the goals of 
AUGS with that of the DNS protocol for domain names. In particular, we point 
out some of the unique challenges faced by AUGS due to the fact that the defini-
tion of a “geographic region” is substantially more complex than that of a 
“name.” The former is a list of (x,y) coordinates on a 2-D plane, while the latter 
can be considered as a point on the number line. It is argued that the challenges 
can be overcome by using Merkle hash tree based authenticated data structures 
(ADS) in conjunction with a blockchain ledger. 

Section 3 illustrates with examples, 2 core AUGS processes, viz., map-con- 
struction, and map-update. Both processes are described in terms of simple 
steps involving incremental changes to AUGS data. Such simple steps are 
blockchain transactions that modify AUGS data. Section 4 describes a family of 
ADSes for computing/tracking a dynamic cryptographic commitment to differ-
ent types of data. Section 5 illustrates the use of such ADSes for AUGS specific 
data like “list of boundary lines,” “set rectangular bounding blocks,” “set of 
points,” and key-value pairs, etc. Section 5 also outlines different types of block-
chain transactions that trigger incremental updates to AUGS data, and conse-
quently, the ADS commitments. Finally, Section 5 outlines the steps involved in 
verifying AU properties of responses to queries. 

A discussion of related works and conclusions can be found in Section 6. 

2. AUGS Overview 

A geographical region [4] can be described as a simple2 n-sided polygon, where 
the sides of the polygon are n-boundary line segments. 

 

 

1A point is typically specified by latitude and longitude coordinates. 
2Sides of a simple polygon do not cross each other. 
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More generally, a geographic region R may be a set of simple polygons—some 
that enclose region R, and some that exclude region R. In Figure 1(a), regions 
R2, R3 and R4 are represented by a one polygon each. Region R1 is described by 3 
polygons—two enclosing polygons (shaded light gray), and an exclusion poly-
gon (darker gray region R4). For a geographical region R defined by q1 inclusion 
polygons and q2 exclusion polygons, the region R lies to the left on counter 
clockwise (CCW) traversal of points in the q1 polygons that enclose R (and to 
the right in q2 polygons that exclude R). 

In the rest of this paper we assume that a region is expressed as a list of 
boundary lines of the form ( )1, ,i ip p m+  where ( ),i i ip x y=  represents point 
coordinates, and m uniquely identifies one of the many simple polygons of the 
region to which the boundary line belongs. We shall further assume that m is 
odd for inclusion polygons, and even for exclusion polygons. 

AUGS regions may be reshaped by adding new lines. For example, by adding 
new lines, a polygon representing a country may be subdivided into smaller po-
lygons representing states. Most often, the reason for creating subdivisions are 
for purposes of delegation of authority. 

A region may be associated with different types of static and dynamic 
attributes like zip code, name, voting precinct, tax rates, zoning restrictions, 
weather information, etc. AUGS should enable anyone to 

1) query such information regarding any point (x,y), 
2) establish the source, and 
3) establish the authority of the source (typically gained through a chain of 

delegations). 

2.1. DNS vs AUGS 

The Domain Name System (DNS) [1] is a protocol for hierarchical delegation of 
a name-space. A delegated DNS name is a DNS zone. Ownership of a DNS zone 
(for example) ms.edu is acquired through delegation by the parent zone edu, 
which was in turn acquired by delegation, from the root zone. 

In this paper we shall use the notation a b∈  to signify that “a is a child of b.” 
For example, in DNS ms.edu ∈  edu (as ms.edu is a child of edu). 

The owner of ms.edu can create any number of child names ending with 
ms.edu—for example, cs.ms.edu, ee.ms.edu, etc. Newly created names can be i) 
associated with different types of information—by creating different types of 
DNS records, or ii) delegated to create a new zone—by creating a special DNS 
record of type NS. 

Analogous to a zone name in DNS, is a region (described by 1 or more simple 
polygons) in AUGS. An important difference between the DNS and AUGS is as 
follows: 
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An AUGS region P can create any number of non overlapping child regions. 
A region P can delegate a child region (say) Q P∈ , or associate different types 
of information with any point inside P, or any line segment inside P, or any po-
lygon Q P∈ . 

2.2. AU DNS Responses 

DNSSEC [2] associates every DNS zone with a public key. The public key of 
zone . .x y z  is certified by the parent zone .y z , whose public key is certified by 
its parent zone z, whose public key is certified by the root zone (say, Φ ). The 
public key of the root zone is assumed to be public knowledge. In the rest of this 
paper, we shall use the notation S A  for “certification of public key of A by 
S.” 

Knowledge of the root public key is sufficient to track the authority of the 
public key of any zone Z, by following a chain of delegations. That public key UZ 
is authoritative for a DNS zone Z implies that all DNS information certified us-
ing UZ is authoritative for names that end with Z—but only as long as such 
names have not been delegated. For example, the public key U of ms.edu is not 
authoritative for the name dis.cs.ms.edu if either the name cs.ms.edu or the 
name dis.cs.ms.edu have been delegated. 

The response to a DNS query is a DNS record, along with a signature for 
record (signed by the zone under which the name falls), and records needed to 
verify the delegation chain. The steps necessary to establish AU properties of a 
response nR  for a name (say) n that falls in zone A where (say) A B C∈ ∈  are 
as follows: 

1) verify certificate nA R  (DNS record nR  signed by zone A), 
2) verify delegation chain B A , C B , and CΦ , 
3) verify that i) name n ends with A; ii) name A ends with B, and iii) name B 

ends with C, 
4) if n ends with A, but n A≠  (for example, A = cs.ms.edu, but n = 

se.cs.ms.edu) establish that name n has not been delegated by A. 
The last step, viz., proof of non-existence of delegation records—or authorita-

tive denial—is facilitated by the NSEC/ NSEC3 [5] [6] component of DNSSEC. 
Authoritative denial also serves to guarantee unbiasedness of DNS. The need to 
prove non-existence implies that the responder (untrusted DNS servers) will not 
be able to (accidentally or deliberately) hide the existence of a queried DNS 
record. 

2.3. AU Geographic Responses  

Now consider the AUGS scenario with hierarchical region delegations A B C∈ ∈ . 
The steps necessary for verifying the authoritativeness of some information pI  
regarding a point ( ),p x y A= ∈  are as follows: 

1) verify certificate pA I  for the information provided; 
2) verify the delegation chain B A , C B , BΦ ; 
3) verify a) that ( ),x y A∈ ; b) A B∈ , and c) and B C∈ , and 
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4) ensure that every point/region is uniquely delegated. 
The first 2 steps (verification of certificates) are similar in both (DNS and 

AUGS) scenarios; both involve verification of ( )1  certificates (does not 
depend on N, the total number of DNS records/AUGS data items). The third 
and fourth steps are however substantially different. While it is trivial for the 
DNS verifier to determine that “a name a ends with b” it is far from trivial in 
the AUGS scenario to determine if ( ),x y A∈ ; it is even more difficult to de-
termine that region A B∈  (or all points in region A fall inside region B). This 
is especially true in scenarios where regions may have tens of thousands of 
sides3, may be defined by multiple polygons, and may include other delegated 
sub-regions. 

The point location problem, viz., determining if a point (x,y) lies inside a po-
lygon A, is an important problem for several application scenarios, like mouse 
tracking, computer graphics, GIS etc., and has attracted substantial attention in 
the literature [8] [9] [10] [11]. However, these algorithms were not designed 
with the goal of being executed as blockchain transactions. Furthermore, the 
problem of determining if all points inside a polygon A lie inside a polygon B 
has not attracted much attention. 

Even if efficient algorithms can be designed, they can never have a complexity 
less than ( )N  for a polygon with N sides. Unlike the DNS scenario where it 
is trivial for the verifier to determine that (for example) msu.edu ends with edu 
in the case of AUGS, the verifier will first need to access to the N coordinate 
values, and execute various point-location algorithms to establish that 
( ),x y A∈ , A B∈ , B C∈ , etc. This is obviously impractical for an average in-
formation querier. This is the central challenge addressed by the proposed pro-
tocol, by taking advantage of i) hash tree based authenticated data structures 
(ADS), and ii) blockchain transactions that perform simple incremental changes 
to ADSes. 

In the proposed AUGS protocol, verification of AU properties of any query 
regarding a point in a region with N sides will require only ( )2log N  hash 
operations to be performed by the verifier. More specifically, if the service pro-
vider provides information regarding M different regions, the size of the proof 
will be ( )( )2log max ,M N  hashes. 

The broad goal of the AUGS protocol is to permit anyone to obtain the au-
thoritative public key U for any point (x,y) in the globe. Towards this end, the 
verifier will need the ability to verify that 

1) ( ),x y R∈ , where R is an AUGS region; 
2) (x,y) does not fall in a sub-region R R′∈  that has been delegated by R; 

and 
3) U is the public key of region R. 
By leveraging the public key U, any information from the authoritative source 

for point (x,y) can be verified. 

 

 

3For example, in the official federal map [7], the state of Texas consists of over 600 different poly-
gons with over 144,500 sides. 
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2.4. Overview of AUGS Protocol 

Authenticated data structures [12]-[17] enable incremental computation of a 
succinct cryptographic commitment ( )d t  to dynamic data ( )tD . Prov-
er-verifier protocols that leverage ADSes can be used to efficiently prove specific 
properties4 regarding the data ( )tD  to verifiers. Specifically, for an ADS with 
N data items, untrusted provers will need to provide ( )2log N  verification 
objects (VOs) as proof. Verifiers, who trust only the current dynamic commit-
ment ( )d t  to the ADS, will need to perform ( )2log N  hash operations to 
verify the proof. One novelty of the proposed approach is in utilizing a block-
chain network to maintain universal consensus on ADS commitments. 

For our purposes, a blockchain network [18] [19] [20] [21] is a distributed in-
frastructure to maintain an append-only blockchain ledger. Incentive mechan-
isms in the distributed infrastructure ensure that only well-formed transactions 
can be added to the ledger. The precise definition of “well-formed” will depend 
on the application. As an example, in crypto-currency applications that cater for 
transferring coins between crypto-wallets, a transaction to (say) “transfer n coins 
from wallet A to a wallet B” will be considered as well-formed only if 

1) the transaction is signed by A and 
2) A had n or more coins before the transaction was executed. 
By ensuring that only well-formed transactions can be added, the integrity of 

current balances in all wallets is assured. 
Execution of a transaction changes the state of the application. For cryp-

to-currency applications, the “current state” can be described by the remaining 
balance in every wallet. Transferring coins from A to B changes the state of the 
application (wallet balances in A and B will need to be updated). In blockchain 
networks like Bitcoin, the state change caused by a transaction is not explicitly 
indicated in the transaction added to the ledger. On the other hand, in the Ethe-
reum network, a cryptographic commitment to the new state(s) is made explicit 
in ledger entries. 

In the proposed approach, processes composed of simple blockchain transac-
tions will need to be executed by untrusted AUGS service providers to construct 
and update “maps.” More specifically, a map construction process will involve 
converting a region represented by a list L of boundary lines, to a “map” B 
composed by a set of rectangular bounding boxes (BBs). A map update process 
will involve modifying the map B to incorporate a child region represented by a 
list of boundary lines Lc, and adding “legend” entries to BBs in the map to iden-
tify points inside the sub-region. 

On successful completion of such processes, an AU response to any query re-
garding any point (x,y) is a single BB from the set B. 

Specifically, for a region defined by N boundary lines, the service providers 
will need to successfully execute ( )N  blockchain transactions that update 

 

 

4Examples of such properties include existence of a specific item in ( )tD , or non existence of an 

item in ( )tD , maximum/minimum value in ( )tD , etc. 
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AUGS data like L and B. Such transactions will be considered well-formed only 
if they satisfy a well-defined set of constraints C. The constraints C ensure that 
untrusted service providers cannot successfully execute map construc-
tion/update processes in a way that leads to misleading/incorrect responses to 
queries. 

The dynamic commitment to AUGS data like L and B are captured by hash 
tree based ADSes. The response from AUGS service providers (which is typically 
a BB from B) will be accompanied by a “proof” in the form of a small number of 
VOs (hashes) that can be verified against commitments in the blockchain ledger. 

3. AUGS Processes 

In this section we will illustrate with examples, two core AUGS processes, viz., 
map-construction, and map-update. 

3.1. Map Construction 

The AUGS map-construction process converts a list L of boundary line seg-
ments representing a region, into a collection of rectangular bounding boxes 
(BBs). For simplicity we shall first assume a region defined by a single polygon, 
represented by a list [ ]1 2 2 3 1 1, , ,— —,— —n n np p p p p p p p−= �L . The map 
construction process attempts to move every boundary line in a list L to a rec-
tangular BB in the collection B of rectangular BBs, such that the every boundary 
line falls wholly inside a BB. Towards this end, the process is allowed to perform 
simple operations like 

1) split any boundary line in L into 2 segments (thereby increasing the total 
number of lines by one), 

2) split any BB in B (horizontally or vertically, thereby increasing the total 
number of BBs by one), and 

3) move a boundary line from the list L to an appropriate BB in B, subject to 
constraints C (to be discussed soon). 

Each such operation is executed as a transaction in a blockchain network. 
Such transactions will be considered as well-formed only if they satisfy the con-
straints C, viz., 

C1. at most 2 boundary line segments can fall inside a BB; 
C2. a single line mapped to a BB can only be a side or a diagonal of the BB; 
C3. if 2 boundary line segments fall inside a BB, one should be a diagonal; the 

other should be an adjacent boundary line; 
C4. redundant boundary points should be unique; 
C5. mapping should be performed in the CCW order of points; 
C6. if 2 adjacent boundary lines are mirror images of each other both lines 

should be removed from L and ignored. 
Redundant boundary points are points that do not affect the enclosed region. 

Given two adjacent boundary lines 1 —i ip p−  and 1—i ip p + , the point ip  is a 
redundant point if ip  lies on the line connecting 1ip −  and 1ip + . While such 
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points are created by splitting boundary lines, it is possible for such points to ex-
ist even in the input (the list L) to the process. 

Mirror images of 2 adjacent boundary lines 1 —i ip p− , and 1—i ip p +  where 

1 1i ip p− +=  may be (as we shall see in Section 3.3.2) due to finite precision. 
It is important to remember that service providers are not trusted, and might 

attempt to create invalid regions for deliberately misrepresenting information. 
The ability to include mirrored boundary lines and duplicate redundant points 
can be used by provers to misrepresent map legend entries in BBs. The 6 restric-
tions C1 ∙∙∙ C6 ensure that the map-construction process can be successfully ex-
ecuted only if the input L to the process corresponds to a simple polygon. The 
justification for the constraints are outlined in Section 3.3. 

On successful completion of the process, the collection B of BBs will consist of 
some BBs with no lines, some with one line, and some with 2 lines. More specif-
ically, the resulting BBs can be of up to 14 types as depicted in Figure 1: 

1) type 0 with no lines (clear BBs); 
2) types 1 and 2 with a single diagonal line (blue BBs); 
3) types 3 to 6 where the line mapped to a BB is a side of the BB (green BBs), 

and 
4) types 7 to 14 (red BBs) where 2 adjacent boundary lines are mapped to a 

BB—where one is a diagonal; the shorter line (between a side and a diagonal) is 
associated with an offset o; the offset 0o =  if the shorter line is a BB side. 

That no more than 2 lines can be mapped to a BB, and that the lines can not 
cross each other inside the BB, implies that areas within a BB can belong to at 
most 3 different regions, captured by 3 region legends ,a bρ ρ  and cρ . Enforc-
ing CCW order of mapping boundary lines to BBs is to ensure unambiguous 
labeling of regions ,a bρ ρ  and cρ  inside each BB. Recall that for enclosing po-
lygons the triangular/rectangular area to the left is inside the region; for exclusion 
polygons the area to the right is inside the region. The legend entries ,a bρ ρ  and 

cρ  will be 0 for areas outside the region and 1 for areas inside the region. 
After completion of the map-construction process, a query regarding any 

point (x,y) can be answered by responding with a single BB in which (x,y) falls, 
and examining the region markings inside the BB. 

3.2. Map Construction Example 

To keep the discussion simple, we shall first limit ourselves to regions defined by 
a single polygon. Consider a polygonal region described by a list of boundary 
lines {AB, BC, CD, DE, EF, FA} in Figure 2(a), bounded by a dashed rectangular 
bounding box (BB). 

By repeated use of appropriately chosen simple operations that split a boun-
dary line into 2 (creating a redundant boundary point), and split a BB into 2 
(vertically or horizontally), we can fit every boundary line as a side or a diagonal 
of a BB (Figure 2(b)). For the region with 6 boundary lines in Figure 2 we 

1) split boundary line AB into AE' and E'A (adding a redundant boundary 
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point E'), and 
2) perform 8 BB splits (to result in 9 BBs marked 01 to 09), and 
3) map boundary lines to BBs while strictly adhering to all constraints. 
In this particular instance, 5 boundary lines become diagonals of BBs; 2 lines 

become a BB side; two BBs (05 and 06) are empty. 
As a second example, consider a region (Figure 2(c)) PDQ. In this instance, we 

 

 
Figure 1. (a) Four geographic regions R1, R2 and R3 and R4; (b) An illegal region defined 
by a non-simple polygon ABCD (sides BC and DA intersect at E); (c)-(e) Effect of finite 
precision. Type 0 to Type 14: 15 BB types ( { }0 14c = � ). 

https://doi.org/10.4236/jis.2022.133007


M. Ramkumar, N. Adhikari 
 

 

DOI: 10.4236/jis.2022.133007 110 Journal of Information Security 
 

 
Figure 2. AUGS points and bounding boxes (BBs). (a) Parent region; (b) AUGS BBs for 
parent region; (c) Child region; (d) AUGS BBs for child region; (e) Altered parent region 
to incorporate child. 

 
1) create a redundant boundary point Q' to split boundary line PD into PQ' 

and Q'D; 
2) perform 3 BB splits; and 
3) map boundary lines to BBs. 
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This time however we have to map two boundary lines (QP and PQ') to the 
same (red) BB (Figure 2(d)). Mapping 2 boundary lines inside a BB is unavoid-
able in situations where projections of adjacent boundary lines overlap in both X 
and Y directions. 

On successful completion of the map construction process, any query regard-
ing any point (x,y) inside the original dashed BB can be answered by examining 
a single BB (in the BB collection). Each BB conveys coordinates of up to 2 lines, 
and up to 3 region codes, from which it is straight forward to determine the re-
gion code for point (x,y). 

For the first example the region code corresponding to line BC mapped to BB 
06 in Figure 2(b) will indicate that the region above the line is 1 and the region 
below as 0. The red BB in Figure 2(d) will be associated with 3 region codes—0 
for region below PQ', 1 for region below PQ (and above PQ'), and 0 for region 
above PQ. 

If the query point (x,y) lies inside a clear BB, it is sufficient to examine an ad-
ditional non-clear adjacent BB. For example, for a point (x,y) in BB 07, the re-
gion code is the same as the region code below the diagonal of BB 06 to the left, 
or below the diagonal of the blue BB 08 above. 

3.3. Rationale for the Constraints 

The map construction process is deemed successful only if all boundary lines are 
mapped to BBs. The 6 constraints ensure that only a sequence of points/sides 
representing a simple polygon can lead to successful completion of this process. 

Constraint C3 ensures that boundary line segments cannot cross inside any 
BB. C4 ensures that lines do not cross at BB corners. Constraints C5 and C6 en-
sure unambiguous labeling of triangular/rectangular areas inside BBs. 

To see the need for the constraint of uniqueness of redundant points (C4), 
consider the non-simple polygon represented by 4 lines {AB, BC, CD, DA} in the 
Figure 1(b), which obviously does not describe a valid region. Nevertheless, by 
splitting boundary lines AB at A', BC at E, CD at D', and DA at E, all resulting 
boundary lines (AA', A'B, BE, EC, CD', D'D, DE and EA) of this obviously 
invalid region can be mapped to BBs—as the boundary lines do not intersect in-
side any BB. However, the redundant points A', E, D' and E are not unique (as E 
occurs twice). This constraint will cause the map-construction process to fail. 

Note that the situation would be different if the same region was described in-
stead by a list of six boundary lines {AB, BE, ED, DC, CE, EA}. In this case only 
2 redundant points will need to be added (A' and D'), to map all boundary lines. 
Mapping this sequence of boundary lines will be successful this time—as it 
should be, as the boundary lines do describe a valid region (two triangular re-
gions meeting at E). While we have 2 instances of point E, they are not redun-
dant points in this case. 

3.3.1. CCW Mapping 
The constraint of CCW order is to ensure unambiguous assignment of region 
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codes. Specifically, the region to the left/right of the line is labelled 1/0 for en-
closing polygons (0/1 for excluding polygons). On completion of the mapping, 
the BB coordinates, BB type, 3 region labels, and offset o (for BB types 7 to 14 in 
Figure 1) are sufficient to unambiguously determine the precise coordinates of 
lines mapped to the BB, and consequently, determine the region legend for point 
(x,y) (1 for inside the region and 0 for outside). To ensure that the mapping is 
sequential it is verified that the next line starts where the last mapped line ended. 
To ensure that the order is CCW (and not CW) the area of the polygon is in-
crementally computed using the shoe-lace formula [22]. As every line is mapped 
sequentially, only CCW mapping will result in a positive value for the area (CW 
mapping will result in a negative value). 

The “shoelace area” A is initially set to 0; if a line segment ( ) ( )1 1 2 2—x y x y‚ ‚  
is added to the map the shoelace area is incremented by 1 2 2 1A x y x yδ = − . On 
completion of the mapping, the cumulative shoelace area5 A will be positive only 
if the traversal in performed in CCW order. If 0A <  the process is considered 
to have failed (the ill-formed transaction will be rejected). 

3.3.2. Implications of Finite Precision 
There are obviously scenarios where it is necessary to map 2 lines to a BB (when 
2 adjacent boundary lines have overlapping projections in both X and Y direc-
tions). Fortunately, even for maps with multiple polygons 2 lines to a BB is suffi-
cient. 

Consider a scenario in Figure 1(c) where several boundary lines meet at a 
corner of a BB. It might appear at first glance that how many every subdivisions 
are performed to split boundary lines or BBs, a BB at the lower left corner, at 
which all lines meet, will still have more than 2 lines mapped to it. 

In practice, however, only a finite number of bits can be used to represent x 
and y coordinates. For example, representing coordinates using unsigned 32-bits 
is sufficient to realize a worst case resolution error (at the equator) of about 1 
cm. With finite precision, in the smallest possible BB ( ), , 1, 1,x y x y v+ +  at the 
lower left corner, all lines will have to map to the bottom side or the diagonal, or 
the left side of the BB (Figure 1(d)). In other words, at most 3 lines may need to 
be mapped to a BB. 

However, we have the option to map the bottom of the BB as the top side of 
the BB below, or the left side as the right side of the BB to the left. In the worst 
case scenario, only 8 lines will need to be mapped to 4 adjacent BBs (Figure 
1(e)). 

An important consequence of finite precision is in scenarios where boundary 
lines meet at a point (say 2p ) at highly acute angles. Let the two adjacent lines 

1 2—p p , 2 3—p p  fall inside the same BB, where 1p  and 3p  have the same 
x-coordinate (where they meet a BB side). If the y coordinates of the two points 
differ by less than half the smallest BB resolution, then 1p  and 3p  will be 
quantized to the same point 1 3p p p′≈ ≈ , thereby creating two adjacent boun-

 

 

5A/2 is the actual area of the polygon. 
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dary lines —p p′  and —p p′ , that mirror each other, creating a zero-area re-
gion between them. Mapping such lines will result in inconsistent region codes. 
Fortunately, removing such lines (and not mapping them) will have no practical 
effect on the geometry of the region. Such adjacent pairs, if present (either due to 
precision issues, or deliberately added by untrusted provers), will be ignored. 

3.4. Map Update 

The map-update process modifies the map of a region (created by a 
map-construction process) to include a sub-region. This process may need to 
split BB’s created by the map-construction process further, add new lines inside 
BBs, and update legend labels for areas inside BBs. While region label 1 is used 
for the region created by the map construction process, region codes 2 and 
higher are used for labeling sub-regions created by the map-update process. This 
process can be performed any number of times to create any number of non 
overlapping child regions, with unique region legend labels. 

Consider a scenario in Figure 2(e) where the polygon PDQ in Figure 2(c) is 
actually a child of region ABCDEFA in Figure 2(a). In this specific case, by fur-
ther splitting BBs 09 and 08 in Figure 2(b) as in Figure 2(e) we can incorporate 
the second region too in the map of the first region. More generally, the map 
update process can be seen as consisting of the following steps: 

1) Move some existing lines from some BBs in the parent map to a temporary 
list; in this case lines ED (BB 09 in Figure 2(b)) and CD (BB 08 in Figure 2(b)) 
will be moved to the temporary list. 

2) Split (now empty) BBs as necessary; in this case BB 08 in Figure 2(b) was 
split into 4 BBs (08, 13, 14 and 15 in Figure 2(e)); BB 09 in Figure 2(b) was split 
into 5 BBs (09, 10, 11, 16, 12 in Figure 2(e)) 

3) Split lines in the temporary list as necessary; line CD was split into CP and 
PD; line ED was split into EQ and QD. 

4) Map all lines from the temporary list back to BBs; 4 lines CP, PD, DQ and 
QE will be re-mapped (to BBs 08, 14, 12 and 09 respectively, in Figure 2(e)). 

5) Split boundary lines of the child polygon as necessary; QP was split into QR 
and RP. 

6) Map all child boundary lines to the altered parent’s map, one by one, in 
CCW order, and update region codes as necessary. 

If the legend index assigned to the child is 2, on completion of the map update 
process the region codes in BBs 12 will be 0aρ = , 2bρ =  (region cρ  not 
present in blue BBs). In BB 16 the region code will be 1aρ = , 2bρ = ; in BB 14 
the region codes will be 2aρ = , 0bρ = , 1cρ = . 

As the child boundary lines are mapped to BBs of the parent, the region codes 
to the left of the line (or right of the line for island polygons) are modified from 
“1” to the unique legend label (for example, 2) assigned to the child. 

As mentioned earlier the list of boundary lines L and set of BBs B are hash 
tree based ADSes outlined in the next section. 
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4. Authenticated Data Structures 

Given a cryptograpic hash function h(), and 

( ) { } { }*, 0,1 , 0,1 ,ny h x x y= ∈ ∈                   (1) 

it is safe to conclude that “pre-image x existed before hash y.” This is due to the 
fact that if y were chosen first it is computationally impractical to come up with 
a suitable pre-image. 

Cryptographic hash functions lie at the core of several hash tree based ADSes 
that enable incremental computation of a succinct cryptographic commitment 
( )d t  to dynamic data ( )tD . 
In prover-verifier protocols that leverage such ADSes, irrespective of the 

number of items N in dynamic data ( )tD , it is sufficient for the verifiers to 
track a single dynamic hash ( )d t . Provers (who actually store all data ( )tD ) 
can prove specific properties of the ( )tD  to verifiers by providing ( )2log N  
VOs. The verifiers, who do not trust the prover, can verify the proof by per-
forming ( )2log N  hash operations and comparing the result with the current 
commitment ( )d t . 

4.1. Ordered Merkle Trees 

A binary Merkle hash tree [23] of depth d can have up to 2dN =  leaves and 

02 1 2d d i
iN N −
=

− = ∑  nodes. Each leaf is a data record. The N leaf-nodes at 
depth d are leaf hashes; the N/2 nodes at depth 1d −  are obtained by hashing 2 
nodes in depth d together, and so on. The 2 nodes at depth 1, are finally hashed 
together to result in a lone node—the root of the tree—at depth 0. The root is a 
commitment to all leaves and nodes. 

Corresponding to any node v at depth k are k complementary nodes 1 kc c�
—one each at depths , 1, ,1k k − � . The complementary nodes are VOs that 
permit any entity with access only to the root 00v ξ=  of the tree to verify exis-
tence of node v, at depth k, in a tree with root ξ . Proof of existence of a 
leaf-node is proof of existence of its preimage, viz., a leaf. By performing 2log N  
hash operations using 2log N  VOs, a verifier with access to the root can verify 
the existence of any leaf in the tree, and/or compute the new root corresponding 
to an incremental update like a) modification to a leaf, or b) insertion/deletion of 
a leaf. 

Unfortunately, the Merkle hash tree does not enable the prover to efficiently 
prove absence of a specific leaf/record. This limitation is addressed by ordered 
Merkle trees (OMT) [14] [15] which imposes well defined rules for inser-
tion/deletion of leaves. The rules for insertion/deletion guarantee completeness 
of the collection represented by leaves of the tree, at all times. 

Each leaf in an OMT corresponds to an interval on the number line. An in-
terval/leaf [ [,a b  represents 

1) (if a b< ): all a x b≤ < ; 
2) (if b a≤ ): all x a≤  and all x b>  (note that if b a=  the interval 
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represents the entire number line x a≤  and all x a> ). 
Leaves can be inserted only by splitting an interval into 2—thereby, replacing 

a leaf with 2 leaves. Merging 2 adjacent intervals results in removal of a leaf. 
These restrictions ensure that leaves of an OMT form a complete collection at all 
times. More specifically, a unique leaf will exist for every point on the number 
line. 

The first leaf inserted into an empty OMT will correspond to an interval 
[ [,x x  (all values greater than equal to x and all values less than x). To create a 
new interval from x to y where y x>  we can split the leaf [ [,x x  into 2—one 
corresponding to the desired interval [ [,x y  and the second corresponding to a 
wrapped around interval [ [,y x . As an example, the 3 leaves [ [2,9 , [ [9,22  
and [ [22,2  for a complete collection. 

An OMT can also be interpreted as a key-value collection. With this interpre-
tation, the start k of an interval [ [,k k ′  is seen as a unique key. Under this in-
terpretation, existence of a leaf [ [( ), ,k k v′  in a hash tree with root ξ  implies 

1) existence of a key-value pair { },k v ; and 
2) that the next-key is k ′  implying non-existence of all other keys that fall in 

the interval. Note that if x x′> , then x and x′  are the highest and lowest keys 
(respectively). 

Thus, by demonstrating the existence of a leaf, the prover can now demon-
strate non-existence of specific keys, highest/lowest keys, etc. Elementary OMT 
operations like insertion, deletion, and leaf updates have the same ( )2log N  
complexity as Merkle tree operations. 

4.2. 2-D OMT 

One important contribution of this paper is a 2-D extension of OMTs. A 2-D 
OMT can be seen as a complete collection of 2-D intervals (or bounding boxes) 
of the form ( ) ( ), , ,x y x y′ ′   . Specifically, ( ) ( ), , ,x y x y′ ′    represents a planar 
rectangular region extending between [ [,x x′  in one dimension and between 
[ [,y y′  in the second dimension. A collection with a single BB will specify a 
wrapped around interval ( ) ( ), , ,x y x y    representing the entire 2-D plane. 

The first leaf (BB) inserted into an empty 2-D OMT should be of the form 
( ) ( ), , ,x y x y   , (representing the entire 2-D plane). A leaf for interval (say) 
( ) ( )2,3 , 5,6    can be split into two (for example) 
1) horizontally as ( ) ( )2,3 , 5, y    and ( ) ( )2, , 5,6y   , where 3 6y< < , or 
2) vertically as ( ) ( )2,3 , ,6x    and ( ) ( ),3 , 5,6x   , where 2 5x< < . 
A leaf for a wrapped around interval ( ) ( )9,6 , 5,8    may be split 
1) along a vertical into ( ) ( )9,6 , ,8x    and ( ) ( ),6 , 5,8x    where 9x >  or 

5x < ; or 
2) horizontally as ( ) ( )9,6 , 5, y    and ( ) ( )9, , 5,8y    where 6 8y< < . 
For our purposes, leaves of a 2-D OMT are five-tuples that convey the four 

values , , ,x y x y′ ′  (BB coordinates), and a value v associated with the BB. A 2-D 
OMT is guaranteed to include a leaf for every point ( ),x y  on the plane. More 
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specifically, a query regarding any point ( ),x y  on a plane can be answered by 
providing a single leaf from a 2-D OMT (along with 2log N  VOs, where N is 
the total number of BBs). 

5. Process States and Transactions 

AUGS employs a variety of Merkle tree and OMT based data structures to com-
pute dynamic commits to AUGS process states. 

5.1. Process States 

AUGS process states that are incrementally updated by AUGS transactions are 
as follows: 

1) region data: leaves of a Merkle tree with commitment rξ ; 
2) map data: leaves of a 2-D OMT (BBs) with commitment bξ ; 
3) redundant-points: a key-value collection with commitment pξ ; and 
4) temporary-lines: leaves of a Merkle tree with commitment tξ . 
For simplicity of notations, in the rest of this paper, we will use the following 

conventions: 
1) A collection (leaves of a hash tree with root ξ ) will simply be referred to as 

“collection ξ .” 
2) L ξ∈  implies “a leaf L in collection ξ .” 
3) k ξ∉  indicates “key k does not exist in collection ξ .” 

5.1.1. AUGS Regions 
An AUGS region (composed of one or more polygons) consists of boundary 
lines of the form ( )1 2, ,p p m  where i) m is a polygon identifier; and ii) 

( )1 1 1,p x y=  and ( )2 2 2,p x y=  are the start and end points of a boundary line 
(when the polygon is traversed in the CCW order). The polygon identifier m is 
odd for polygons that enclose the region and even for polygons that exclude the 
region. 

Each boundary line is a leaf of a hash tree with root rξ . A region described by 
u polygons, each with 1 2, , , un n n�  sides respectively, is a tree with 1 ii

u n
=∑  

leaves. 
Transaction SplitLine ( )1 2, , ,p p m p  splits a line ( )1 2, , rp p m ξ∈  into 

( )1, ,p p m  and ( )2, ,p p m , only if p lies on 1 2—p p . This operation replaces 
one leaf with 2. 

Transaction SkipLines ( 1 2, ,p p m ) removes two adjacent boundary lines 
( )1 2, , rp p m ξ∈  and ( )2 1, , rp p m ξ∈  that are mirror images. 

5.1.2. AUGS “Map” 
An AUGS map is a complete 2-D OMT collection with root bξ . A leaf 

( ), , , ,l l h hx y x y v=b  in this tree represents a rectangular bounding box (BB). 
The value v assigned to a BB depends on the line(s) mapped to the BB, and is of 
the form 

,a b cv c oρ ρ ρ= � � � �                      (2) 
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where c is the BB type, , ,a b cρ ρ ρ  are region codes, and o is an offset. 
Transaction SplitBB() splits an empty BB in bξ  into 2 (vertically or horizon-

tally). If 0bξ = , then this transaction sets ( ), , , ,0b h x y x yξ =  corresponding to 
a lone BB that spans the entire 2-D plane. 

5.1.3. Mapping Lines and Redundant Points 
The hash tree with root pξ  is a key-value collection where each key corres-
ponds to a (redundant) point, and the value is unused (and thus, omitted). 
Leaves of this tree are of the form ( ),k k ′  where k x y= � , k x y′ ′ ′= � . Points 
determined to be redundant are added to this collection by a transaction Map-
Line(). This collection is used to guarantee uniqueness of redundant points (as 
keys have to be unique). 

Transaction MapLine( 1 2, , ,p p m b ) i) removes a boundary line ( )1 2, , rp p m ξ∈  
and maps it to a BB in bξ∈b  by updating the value v of the BB and ii) if 1p  is 
determined to be a redundant point, adds key 1p  to collection pξ . Transac-
tion MapLine will be ill-formed if the redundant point already exists in pξ . 

5.1.4. AUGS Temporary Boundary Lines 
The hash tree with root tξ  is used to temporarily store some boundary lines dur-
ing the map update process. Leaves of this tree are of the form ( )1 2, , a bp p ρ ρ�  
and convey region codes above and below the line 1 2—p p  (for vertical lines 

aρ  is the region code to the left). 
Transaction UnmapLine() removes (up to 2) existing lines from a BB bξ∈b , 

sets the value of the BB b to indicate BB type 0, and adds the line(s) to the tree 
with root tξ . 

Transaction SplitTmpline( 1 2, ,p p p ) splits a line ( )1 2, , a bp p u ρ ρ= �  into 
( )1, ,p p u  and ( )2, ,p p u  (only if p lies on the line segment 1 2—p p ). 

Transaction RemapLine() removes a line from ( )1 2, , a b tp p ρ ρ ξ∈�  and 
maps it back to a BB in bξ  (and updates the BB type and region codes). 

5.2. Macro-Transaction ConstructMap() 

The state of a map construction process is captured by seven dynamic values, 
viz., 

{ }, , , , , , ,mc r b p s b ep p p Aξ ξ ξ=                   (3) 

where rξ  is the commitment to a region (with any number of polygons), bξ  is 
the commitment to a map, pξ  is a commitment to a collection of unique re-
dundant points. 

Tracking the 3 point values , ,s e bp p p , and the “shoelace area” A, makes it 
possible to i) identify redundant points and mirrored boundary lines ii) ensure 
that all polygons in rξ  are closed; and iii) ensure that traversal was performed 
in the CCW order. All 4 values are affected by the MapLine ( 1 2, , ,p p m b ) trans-
action. 

The shoelace area A is initially set to 0. As a line 1 2—p p  is added to the map 
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where 1.p x , 1.p y , 2 .p x  and 2 .p y  are the respective coordinates of 1p  and 

2p , the elemental shoelace area is 

( )1 2 1 2 2 1, . . . .slf p p p x p y p x p y= −                  (4) 

On completion of the mapping the cumulative shoelace area6 A will be posi-
tive only if the traversal in performed in CCW order. 

If 0sp =  the implication is that the line ( )1 2, ,p p m  to be mapped is the 
first line of polygon m in rξ . Consequently, sp  is initialized to 1p  (and will 
be reset to 0 when a line ( ), ,sp p m  is mapped). In addition, all leaves in the 
tree pξ  (redundant points) are removed by setting 0pξ = . The values bp  
and ep  are set to 1p  and 2p  (end points of the most recently mapped line). 

If 0sp ≠ , MapLine ( 1 2, , ,p p m b ) expects 1ep p= , and 2 bp p≠ . Recall that 
scenarios (involving two adjacent lines of the form ( )1 2, ,p p m  and 
( )2 1, ,p p m ) can only be handled using transaction SkipLines. If 1p  lies on the 
line 2—bp p , 1p  is a redundant point, and should be added as a key to pξ . 
Inability to do so (if 1p  already exists in pξ ) will result in failure of the trans-
action. If 2 sp p=  MapLine recognizes end of the current polygon and sets 

0sp = . The pseudo-code for transaction MapLine() is depicted in Figure 3. 
 

 
Figure 3. Micro-transaction MapLine(). 

 

 
Figure 4. Micro transaction MapChildline(). 

 

 

6A/2 is the actual area of the polygon. 
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The map construction process can be seen as a macro-transaction, consisting 
of a sequence of micro transactions of 4 types: viz., SplitLine, SplitBB, and Map-
Line, and SkipLines(). 

The macro transaction ConstructMap ( , ,r bv vξ ) constructs a map (with 
commitment) bv  for a region (with commitment) rv , by performing a se-
quence of micro-transactions specified as leaves of a hash tree with root ξ . The 
commitment rv R=  to the region (root of a Merkle tree with boundary lines as 
leaves) also serves as a unique region identifier. 

The initial state of the process is set to 

{ }, 0 .mc r r b p s b ev p p p Aξ ξ ξ= = = = = = = =            (5) 

From this point onwards, the micro-transactions in the Merkle tree with root 
ξ  are executed sequentially to split lines in rξ , split BBs in bξ , remove mir-
rored lines from rξ , and map lines in CCW order to bξ . At the end of the 
process, 0rξ =  (implying that all lines have been mapped) and 0sp =  (the 
last polygon is closed). In other words, the macro-transaction is well-formed if 

1) every micro-transaction in ξ  is well-formed, and 
2) the final state is 

{ }0, , , 0, , , 0 .mc r b b p s b ev p p p Aξ ξ ξ= = = = >             (6) 

On successful completion of the process the region rR v=  is determined to 
be valid, and is associated with a map (with root) bξ . 

5.3. Macro-Transaction UpdateMap() 

The state of the map update process is captured by five values, viz, 

{ }, , , , ,mc r b t s ep pξ ξ ξ=                      (7) 

where rξ  is the commitment to a child region (which has already undergone a 
map-construction process), bξ  is the commitment to the map of the parent re-
gion, and tξ  is a commitment to a collection temporary lines. As earlier, sp  is 
the first mapped point of a polygon in rξ , and ep  is the end point of the pre-
viously mapped boundary line. 

UpdateMap ( 0, , , ,f
r b bv v v nξ ) modifies a map 0

bv  to f
bv  to incorporate a 

child region rv , using a sequence of micro-transactions in a hash tree with root 
ξ . The value n is legend label to be assigned to the child region. 

Seven types of micro-transactions are used by the map update process: Split-
Line, SplitBB, SkipLines(), UnmapLine, SplitTmpLine, RemapLine, and Map-
Childline. The initial state of the process is 

{ }0, ,0,0 ,mu r r b bv vξ ξ= = =                    (8) 

From now on, the micro-transactions remove lines from bξ  and map them 
to tξ , split lines in tξ  as necessary, split BBs in bξ , and finally, map lines in 

rξ  to bξ , in CCW order. At the end of the process 0rξ = , implying that all 
lines have been mapped. The micro-transactions also update values , ,s b ep p p  
to ensure that lines are mapped in the CCW order. 
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Transaction MapLine (used in the construction process) is intended for 
boundary lines of regions that have not yet been verified to be valid. On the oth-
er hand, boundary lines of a child region mapped by MapChildline have already 
been confirmed to correspond to a valid region (by a prior successful execution 
of the map-construction process on the child region). Consequently, MapChil-
dline does not need to check for uniqueness of redundant points, or that the 
points are arranged in the CCW order. The pseudo code for this transaction is 
shown in Figure 4. 

The macro-transaction is well-formed if every micro-transaction in ξ  is 
well-formed, and execution of all micro-transactions results in final state 

{ }0, , 0, 0, .f
mu r b b t s ev p pξ ξ ξ= = = = =               (9) 

On successful completion of the process on a existing map of a region R, a re-
gion rR v′ =  is recognized a genuine child of region R with legend n in the map 
of region R. The commitment to the modified map of R is updated to f

bv . 

5.4. Global AUGS States 

The state of all AUGS data for any number of regions is captured by 4 key-value 
collections that specify relationships between regions, maps, parent-child rela-
tionships, and public keys of regions. The collections include 

1) static region collection with root sr : a key-value pair { }, bR v  in this col-
lection implies that R has been verified to be a valid region (defined by 1 or more 
simple polygons). 

2) dynamic region collection with root dr : { }, ||b dR v n r∈  indicates that the 
region R  has 1n −  sub-regions with legend entries 2 to n. 

3) parent-child collection with root cr : { }, ||p cR R n r∈  indicates that region 
R is the child of a parent Rp with legend entry n in the map of parent Rp; 

4) public key collection with root ur : { }, uR U r∈  conveys that U is the au-
thorized public key for every point in region R. 

The broad goal of the AUGS protocol is to permit anyone to obtain the au-
thoritative public key U for any point (x,y) in the globe. Using the public key, 
any information from the authoritative source can be verified. 

AUGS ledger entries provide a record of transactions, that include commit-
ments to AUGS states after each AUGS transaction. While micro-transactions 
for a specific region updates up to 7 temporary region-specific states in the Con-
structMap (or 5 temporary region-specific states for UpdateMap) process, suc-
cessful execution of macro transactions result in updates to the 4 AUGS states 

, ,s d cr r r  and ur . 
Successful execution of ConstructMap ( , ,r bv vξ ) for a region with root 

rR v=  resulting in a map with root bv , is proof that the list of boundary lines 
with commitment rv  constitute a valid region (described by 1 or more simple 
polygons). The end result is addition of a key-value pair { }, bR v  to the static 
region collection (which updates state sr ). 

Before the map bv  of a region R can be updated, it is necessary to assign a 
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public key for region R, as updates to the region R will need to be authorized. 
This process will be discussed shortly, in Section 5.5. 

Execution of UpdateMap ( 0, , , , , , ,f
b b p p pR v v n R Uξ Σ ) for updating the map of 

a parent Rp to incorporate a child region R with legend entry n in the map of 
parent Rp will commence only if 

1) { }0, || 1p b dR v n r− ∈ , indicating 1n −  as the highest legend entry; 
2) { },p p uR U r∈  indicating that the region Rp has the authority to create it’s 

own child regions; 
3) the signature Σp for the transaction is verifiable using public key Up. 
On successful execution of UpdateMap ( 0, , , , , , ,f

b b p p pR v v n R Uξ Σ ) for updat-
ing the dynamic map of parent region Rp 

1) { }0, || 1p b dR v n r− ∈  is updated to { }, ||f
p bR v n ; 

2) { }, ||pR R n  is added to the parent-child collection to convey that R is a va-
lid child of region Rp, and is associated with region legend n in the dynamic map 
of the parent. 

A successful UpdateMap ( 0, , , ,f
b bR v v nξ ) transaction results in updates to 

AUGS states dr  and cr . 

5.5. Certifying Public Keys of Regions 

Just as a DNS zone A can authenticate the public key of child zone B A∈  (or 
name B ends with A), AUGS regions can certify public keys of child regions to 
delegate responsibility of authenticating responses regarding points inside the 
child zone. Public key certificates are added to the key-value collection with root 

ur . 
Specifically, the public-key collection has key-value pairs of the form { },R U . 

A transaction CertifyPK ( , , , , , ,p c c c p pR R v n U U Σ ) can be invoked by parent re-
gion Rp (with public key Up) to certify the public key Uc of child region Rc. This 
transaction is deemed to be well-formed only if 

1) { },p pR U  exists in public key collection; 
2) key Rc does not exist in public key collection ur ; 
3) key Rc does not exist in the dynamic region collection dr ; 
4) { },c cR v  exists in the static region collection sr ; 
5) { }, ||c pR R n  exists in the parent-child collection cr ; and 
6) signature pΣ  for the transaction is consistent with public key Up of the 

parent region Rp. 
This transaction results in 
1) addition of a key-value pair { },c cR U  to the public key collection ur ; 
2) addition of a key-value pair { }, || 0c cR v  to the dynamic region collection 

dr ; from this point on, the map of child region Rc may be updated by the child to 
create sub-regions inside Rc. 

A transaction RootCertify ( , , ,bR v U φΣ ) is used to assign a public key U to a 
region R that does not have a parent region. The public key is signed by the root 
Φ . 
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This transaction verifies that key R does not exist in the parent-child collec-
tion or dynamic collection, but { }, bR v  does exist in the static collection (indi-
cating that R is a valid region). Furthermore, the signature for the transaction 
should be consistent with the root public key. 

The root public key is initialized as the first entry in the public key collection, 
as a key value pair { },UφΦ  corresponding to a special region identifier (say, 

1Φ = ). The result of this transaction is 
1) addition of a key-value pair { },R U  to the public key collection; 
2) addition of a key-value pair { }, || 0bR v  to the dynamic region collection; 
3) addition of a key-value pair { },R Φ  to the parent-child collection to con-

vey the creation of a special region by the root Φ . 

5.6. Verifying Responses 

Reliable current values of the dynamic AUGS states , ,s d cr r r  and ur  can be 
obtained by any verifier at any time from the blockchain network. Armed with 
this, one can proceed to obtain the authoritative public key U for any point 
(x,y). 

To prove AU properties of the response “U is the public key for point (x,y),” 
the response includes 

1) a key-value pair { }, ||bR v n  from the dynamic region collection (along 
with 2log M  VOs, where M is the number of AUGS regions) with root dr ; 

2) a leaf (BB) from a BB collection with root bv  (along with 2log N  VOs, 
where N is the number of BBs in the map of region R); 

3) a key-value pair { },R U  from the collection with root ur  (along with 

2log M  VOs). 
4) additionally, if the legend corresponding to point ( ), 1x y m= >  in the BB, 

a key-value pair { }, ||cR R m  from the parent-child collection and non exis-
tence proof of key Rc in the public key collection are also required. 

Having verified the first 2 key-value pairs and the BB, using the VOs, the ve-
rifier can proceed to verify that (x,y) does indeed fall inside the rectangle (BB), 
and that the region code for the (x,y) is 1. 

Recall that each BB specifies the enclosing x and y coordinates, and a value v 
which indicates the BB type, offset o (for types 7-14), up to three region codes 
for triangular/rectangular areas inside the BB. If the region code is 0, then (x,y) 
is not a point in region R. The response will not be accepted as AU. 

Similarly, if the region code is 1m > , then (x,y) is a point inside a sub-region 
Rc of R (as indicated by the key-value pair { }, ||cR R m ). However, the proof of 
non-existence of a public key for the child region Rc is proof that the region has 
not been delegated. In other words, the public key U of the parent R still remains 
authoritative for the sub-region Rc with legend m. 

Finally, if U is deemed authoritative for point (x,y), the verifier can then ac-
cept any information regarding point (x,y), as long as it is duly authenticated 
using a signature verifiable using public key U. 
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6. Related Work 

Several hash tree based authenticated data structures (ADS) [12]-[17] have been 
proposed in the literature which enables an untrusted prover to prove a wide va-
riety of properties regarding a wide variety of data to verifiers who have access 
only to the succinct commitment for all data. Most often, in application scena-
rios relying on ADSes, the creator/owner of the data constructs a suitable ADS, 
and disseminates the commitment to the tree by signing the commitment (root 
of the tree). An important novelty in AUGS protocol is that of combining the 
utility of ADSes with the power of blockchain networks to maintain consensus 
on the dynamic commitment at all times. 

A precursor to the AUGS protocol is the secure queryable dynamic maps 
(SQDM) [24] protocol. Both SQDM and AUGS rely on simple state-change 
functions that convert a vector representation of a region (a sequence of boun-
dary lines or points) to a map representation. The main differences between 
SQDM and AUGS are three-fold. 

The first difference lies in the data structures used for capturing succinct 
commitments to regions and maps. SQDM [24] employed nested 1-D OMTs 
where two-dimensional space was first split into vertical bars and each vertical 
bar was then split into multiple BBs. Compared to the 2-D BBs in AUGS, the 
SQDM approach calls for a substantially larger number of BBs to represent a 
map. The second is the strategy for ensuring correctness of state-change func-
tions; SQDM relied on trusted hardware (instead of blockchain). Thirdly, SQDM 
was intended to merely guarantee integrity of responses to point-location [8], 
[11] queries. SQDM did not have the ability to cater for delegated sub-regions. 

7. Conclusions 

AUGS is a comprehensive protocol that can serve as a foundation for any appli-
cation where information is tied to geography. Just as the domain name system 
[1] permits authenticated and unbiased responses to queries regarding names 
and types, AUGS caters for AU responses to queries regarding any point (x,y) in 
a 2-D plane. More specifically, the DNS security protocol DNSSEC [2] permits 
any one to determine the authoritative public key UZ of the zone Z under which 
the queried name A falls. This public key UZ can then be used to verify authen-
ticity of specific types of information regarding the name A. In AUGS, the re-
sponse to any query regarding (x,y) is the public key UR of the region R in which 
point (x,y) falls. The main challenge addressed by AUGS is that while determin-
ing that “name a.b.c belongs to zone b.c” is trivial, it is far from trivial to deter-
mine that (x,y) falls inside a non-delegated portion of region R, where a region R 
may be described by one or more polygons with possibly tens of thousands of 
sides, and that any number of non-overlapping polygonal sub-regions inside re-
gion R could have been delegated. 

That AUGS guarantees authoritative geographic information implies that a 
wide range of government services can be moved completely to the digital realm. 
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Just as one can buy/surrender a domain name by performing purely digital 
transactions, one can a) buy/sell land parcels or farms, b) assume control over a 
region for a specific purpose, c) propagate authoritative information associated 
with the region (for example, information necessary for emergency responders 
[25], local laws, tax rates, roadwork in progress), d) delegate authority over 
sub-regions to other entities for specific purposes (for example, a utility district 
serviced by a power company), etc. 

That AUGS can guarantee unbiased information regarding availability of dif-
ferent types of services at/near specific points/regions implies that a wide range 
of commercial (location-sensitive) services can be readily and reliably pro-
vided/discovered by any one, without the need to trust middle-men. 

In practice, the several public keys may be authoritative for a point (x,y) de-
pending on the context of the query. For example, the authority for responses 
to different queries like a) current weather at (x,y) or b) the polling location for a 
resident at (x,y) or c) the prevailing local tax-rate at (x,y) or d) zoning restric-
tions at (x,y) or e) the zip code of (x,y) or f) the owner of (x,y) or g) utility pipes 
buried near (x,y), or h) hazardous material storage location near (x,y), will be 
different. One way to cater for different contexts is to maintain independent 
AUGS infrastructures for each context. However, a single infrastructure capable 
of supporting multiple contexts can be more efficient. Such context specific ad-
ditions to AUGS are one of our ongoing research topics. 
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