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Abstract 
The performance of the state-of-the-art Deep Reinforcement algorithms such 
as Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy 
Gradient, and Soft Actor-Critic for generating a quadruped walking gait in a 
virtual environment was presented in previous research work titled “A Com-
parison of PPO, TD3, and SAC Reinforcement Algorithms for Quadruped 
Walking Gait Generation”. We demonstrated that the Soft Actor-Critic 
Reinforcement algorithm had the best performance generating the walking 
gait for a quadruped in certain instances of sensor configurations in the vir-
tual environment. In this work, we present the performance analysis of the 
state-of-the-art Deep Reinforcement algorithms above for quadruped walking 
gait generation in a physical environment. The performance is determined in 
the physical environment by transfer learning augmented by real-time rein-
forcement learning for gait generation on a physical quadruped. The perfor-
mance is analyzed on a quadruped equipped with a range of sensors such as 
position tracking using a stereo camera, contact sensing of each of the robot 
legs through force resistive sensors, and proprioceptive information of the 
robot body and legs using nine inertial measurement units. The performance 
comparison is presented using the metrics associated with the walking gait: 
average forward velocity (m/s), average forward velocity variance, average 
lateral velocity (m/s), average lateral velocity variance, and quaternion root 
mean square deviation. The strengths and weaknesses of each algorithm for 
the given task on the physical quadruped are discussed. 
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Domain Randomization 

 

1. Introduction 

The performance comparison of three state-of-the-art Reinforcement algo-
rithms, namely the Proximal Policy Optimization (PPO), Twin Delayed Deep 
Deterministic Policy Gradient (TD3), and Soft Actor-Critic (SAC) for the walk-
ing gait of a quadruped robot were presented by the authors in their previous ar-
ticle [1]. The performance of the three algorithms was studied on a quadruped 
robot simulated by modeling the robot using MuJoCo’s native MJCF modeling 
language. Each algorithm’s performance was evaluated in seven different state 
spaces along with addressing the simulation optimization basis (domain rando-
mization). The performance results demonstrated the performance of the three 
algorithms was dependent on the sensor configurations, i.e., the state space. 
However, the performance results of the three algorithms in the virtual envi-
ronment did not present a clear winner. This paper compares the three algo-
rithms’ performance in the physical environment or the real world by transfer 
learning on a real quadruped. This paper is organized as follows: Section 2 
presents the techniques used to close the reality gap (RG) between the virtual 
and physical environments. The experimental setup discussions are presented in 
section 4. Section 5 presents the performance of the three algorithms on the qu-
adruped in the physical environment. Section 6 presents the conclusions. 

2. Methodologies for Solving RG 

In most cases, training RL algorithms on real robots is impractical due to time 
considerations or the potential for damaging the robot. Therefore, RL algorithms 
are often trained in a simulated environment and transferred to the real robot. 
The reality gap remains the largest obstacle to using reinforcement learning for 
walking robots [2]. Most current research has been devoted to closing the reality 
gap through zero-shot transfer methods. Zero-shot methods are methods that 
perform all policy training in simulation. Once the training is complete, the 
trained policy is directly implemented on the physical robot [3]. These methods 
focus on modifying simulations so that trained policies can be directly deployed 
on a physical robot without any additional training or adjustments to the robot. 

2.1. System Identification 

The most common method used to close the reality gap is known as system 
identification. System identification refers to methods that modify simulated en-
vironments to make them more reflective of the real world. This is often done by 
hand modeling elements having the greatest impact on the learning, such as ac-
curate physics and robot models. Accurate CAD models of a robot are often es-
sential for successful real-world simulation deployment. A significant portion of 
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development time is used to make the rigid body models used in the simulation. 
Xie et al. [4] ensured the mass and inertia of each link in a bipedal robot were 
accurate. Additionally, an accurate model of the motors’ reflected inertia, espe-
cially for the knee joints, was critical to successfully deploying a trained policy 
onto the physical robot. Despite improvements in physics simulators and CAD 
software, it is still impossible to perfectly replicate a physical robot in simulation. 
Researchers estimate there is still a significant error because electronics and 
cabling are usually not modeled [5]. Physical parameters that change due to 
temperature, humidity, positioning, and wear-and-tear further complicate sys-
tem identification. Accurately reproducing the geometric properties of a robot 
is just one type of system identification. It has been shown that imitating 
real-world motor dynamics and latencies can also improve real-to-simulation 
transferability [5] [6]. For example, Tan et al. [6] successfully transferred a poli-
cy learned in the simulation to an under-actuated quadruped by accurately 
modeling the actuator dynamics and observation latency. The actuator model 
was based on ideal DC motor models. Latencies were simulated by using a linear 
interpolation of two prior consecutive observations. Latency times were meas-
ured on the real robot and then used to set the correct latency in the simulation. 
Some researchers have attempted to use supervised learning to match real-world 
dynamics to simulations. In Hwangbo et al. [5], an Artificial Neural Network 
was used to approximate the real actuator dynamics and latencies in simulation. 
This allowed for a walking gait that outperformed the original classical control-
ler regarding tracking error while using up to 36% less torque. 

2.2. Domain Randomization 

The inevitable imperfections of physics simulations will automatically be ex-
ploited by optimization methods if they help achieve an improvement. However, 
since these exploits don’t exist in the real world, policies transferred to the real 
world will not perform as expected. This is known as the simulation optimiza-
tion bias (SOB) [7]. One method to combat SOB is to randomize the parameters 
of the simulation. Unlike system identification, which aims to model the real 
world carefully, domain randomization aims to randomize a simulation’s visuals 
or system dynamics to encourage generalization. System identification and do-
main randomization are often used to achieve better results [3] [5] [6]. Early 
domain randomization techniques largely added i.i.d. noise to observations and 
actions [7]. Newer techniques involve changing the appearance and core dy-
namics of a simulated environment. Vision-based learning has a particularly 
wide reality gap because it is difficult to generate high-quality, realistically ren-
dered images [3]. Additionally, simulated cameras fail to incorporate noise and 
optical distortions produced by real cameras [8]. For vision-based object mani-
pulation tasks, Pinto et al. [9] randomized textures, lighting, and the camera’s 
position. They found that policies trained without domain randomization failed 
to perform when transferred to the real robot. Parameters like mass, friction 
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coefficients, and actuator behavior are randomized for non-vision-based robots. 
Tan et al. [6] found that using inertia randomization when learning a quadruped 
gait significantly improves robustness at the cost optimality. This means domain 
randomization causes the simulated policy to have degraded performance but 
will perform better on the physical robot. Adversarial disturbances to the agent 
are another common form of domain randomization. Rudin et al. [10] imple-
mented this idea by pushing the simulated robot every 10 seconds. The robot’s 
base is accelerated up to ±1 m/s in both x and y directions. This results in a 
highly stable and dynamic walking gait successfully deployed on a real robot. 

2.3. Imitation Learning 

In Xie et al. [4], simulation-to-real policy deployment could be achieved without 
dynamics randomization or learned actuator dynamics models. Instead, imita-
tion learning of a classical walking gait controller is used to guide policy learn-
ing. This method is known as domain adaptation. Reference motions, including 
hip position and orientation and motor angle, were collected from the real robot. 
Then, in simulation, the agent is rewarded for how closely it imitates the expert 
system. This was only used to train an initial policy to be deployed on the robot. 
When undesired behavior was noticed the policy could be refined in simulation 
with additional rewards to eliminate the undesired behavior. The new policy 
would then be deployed on the robot again. 

2.4. Real-Time Training 

Training RL algorithms directly has remained largely untested due to hardware 
limitations and the extensive time required to train in real-time. However, there 
are a few examples in the literature to examine. Mahmood et al. [11] successfully 
trained a 6 DOF arm to reach for arbitrary target positions from scratch using 
RL. The robot was connected to a base station via Ethernet. The base station was 
responsible for policy inference and policy updates. The robot passed sensory 
information to the base station, which would reply with either target motor ve-
locities or smoothed motor positions to the robot. The performance was highly 
sensitive to cycle times and performed best with cycles of 80 ms or about 12 Hz. 
In Haarnoja et al. [12], an under-actuated quadruped robot successfully gener-
ated a walking within two hours using the SAC algorithm. Similar to the pre-
vious study, learning was performed on a separate computer while sensor in-
formation was collected by the robot and position information was collected by a 
third computer. The trained policy allowed the robot to move forward at a ve-
locity of 0.32 m/s, on par with the manufacturer’s trotting gait. This research 
demonstrates it is possible to train RL algorithms directly. However, little re-
search has been done on retraining sim-to-real RL policies on physical robots. 

In this work, the focus is on assessing if the reality gap can be closed for 
RL-based gait generation through retraining policies on a physical quadruped 
robot. We also focus on analyzing the simulation-to-real transferability of SAC, 
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TD3, and PPO algorithms. If control policies can be successfully retrained, it will 
eliminate the need for precise anatomical, actuator, and latency models for si-
mulation learning, which are often time-consuming to create. Additionally, it will 
allow for training policies in environments that can be difficult to model in simu-
lation. Lastly, this research potentially opens the door for lifelong ML, enabling a 
robot to modify its control policy in real-time to handle new challenges. 

3. Overview of Algorithms 

Three state-of-the-art, continuous control policy learning algorithms were cho-
sen to benchmark the gait learning and performance. Proximal Policy Optimiza-
tion, Twin Delayed Deep Deterministic Policy Gradient, and Soft Actor-Critic 
are consistently shown to be the top-performing model-free actor-critic algo-
rithms used for robotic tasks. 

PPO is an on-policy RL algorithm that attempts to improve the Trust Region 
Policy Optimization (TRPO) algorithm [13]. TRPO attempts to control the pol-
icy updates through a Kullback-Leibler (KL) divergence constraint, which quan-
tifies how much a probability distribution differs from another [13]. A major 
disadvantage of this approach is that it’s computationally expensive. PPO clips 
the objective function to prevent large updates to the policy [14]. This make 
PPO easier to implement and computationally faster. The clipped objective 
function is shown in Equation (1). 
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 and ε  is the hyperparameter 

that sets the clip range. The larger the value of ε , the larger the potential policy 
changes. ˆ

tA  is the advantage function shown in Equation (2). 

 ( ) ( ) 1
1 1

ˆ T t
t t t TA δ γλ δ γλ δ− +

+ −= + + +  (2) 

where tδ  is the TD error defined in Equation (3), γ  is the discount factor, 
and λ  is the bias-variance trade-off factor for the generalized advantage esti-
mator [15]. During each episode of training, the actor collects T timesteps of da-
ta. Then, the surrogate loss is computed over T timesteps and optimized with 
minibatch stochastic gradient descent for K epochs. Algorithm 1 summarizes the 
training process for PPO. As training progresses, the policy will try to exploit 
rewards already found over exploration. 

TD3 is an off-policy algorithm that significantly improves upon the deep de-
terministic policy gradient (DDPG) algorithm [16]. The primary downfall of 
DDPG is the overestimation bias of the critic network, which leads to degraded 
performance. TD3 implements three key features to improve performance [17]. 
First, TD3 proposes the use of a clipped double Q-learning algorithm to replace  
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the standard Q-learning found in DDPG. The second feature implemented is the 
use of action noise to reduce overfitting to narrow peaks in the value estimate, a 
problem often encountered with deterministic policies. The addition of action 
noise also results in target policy smoothing. For each timestep, both Q networks 
(

1 2
,Q Qθ θ ) are updated towards the minimum target value of actions selected by 

the target policy shown in Equation (3) 

 ( )( )1 11,2
min , .

it t ti
y Qθ φγ π ε′ ′+ +=
= + +r s s  (3) 

where tr  is the reward at time t, γ  is the discount factor and φπ  is a deter-
ministic policy, with parameters φ , which maximizes the expected return. ε  is 
the clipped Gaussian action noise added and is defined by Equation (4). 

 ( )( )~ clip 0, , ,c cε σ −  (4) 

The third feature of TD3 is to delay the policy updates by a fixed number of 
updates to the critic. This is done to suppress the value estimate variance caused 
by the accumulated TD error. Parameters φ  are updated according to the de-
terministic policy gradient shown in Equation (5). 

 ( ) ( ) ( ) ( )~ , .
t t t
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where Qπ  is the action-value function defined in Equation (5). TD3 is summa-
rized in algorithm 2. 

SAC is an off-policy actor-critic algorithm that seeks to maximize a trade-off 
between expected return and entropy. This encourages a high degree of explora-
tion compared to other algorithms. The entropy augmented objective is defined 
by Equation (6). 

 ( ) ( )( )*
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t t t t
t
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tr  is the reward at time t and α  determines the relative importance of the 
entropy term, ( )( ) ( )( )| log |t t tφπ π⋅ =s a s , against the reward. φπ  is a de-
terministic policy, with parameters φ . SAC utilizes two soft Q-functions to mi-
tigate positive bias in the policy improvement step. The soft Q-function para-
meters, θ , are trained to minimize the soft Bellman residual given in Equation 
(7). 
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where ( ),t tQθ s a  is the minimum of the two soft Q-functions and γ  is the 
discount factor. The value function Vθ  is the value function implicitly parame-
terized through the soft Q-function parameters via Equation (8). 

 ( ) ( ) ( )~= , log |
tt t t t tV Qπ α π − as s a a s  (8) 

The policy parameters are trained by minimizing the objective function in 
Equation (9). 

 ( ) ( )( ) ( )~ ~ log | , .
t t t t t tJ Q

φπ π φ θφ α π  = −  s a a s s a   (9) 

Additionally, the temperature parameter α  can be learned with the follow-
ing objective function in Equation (10). 

 ( ) ( )~ log |
t t t t tJ πα α π α = − − a a s   (10) 

The pseudo-code for SAC is listed in Algorithm 3. SAC alternates between 
collecting experience from the environment with the current policy and updat-
ing the actor and critic network parameters using stochastic gradients from 
batches randomly sampled from a replay buffer [18]. 

4. Experimental Setup 

In this section, the hardware and software components of the quadruped robot 
testbed used to evaluate the RL algorithms are discussed. 

4.1. Robot 

Figure 1 shows the simulated robot used in pretraining the RL algorithms. This 
work was discussed in our previous paper, “A Comparison of PPO, TD3, and 
SAC Reinforcement Learning Algorithms for Quadruped Walking Gait Genera-
tion” [19]. The robot shown in Figure 2 is the real-world counterpart to the  
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Figure 1. Simulated quadruped robot testbed. 

 

 
Figure 2. Quadruped robot testbed used for real-world testing and training. 
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simulated robot. The sensors on the real robot are nearly identical to those used 
with the simulated robot. This was done so that models trained in simulation 
could be directly implemented on the real robot without any changes. 

4.2. Controller 

The controller hardware of the robot is a Jetson Xavier AGX development board 
from NVIDIA shown in Figure 2. The controller consists of an 8-core, 64-bit 
ARM CPU with an NVIDIA GPU containing 512 CUDA and 64 tensor cores. 
The controller also has 64 GB of LPDDR4x RAM for volatile memory and uses a 
500 GB NVMe solid-state drive for non-volatile memory. Lastly, the controller 
has several I/O interfaces, including an M.2 Key E slot for dual-band WiFi, mul-
tiple USB ports, and I2C buses. 

The controller software handles all policy inferences and updates, sensory data 
collection, and actuator control. Sequential queries of the various sensors intro-
duce significant delay; therefore, the code to read each sensor was implemented 
in its own kernel process for asynchronous data collection. The data can then be 
accessed via shared memory. 

4.3. Actuators 

The testbed uses eight Dynamixel XC430-W240-T metal gear smart servo actu-
ators in the four legs, as shown in Figure 2. The servos communicate at a baud 
rate of 4 Mbits per second with the Dynamixel USB communication converter 
(U2D2), which is interfaced with the Jetson Xavier AGX, enabling the software 
to control the individual servos. Each servo provides load, velocity, position, 
temperature, and error status to the Jetson approximately at the sampling fre-
quency of 200 Hz. The temperature and error status signals are used only to 
monitor the robot’s operating conditions and pause training if normal operating 
conditions are violated. Additionally, each servo implements its own internal 
PID loop to smooth joint motions. 

4.4. Position Tracking 

Position tracking is implemented using the Zed mini stereo camera from Ste-
reolabs. Real-time depth-based visual odometry and SLAM algorithms are used 
to compute translation and orientation with an accuracy of 0.01 meters and 0.1 
degrees, respectively. The accuracy of the real-time depth-based visual odometry 
and SLAM algorithms depends on the scene captured by the camera. The cam-
era provides translation in a three-dimensional Cartesian coordinate system (X, 
Y, Z) and provides orientation in the form of a quaternion (w, x, y, z). The cam-
era collects and processes images at a sampling rate of 100 Hz and communi-
cates with the Jetson Xavier AGX over the USB. 

4.5. Contact Sensing 

The testbed uses four force-resistive sensors located on the bottom of each ro-
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bot’s feet for contact sensing. The sensors are connected to a 16-bit ana-
log-to-digital converter (ADC) interfaced with the Jetson Xavier AGX using the 
I2C bus. The contact sensory data is sampled at approximately 150 Hz. 

4.6. Inertial Measurement 

The robot has nine inertial measurement units (IMU), with each IMU having 9 
Degrees of Freedom (DOF), to collect proprioceptive information of the robot 
body and legs as shown in Figure 2. Each IMU contains a three-axis accelero-
meter, three-axis gyro, and three-axis magnetometer. One IMU is located on the 
center body above the camera. The remaining eight IMUs are located on the 
legs. One IMU is located on the upper portion of each leg, and another on the 
lower section of each leg. The IMUs are interfaced to the Jetson Xavier AGX us-
ing a multiplexer over the second I2C bus. The accelerometer and gyro data val-
ues from the IMUs are sampled at approximately 140 Hz. The magnetometer 
values are not queried or used in this research. 

4.7. State and Action Spaces 

Actions ta  are actuator target positions mapped to values between −1 and 1. 
The state ts  consists of the most recent readings of various sensors. Seven sen-
sor configurations were tested with each algorithm to identify the best possible 
level of sensory input for each algorithm. Table 1 lists the sensors used in each 
configuration. The first configuration (v0) uses only the body quaternion for the 
state space, and the last configuration (v6) utilizes all sensor data on the robot 
for the state space. 

4.8. Reward Function 

The reward function was designed to encourage a stable forward walking gait at 
a target velocity ˆxv  with a target orientation q̂ . The reward function is given 
by the Equation (14) 

 
( ) ( )

( )

2 2 ˆ

ˆsum ,
H A t V t TV x x

D y TQ

R r w w w v v

w v w q q

= + ∗ + ∗ Ω + ∗ −

+ ∗ + ∗ −

∑ ∑a
 (11) 

 
Table 1. State space configurations. 

Config v1 v2 v3 v4 v5 v6 

Body Quaternion √ √ √ √ √ √ 

Actuator Position (Qty:8) √ √ √ √ √ √ 

Actuator Velocity (Qty:8) - √ √ √ √ √ 

Actuator Load (Qty:8) - - √ √ √ √ 

Foot Pressure Sensor (Qty:4) - - - √ √ √ 

3-axis Accelerometer (Qty:9) - - - - √ √ 

3-axis Gyro (Qty:9) - - - - - √ 
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where Hr  is the reward for not experiencing a catastrophic failure, such as flip-
ping over. Aw  is the weight that determines the importance of penalizing ac-
tions, ta . Vw  is the weight that determines the importance of penalizing actu-
ator velocities, tΩ . TVw  is the importance weight for the target velocity, and 

Dw  is the importance weight for penalizing linear velocity in the lateral direc-
tion. TQw  is the importance weight for deviation from the target quaternion. 
The final weights used are listed in Table 2. 

4.9. Training 

A simulated environment is set up to recreate the agent environment described 
previously. Every 50 ms in simulation time, the agent reads the current state of 
the robot, which is described by the robot’s sensors. The sensors that are used 
depend on which configuration is being tested. The agent then uses the state 
space to generate target motor positions. The updated motor positions are sent 
to the robot. After 50 ms, the robot’s state is read again, and a reward is given 
based on the reward function described in section 1. This process is repeated for 
one thousand iterations. The simulation is reset Upon completing an episode of 
a thousand steps. TD3 and SAC algorithms update following each episode’s end, 
while PPO updates at fixed intervals. Each algorithm is trained on each sensor 
configuration for three million steps. This is repeated five times for each algo-
rithm configuration combination. 

A second group of policies was trained under identical circumstances except 
with domain randomization to evaluate if an algorithm is suitable for transfer 
learning to a real robot. The group using dynamics randomization experienced 
random variations in the robot’s mass, inertia, and friction coefficients, as well as 
actuator stiffness, friction loss, damping, and reflected inertia variations. 

4.10. Models and Hyper Parameters 

To compare the optimal performance of each algorithm, the Stable-Baselines3 
(SB3) implementation was used for all three algorithms. SB3 is a set of reliable 
implementations of reinforcement learning algorithms in PyTorch [20]. Several 
combinations of hyperparameters were tested for each algorithm. However, the 
default SB3 values were found to be the best. Table 3 summarizes each algo-
rithm’s ANN architectures and hyperparameters. 

4.11. Performance Metrics 

The performance of trained policies was evaluated through several quantitative 
metrics of a walking gait. These metrics include average forward velocity (m/s), 
average forward velocity variance, average lateral velocity (m/s), average lateral  

 
Table 2. Reward function parameters. 

Parameter ˆxv  q̂  Hr  Aw  Vw  TVw  Dw  TQw
 

Value 0.5 m/s [1, 0, 0, 0] 1.0 −0.05 −0.05 −1.0 −0.5 −0.5 
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Table 3. Hyperparameters for each RL algorithm. 

Hyperparameter PPO TD3 SAC 

Network Architecture [64, 64] [256, 256] [256, 256] 

Activation ReLU ReLU ReLU 

Optimizer Adam Adam Adam 

Learning Rate 0.0003 0.001 0.0003 

Target Update Rate 2048 Steps 1 Episode 1 Episode 

Batch Size 64 100 256 

Epochs 10 - - 

Discount Factor (γ) 0.99 0.99 0.99 

Replay Buffer Size - 106 106 

Clip Range (ε) 0.2 - - 

GAE (λ) 0.95 - - 

Soft Update Coefficient (τ) - 0.005 0.005 

Target Entropy (α) - - Auto 

Action Noise - ( )0,0.1
 - 

Policy Delay - 2 - 

 
velocity variance, and quaternion root mean square deviation (RMSD). The 
most important metric is the forward velocity. Ideally, an agent should achieve 
an average forward velocity of 0.5 m/s, a lateral velocity of 0.0 m/s, no forward 
or lateral velocity variance, and no deviation in the quaternion. The algorithm 
considered the “best” would be the one that achieves a forward velocity closest to 
the target velocity of 0.5 m/s. 

5. Results 

This section presents the results of transferred agents’ performance before and 
after real-world training. 

5.1. Training without Domain Randomization 

For PPO, only four configurations, v1, v2, v3, and v4, were tested on the robot 
since configurations v0, v5, and v6 did not generate a walking gait with a for-
ward velocity close to 0.5 m/s in the simulation. Similarly, for TD3, only confi-
gurations v2, v3, and v4 were transferred to the real robot for retraining. Finally, 
using SAC, five configurations, v2, v3, v4, v5, and v6, were selected to be re-
trained on the real robot. The analysis of training results in simulation was pre-
sented in our previous work [1]. 

Figures 3-5 show the average reward during the fifty thousand step retraining 
process. It can be seen that PPO has a much higher initial reward than both TD3 
and SAC. This suggests that PPO is better for transfer learning than SAC and  
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Figure 3. Learning curves for on-robot retraining using PPO without domain randomi-
zation pretraining. 

 

 
Figure 4. Learning curves for on-robot retraining using TD3 without domain randomi-
zation pretraining. 

 
TD3. It is worth noting that PPO has a smaller network size than TD3 and SAC. 
A smaller network can prevent overfitting, leading to better transfer learning. 
However, by the end of fifty thousand training steps, the average reward for SAC 
and TD3 is on par with PPO. Additionally, from the SAC learning curve, it can 
be seen that the average reward for configurations v5 and v6 falls as training  
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Figure 5. Learning curves for on-robot retraining using SAC without domain randomi-
zation pretraining. 

 
Table 4. Gait analysis of PPO agents pretrained without domain randomization before 
and after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v1 
Before 0.00195 0.00020 0.00084 0.00021 0.02509 

After 0.00209 0.00021 0.00033 0.00012 0.03308 

v2 
Before 0.00306 0.00033 0.00082 0.00021 0.03313 

After 0.00421 0.00038 0.00199 0.00040 0.06026 

v3 
Before 0.01208 0.00138 −0.00216 0.00404 0.13871 

After −0.00017 0.00074 −0.00067 0.00138 0.15649 

v4 
Before 0.00966 0.00081 0.00101 0.00123 0.11345 

After 0.00461 0.00037 −0.00138 0.00064 0.17060 

 
progresses. This would indicate that adding the IMU data is detrimental to 
learning to walk in the real world. Furthermore, the retrained PPO agents show 
little improvement in average reward over the retraining period. 

Tables 4-6 show the performance of each algorithm-configuration combina-
tion before and after retraining on the physical robot. As expected, the perfor-
mance of all agents before retraining is very poor due to the reality gap. Despite 
having a significantly higher starting average reward, the performance of the 
PPO agents is not quantitatively better than TD3 or SAC on the tests conducted 
before retraining. Additionally, none of the agents could generate a stable walking  
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Table 5.Gait analysis of TD3 agents pretrained without domain randomization before 
and after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v2 
Before 0.01596 0.00269 0.01143 0.00541 0.21354 

After 0.00203 0.00012 0.00062 6.63379 0.07300 

v3 
Before 0.01186 0.01421 0.00208 0.01412 0.89055 

After 0.00212 0.00129 −0.00142 0.00209 0.04866 

v4 
Before 0.01381 0.00734 −0.00188 0.01885 0.15346 

After −0.00133 0.00015 −0.00258 0.00025 0.05366 

 
Table 6. Gait analysis of SAC agents pretrained without domain randomization before 
and after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v2 
Before 0.00539 0.01122 −0.01874 0.00801 0.96871 

After 0.00026 4.05038 0.00065 2.48638 0.02376 

v3 
Before −0.01718 0.00634 −0.02856 0.00959 0.71353 

After 0.00057 4.29408 0.00040 1.81922 0.01397 

v4 
Before −0.00047 0.00545 0.01309 0.01372 0.58807 

After 0.01069 0.00137 −0.00304 0.00338 0.03931 

v5 
Before 0.01723 0.01564 0.01079 0.00847 0.93631 

After −0.00049 0.00564 −0.02849 0.03754 0.27413 

v6 
Before 0.00845 0.01047 −0.02836 0.01001 0.90481 

After 0.00560 0.00072 −0.00159 0.00191 0.02564 

 
gait after retraining on the robot. In most cases, the robot only learns to main-
tain its forward orientation and minimize erratic movements of the legs at the 
expense of forward movement. This is corroborated by the fact that the average 
forward velocity and quaternion RMSD are lower for most trials after retraining. 
Ultimately, no agent demonstrated significant improvements in forward velocity 
from retraining. 

5.2. Training with Domain Randomization 

The experimental results using agents pretrained with domain randomization 
are similar to previous results. Figures 6-8 show the learning curves for each al-
gorithm-configuration combination using domain randomization pretraining. 
Similar to the simulated results, the average rewards are slightly lower than those 
without domain randomization. This is unexpected since domain randomization  
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Figure 6. Learning curves for on-robot retraining using PPO with domain randomization 
pretraining. 

 

 
Figure 7. Learning curves for on-robot retraining using TD3 with domain randomization 
pretraining. 

 
aims to help the agent generalize for better transfer learning. However, the per-
formance of configurations v5 and v6 for SAC shows significant improvement 
over the agents trained without domain randomization. Unlike the agents pre-
trained without domain randomization, the average return does drop as training 
progresses. Also, surprisingly configuration v6 achieved a higher average reward 
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than configuration v5. A similar trend was seen in the simulation. 
From Tables 7-9, it can be seen that no agent generated a stable walking gait 

at the desired forward velocity even when pretrained with domain randomiza-
tion. The walking performance for agents using TD3 and SAC is on par with 
those pretrained without domain randomization. However, retrained PPO 
agents consistently show a significantly higher forward velocity and a lower qu-
aternion RMSD. Configuration v2 achieved the highest average forward velocity 
of 0.11786 m/s after being retrained on the physical robot. Despite having the 
highest forward velocity, this agent had the lowest average return by the end of  

 

 
Figure 8. Learning curves for on-robot retraining using SAC with domain randomization 
pretraining. 

 
Table 7. Gait analysis of PPO agents pretrained with domain randomization before and 
after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v1 
Before 0.00811 0.00159 −0.00014 0.00122 0.11504 

After 0.01768 0.00159 −0.00165 0.00209 0.08928 

v2 
Before 0.04184 0.01127 0.01694 0.00677 0.65451 

After 0.11786 0.00934 0.01633 0.00359 0.27343 

v3 
Before 0.00428 0.00112 −0.00054 0.00096 0.24305 

After 0.01630 0.00298 −0.00424 0.00160 0.14709 

v4 
Before 0.04817 0.00312 −0.00385 0.00479 0.31144 

After 0.06142 0.00212 0.01391 0.00644 0.11721 
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Table 8. Gait analysis of TD3 agents pretrained with domain randomization before and 
after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v2 
Before 0.00806 0.00717 −0.01078 0.00735 0.53355 

After 0.00779 0.00138 0.00151 0.00200 0.05436 

v3 
Before 0.01594 0.00517 −0.00575 0.00780 0.31721 

After 0.00114 0.00017 0.00019 6.82285 0.02599 

v4 
Before 0.02810 0.01114 0.01725 0.01278 0.39417 

After −0.00094 0.00070 −0.00311 0.00077 0.02860 

 
Table 9. Gait analysis of SAC agents pretrained with domain randomization before and 
after real-time retraining. 

Config Training 
Avg 

Forward 
Velocity 

Forward 
Velocity 

Var 

Avg Lateral 
Velocity 

Lateral 
Velocity 

Var 

Quaternion 
RMSD 

v2 
Before 0.01860 0.00501 0.01622 0.00736 0.48510 

After 0.00246 0.00014 −0.00898 8.96179 0.02470 

v3 
Before 0.05471 0.10599 −0.00958 0.06394 1.53760 

After 0.00088 3.24642 −0.00079 7.81647 0.02532 

v4 
Before −0.00047 0.00545 0.01309 0.01372 0.58807 

After −0.00682 0.00733 0.03574 0.00867 0.24176 

v5 
Before 0.02872 0.02078 0.01295 0.01616 0.76279 

After 0.04291 0.01532 −0.01927 0.02627 0.24463 

v6 
Before −0.00739 0.01301 −0.01959 0.00641 0.80840 

After −0.00650 0.00752 −0.00858 0.01636 0.22429 

 
the fifty thousand training steps. However, given more training time, the agent 
may be able to achieve the desired forward velocity. 

5.3. Results Summary 

The results show that no policy trained in simulation, regardless of the algorithm 
or use of domain randomization, successfully transferred to the physical robot, 
indicating no policy trained in simulation could be used to make the physical 
robot walk. This shows that the simulated world differs from the real world sig-
nificantly to be used to pretrain policies. Only a single PPO policy, pre-trained 
with domain randomization and then retrained on the physical robot, could 
generate a walking gait with any significant forward velocity (greater than 0.1 
m/s). The policy used configuration v2, which only includes the body quater-
nion, actuator position, and actuator velocity. Regardless, all PPO policies pre-
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trained with domain randomization show significant improvement in the walk-
ing gait metrics after being retrained on the physical robot. This indicated that 
using PPO with domain randomization is the best way to overcome the reality 
gap compared to TD3 and SAC. While the real-time training proved unsuccess-
ful for the TD3 and SAC algorithms, it can not be conclusively stated that these 
algorithms are unsuitable for real-time learning. However, it is interesting that 
TD3 and SAC are off-policy algorithms and are generally considered faster 
learners. However, faster learning may lead to overfitting to the simulated do-
main. Alternatively, PPO may generalize better due to a smaller network size. 
This is supported by the real-time learning curves of the PPO agents, which all 
start with much higher rewards than the TD3 or SAC agents. 

6. Conclusions and Future Work 

This research has demonstrated transfer learning augmented by real-time rein-
forcement learning for gait generation on a quadruped robot. The effect of do-
main randomization before and after real-time training has been shown. From 
the experimental data, it appears that the PPO pretrained with domain rando-
mization greatly improves the ability to transfer a simulated agent to the real 
world. Additionally, once retrained in real-time, the agents improve further. 
This shows that life-long learning tasks could be viable strategies for robotic ap-
plications. 

In our future work, we propose to study the use of a different simulated envi-
ronment focused on digital twins reflective of the real world, like Nvidia Omni-
verse. Also, a more robust robot like Boston Dynamic’s Spot or Unitree’s Go1 
could be a more suitable testbed. Training the robots for a longer time may give 
some of the agents time to develop a stable walking gait. Compared to the three 
million training steps of the simulated environment, fifty thousand training 
steps on the robot is not a lot of training time. Training for an additional fifty 
thousand steps in the real world could lead to further improvements but still be 
accomplished within a single day. Furthermore, tuning of the reward function 
weights may be required for real-world training to prioritize forward movement. 
However, tuning reward weights for real-world training would be extremely 
time-intensive. 
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