
Journal of Intelligent Learning Systems and Applications, 2024, 16, 23-43
https://www.scirp.org/journal/jilsa

ISSN Online: 2150-8410
ISSN Print: 2150-8402

DOI: 10.4236/jilsa.2024.162003 Mar. 22, 2024 23 Journal of Intelligent Learning Systems and Applications

Sim-to-Real: A Performance Comparison
of PPO, TD3, and SAC Reinforcement
Learning Algorithms for Quadruped
Walking Gait Generation

James W. Mock, Suresh S. Muknahallipatna*

Department of Electrical Engineering and Computer Science, University of Wyoming, Laramie, WY, USA

Abstract
The performance of the state-of-the-art Deep Reinforcement algorithms such
as Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy
Gradient, and Soft Actor-Critic for generating a quadruped walking gait in a
virtual environment was presented in previous research work titled “A Com-
parison of PPO, TD3, and SAC Reinforcement Algorithms for Quadruped
Walking Gait Generation”. We demonstrated that the Soft Actor-Critic
Reinforcement algorithm had the best performance generating the walking
gait for a quadruped in certain instances of sensor configurations in the vir-
tual environment. In this work, we present the performance analysis of the
state-of-the-art Deep Reinforcement algorithms above for quadruped walking
gait generation in a physical environment. The performance is determined in
the physical environment by transfer learning augmented by real-time rein-
forcement learning for gait generation on a physical quadruped. The perfor-
mance is analyzed on a quadruped equipped with a range of sensors such as
position tracking using a stereo camera, contact sensing of each of the robot
legs through force resistive sensors, and proprioceptive information of the
robot body and legs using nine inertial measurement units. The performance
comparison is presented using the metrics associated with the walking gait:
average forward velocity (m/s), average forward velocity variance, average
lateral velocity (m/s), average lateral velocity variance, and quaternion root
mean square deviation. The strengths and weaknesses of each algorithm for
the given task on the physical quadruped are discussed.

Keywords
Reinforcement Learning, Reality Gap, Position Tracking, Action Spaces,

How to cite this paper: Mock, J.W. and
Muknahallipatna, S.S. (2024) Sim-to-Real:
A Performance Comparison of PPO, TD3,
and SAC Reinforcement Learning Algo-
rithms for Quadruped Walking Gait Gen-
eration. Journal of Intelligent Learning Sys-
tems and Applications, 16, 23-43.
https://doi.org/10.4236/jilsa.2024.162003

Received: January 23, 2024
Accepted: March 19, 2024
Published: March 22, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jilsa
https://doi.org/10.4236/jilsa.2024.162003
https://www.scirp.org/
https://doi.org/10.4236/jilsa.2024.162003
http://creativecommons.org/licenses/by/4.0/

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 24 Journal of Intelligent Learning Systems and Applications

Domain Randomization

1. Introduction

The performance comparison of three state-of-the-art Reinforcement algo-
rithms, namely the Proximal Policy Optimization (PPO), Twin Delayed Deep
Deterministic Policy Gradient (TD3), and Soft Actor-Critic (SAC) for the walk-
ing gait of a quadruped robot were presented by the authors in their previous ar-
ticle [1]. The performance of the three algorithms was studied on a quadruped
robot simulated by modeling the robot using MuJoCo’s native MJCF modeling
language. Each algorithm’s performance was evaluated in seven different state
spaces along with addressing the simulation optimization basis (domain rando-
mization). The performance results demonstrated the performance of the three
algorithms was dependent on the sensor configurations, i.e., the state space.
However, the performance results of the three algorithms in the virtual envi-
ronment did not present a clear winner. This paper compares the three algo-
rithms’ performance in the physical environment or the real world by transfer
learning on a real quadruped. This paper is organized as follows: Section 2
presents the techniques used to close the reality gap (RG) between the virtual
and physical environments. The experimental setup discussions are presented in
section 4. Section 5 presents the performance of the three algorithms on the qu-
adruped in the physical environment. Section 6 presents the conclusions.

2. Methodologies for Solving RG

In most cases, training RL algorithms on real robots is impractical due to time
considerations or the potential for damaging the robot. Therefore, RL algorithms
are often trained in a simulated environment and transferred to the real robot.
The reality gap remains the largest obstacle to using reinforcement learning for
walking robots [2]. Most current research has been devoted to closing the reality
gap through zero-shot transfer methods. Zero-shot methods are methods that
perform all policy training in simulation. Once the training is complete, the
trained policy is directly implemented on the physical robot [3]. These methods
focus on modifying simulations so that trained policies can be directly deployed
on a physical robot without any additional training or adjustments to the robot.

2.1. System Identification

The most common method used to close the reality gap is known as system
identification. System identification refers to methods that modify simulated en-
vironments to make them more reflective of the real world. This is often done by
hand modeling elements having the greatest impact on the learning, such as ac-
curate physics and robot models. Accurate CAD models of a robot are often es-
sential for successful real-world simulation deployment. A significant portion of

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 25 Journal of Intelligent Learning Systems and Applications

development time is used to make the rigid body models used in the simulation.
Xie et al. [4] ensured the mass and inertia of each link in a bipedal robot were
accurate. Additionally, an accurate model of the motors’ reflected inertia, espe-
cially for the knee joints, was critical to successfully deploying a trained policy
onto the physical robot. Despite improvements in physics simulators and CAD
software, it is still impossible to perfectly replicate a physical robot in simulation.
Researchers estimate there is still a significant error because electronics and
cabling are usually not modeled [5]. Physical parameters that change due to
temperature, humidity, positioning, and wear-and-tear further complicate sys-
tem identification. Accurately reproducing the geometric properties of a robot
is just one type of system identification. It has been shown that imitating
real-world motor dynamics and latencies can also improve real-to-simulation
transferability [5] [6]. For example, Tan et al. [6] successfully transferred a poli-
cy learned in the simulation to an under-actuated quadruped by accurately
modeling the actuator dynamics and observation latency. The actuator model
was based on ideal DC motor models. Latencies were simulated by using a linear
interpolation of two prior consecutive observations. Latency times were meas-
ured on the real robot and then used to set the correct latency in the simulation.
Some researchers have attempted to use supervised learning to match real-world
dynamics to simulations. In Hwangbo et al. [5], an Artificial Neural Network
was used to approximate the real actuator dynamics and latencies in simulation.
This allowed for a walking gait that outperformed the original classical control-
ler regarding tracking error while using up to 36% less torque.

2.2. Domain Randomization

The inevitable imperfections of physics simulations will automatically be ex-
ploited by optimization methods if they help achieve an improvement. However,
since these exploits don’t exist in the real world, policies transferred to the real
world will not perform as expected. This is known as the simulation optimiza-
tion bias (SOB) [7]. One method to combat SOB is to randomize the parameters
of the simulation. Unlike system identification, which aims to model the real
world carefully, domain randomization aims to randomize a simulation’s visuals
or system dynamics to encourage generalization. System identification and do-
main randomization are often used to achieve better results [3] [5] [6]. Early
domain randomization techniques largely added i.i.d. noise to observations and
actions [7]. Newer techniques involve changing the appearance and core dy-
namics of a simulated environment. Vision-based learning has a particularly
wide reality gap because it is difficult to generate high-quality, realistically ren-
dered images [3]. Additionally, simulated cameras fail to incorporate noise and
optical distortions produced by real cameras [8]. For vision-based object mani-
pulation tasks, Pinto et al. [9] randomized textures, lighting, and the camera’s
position. They found that policies trained without domain randomization failed
to perform when transferred to the real robot. Parameters like mass, friction

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 26 Journal of Intelligent Learning Systems and Applications

coefficients, and actuator behavior are randomized for non-vision-based robots.
Tan et al. [6] found that using inertia randomization when learning a quadruped
gait significantly improves robustness at the cost optimality. This means domain
randomization causes the simulated policy to have degraded performance but
will perform better on the physical robot. Adversarial disturbances to the agent
are another common form of domain randomization. Rudin et al. [10] imple-
mented this idea by pushing the simulated robot every 10 seconds. The robot’s
base is accelerated up to ±1 m/s in both x and y directions. This results in a
highly stable and dynamic walking gait successfully deployed on a real robot.

2.3. Imitation Learning

In Xie et al. [4], simulation-to-real policy deployment could be achieved without
dynamics randomization or learned actuator dynamics models. Instead, imita-
tion learning of a classical walking gait controller is used to guide policy learn-
ing. This method is known as domain adaptation. Reference motions, including
hip position and orientation and motor angle, were collected from the real robot.
Then, in simulation, the agent is rewarded for how closely it imitates the expert
system. This was only used to train an initial policy to be deployed on the robot.
When undesired behavior was noticed the policy could be refined in simulation
with additional rewards to eliminate the undesired behavior. The new policy
would then be deployed on the robot again.

2.4. Real-Time Training

Training RL algorithms directly has remained largely untested due to hardware
limitations and the extensive time required to train in real-time. However, there
are a few examples in the literature to examine. Mahmood et al. [11] successfully
trained a 6 DOF arm to reach for arbitrary target positions from scratch using
RL. The robot was connected to a base station via Ethernet. The base station was
responsible for policy inference and policy updates. The robot passed sensory
information to the base station, which would reply with either target motor ve-
locities or smoothed motor positions to the robot. The performance was highly
sensitive to cycle times and performed best with cycles of 80 ms or about 12 Hz.
In Haarnoja et al. [12], an under-actuated quadruped robot successfully gener-
ated a walking within two hours using the SAC algorithm. Similar to the pre-
vious study, learning was performed on a separate computer while sensor in-
formation was collected by the robot and position information was collected by a
third computer. The trained policy allowed the robot to move forward at a ve-
locity of 0.32 m/s, on par with the manufacturer’s trotting gait. This research
demonstrates it is possible to train RL algorithms directly. However, little re-
search has been done on retraining sim-to-real RL policies on physical robots.

In this work, the focus is on assessing if the reality gap can be closed for
RL-based gait generation through retraining policies on a physical quadruped
robot. We also focus on analyzing the simulation-to-real transferability of SAC,

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 27 Journal of Intelligent Learning Systems and Applications

TD3, and PPO algorithms. If control policies can be successfully retrained, it will
eliminate the need for precise anatomical, actuator, and latency models for si-
mulation learning, which are often time-consuming to create. Additionally, it will
allow for training policies in environments that can be difficult to model in simu-
lation. Lastly, this research potentially opens the door for lifelong ML, enabling a
robot to modify its control policy in real-time to handle new challenges.

3. Overview of Algorithms

Three state-of-the-art, continuous control policy learning algorithms were cho-
sen to benchmark the gait learning and performance. Proximal Policy Optimiza-
tion, Twin Delayed Deep Deterministic Policy Gradient, and Soft Actor-Critic
are consistently shown to be the top-performing model-free actor-critic algo-
rithms used for robotic tasks.

PPO is an on-policy RL algorithm that attempts to improve the Trust Region
Policy Optimization (TRPO) algorithm [13]. TRPO attempts to control the pol-
icy updates through a Kullback-Leibler (KL) divergence constraint, which quan-
tifies how much a probability distribution differs from another [13]. A major
disadvantage of this approach is that it’s computationally expensive. PPO clips
the objective function to prevent large updates to the policy [14]. This make
PPO easier to implement and computationally faster. The clipped objective
function is shown in Equation (1).

 () ()
()

()
()

old old

| |ˆ ˆ ˆmin ,clip ,1 ,1
| |

t t t tCLIP
t t t

t t t t

L A Aθ θ

θ θ

π π
θ ε ε

π π

= − +

a s a s
a s a s

 (1)

where θπ is a stochastic policy. The clipping function limits the lower and up-

per value of the probability ratio
()
()

old

|
|

t t

t t

θ

θ

π
π

a s
a s

 and ε is the hyperparameter

that sets the clip range. The larger the value of ε , the larger the potential policy
changes. ˆ

tA is the advantage function shown in Equation (2).

 () () 1
1 1

ˆ T t
t t t TA δ γλ δ γλ δ− +

+ −= + + + (2)

where tδ is the TD error defined in Equation (3), γ is the discount factor,
and λ is the bias-variance trade-off factor for the generalized advantage esti-
mator [15]. During each episode of training, the actor collects T timesteps of da-
ta. Then, the surrogate loss is computed over T timesteps and optimized with
minibatch stochastic gradient descent for K epochs. Algorithm 1 summarizes the
training process for PPO. As training progresses, the policy will try to exploit
rewards already found over exploration.

TD3 is an off-policy algorithm that significantly improves upon the deep de-
terministic policy gradient (DDPG) algorithm [16]. The primary downfall of
DDPG is the overestimation bias of the critic network, which leads to degraded
performance. TD3 implements three key features to improve performance [17].
First, TD3 proposes the use of a clipped double Q-learning algorithm to replace

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 28 Journal of Intelligent Learning Systems and Applications

the standard Q-learning found in DDPG. The second feature implemented is the
use of action noise to reduce overfitting to narrow peaks in the value estimate, a
problem often encountered with deterministic policies. The addition of action
noise also results in target policy smoothing. For each timestep, both Q networks
(

1 2
,Q Qθ θ) are updated towards the minimum target value of actions selected by

the target policy shown in Equation (3)

 ()()1 11,2
min , .

it t ti
y Qθ φγ π ε′ ′+ +=
= + +r s s (3)

where tr is the reward at time t, γ is the discount factor and φπ is a deter-
ministic policy, with parameters φ , which maximizes the expected return. ε is
the clipped Gaussian action noise added and is defined by Equation (4).

 ()()~ clip 0, , ,c cε σ − (4)

The third feature of TD3 is to delay the policy updates by a fixed number of
updates to the critic. This is done to suppress the value estimate variance caused
by the accumulated TD error. Parameters φ are updated according to the de-
terministic policy gradient shown in Equation (5).

 () () () ()~ , .
t t t

p a t t tJ Q
π φ

φ π φ φπ
φ π

=
 ∇ = ∇ ∇ s a s

s a s (5)

where Qπ is the action-value function defined in Equation (5). TD3 is summa-
rized in algorithm 2.

SAC is an off-policy actor-critic algorithm that seeks to maximize a trade-off
between expected return and entropy. This encourages a high degree of explora-
tion compared to other algorithms. The entropy augmented objective is defined
by Equation (6).

 () ()()*
, ~arg max | ,

t t t t
t

πρπ
π α π = + ⋅ ∑ s a r s (6)

tr is the reward at time t and α determines the relative importance of the
entropy term, ()() ()()| log |t t tφπ π⋅ =s a s , against the reward. φπ is a de-
terministic policy, with parameters φ . SAC utilizes two soft Q-functions to mi-
tigate positive bias in the policy improvement step. The soft Q-function para-
meters, θ , are trained to minimize the soft Bellman residual given in Equation
(7).

 () () () ()()()1

2

~ 1, ~
1 , ,
2 tt tQ t t t p tJ Q Vθ θθ γ

+ +
 = − +

ss a s a r s (7)

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 29 Journal of Intelligent Learning Systems and Applications

where (),t tQθ s a is the minimum of the two soft Q-functions and γ is the
discount factor. The value function Vθ is the value function implicitly parame-
terized through the soft Q-function parameters via Equation (8).

 () () ()~= , log |
tt t t t tV Qπ α π − as s a a s (8)

The policy parameters are trained by minimizing the objective function in
Equation (9).

 () ()() ()~ ~ log | , .
t t t t t tJ Q

φπ π φ θφ α π = − s a a s s a (9)

Additionally, the temperature parameter α can be learned with the follow-
ing objective function in Equation (10).

 () ()~ log |
t t t t tJ πα α π α = − − a a s (10)

The pseudo-code for SAC is listed in Algorithm 3. SAC alternates between
collecting experience from the environment with the current policy and updat-
ing the actor and critic network parameters using stochastic gradients from
batches randomly sampled from a replay buffer [18].

4. Experimental Setup

In this section, the hardware and software components of the quadruped robot
testbed used to evaluate the RL algorithms are discussed.

4.1. Robot

Figure 1 shows the simulated robot used in pretraining the RL algorithms. This
work was discussed in our previous paper, “A Comparison of PPO, TD3, and
SAC Reinforcement Learning Algorithms for Quadruped Walking Gait Genera-
tion” [19]. The robot shown in Figure 2 is the real-world counterpart to the

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 30 Journal of Intelligent Learning Systems and Applications

Figure 1. Simulated quadruped robot testbed.

Figure 2. Quadruped robot testbed used for real-world testing and training.

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 31 Journal of Intelligent Learning Systems and Applications

simulated robot. The sensors on the real robot are nearly identical to those used
with the simulated robot. This was done so that models trained in simulation
could be directly implemented on the real robot without any changes.

4.2. Controller

The controller hardware of the robot is a Jetson Xavier AGX development board
from NVIDIA shown in Figure 2. The controller consists of an 8-core, 64-bit
ARM CPU with an NVIDIA GPU containing 512 CUDA and 64 tensor cores.
The controller also has 64 GB of LPDDR4x RAM for volatile memory and uses a
500 GB NVMe solid-state drive for non-volatile memory. Lastly, the controller
has several I/O interfaces, including an M.2 Key E slot for dual-band WiFi, mul-
tiple USB ports, and I2C buses.

The controller software handles all policy inferences and updates, sensory data
collection, and actuator control. Sequential queries of the various sensors intro-
duce significant delay; therefore, the code to read each sensor was implemented
in its own kernel process for asynchronous data collection. The data can then be
accessed via shared memory.

4.3. Actuators

The testbed uses eight Dynamixel XC430-W240-T metal gear smart servo actu-
ators in the four legs, as shown in Figure 2. The servos communicate at a baud
rate of 4 Mbits per second with the Dynamixel USB communication converter
(U2D2), which is interfaced with the Jetson Xavier AGX, enabling the software
to control the individual servos. Each servo provides load, velocity, position,
temperature, and error status to the Jetson approximately at the sampling fre-
quency of 200 Hz. The temperature and error status signals are used only to
monitor the robot’s operating conditions and pause training if normal operating
conditions are violated. Additionally, each servo implements its own internal
PID loop to smooth joint motions.

4.4. Position Tracking

Position tracking is implemented using the Zed mini stereo camera from Ste-
reolabs. Real-time depth-based visual odometry and SLAM algorithms are used
to compute translation and orientation with an accuracy of 0.01 meters and 0.1
degrees, respectively. The accuracy of the real-time depth-based visual odometry
and SLAM algorithms depends on the scene captured by the camera. The cam-
era provides translation in a three-dimensional Cartesian coordinate system (X,
Y, Z) and provides orientation in the form of a quaternion (w, x, y, z). The cam-
era collects and processes images at a sampling rate of 100 Hz and communi-
cates with the Jetson Xavier AGX over the USB.

4.5. Contact Sensing

The testbed uses four force-resistive sensors located on the bottom of each ro-

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 32 Journal of Intelligent Learning Systems and Applications

bot’s feet for contact sensing. The sensors are connected to a 16-bit ana-
log-to-digital converter (ADC) interfaced with the Jetson Xavier AGX using the
I2C bus. The contact sensory data is sampled at approximately 150 Hz.

4.6. Inertial Measurement

The robot has nine inertial measurement units (IMU), with each IMU having 9
Degrees of Freedom (DOF), to collect proprioceptive information of the robot
body and legs as shown in Figure 2. Each IMU contains a three-axis accelero-
meter, three-axis gyro, and three-axis magnetometer. One IMU is located on the
center body above the camera. The remaining eight IMUs are located on the
legs. One IMU is located on the upper portion of each leg, and another on the
lower section of each leg. The IMUs are interfaced to the Jetson Xavier AGX us-
ing a multiplexer over the second I2C bus. The accelerometer and gyro data val-
ues from the IMUs are sampled at approximately 140 Hz. The magnetometer
values are not queried or used in this research.

4.7. State and Action Spaces

Actions ta are actuator target positions mapped to values between −1 and 1.
The state ts consists of the most recent readings of various sensors. Seven sen-
sor configurations were tested with each algorithm to identify the best possible
level of sensory input for each algorithm. Table 1 lists the sensors used in each
configuration. The first configuration (v0) uses only the body quaternion for the
state space, and the last configuration (v6) utilizes all sensor data on the robot
for the state space.

4.8. Reward Function

The reward function was designed to encourage a stable forward walking gait at
a target velocity ˆxv with a target orientation q̂ . The reward function is given
by the Equation (14)

() ()

()

2 2 ˆ

ˆsum ,
H A t V t TV x x

D y TQ

R r w w w v v

w v w q q

= + ∗ + ∗ Ω + ∗ −

+ ∗ + ∗ −

∑ ∑a
 (11)

Table 1. State space configurations.

Config v1 v2 v3 v4 v5 v6

Body Quaternion √ √ √ √ √ √

Actuator Position (Qty:8) √ √ √ √ √ √

Actuator Velocity (Qty:8) - √ √ √ √ √

Actuator Load (Qty:8) - - √ √ √ √

Foot Pressure Sensor (Qty:4) - - - √ √ √

3-axis Accelerometer (Qty:9) - - - - √ √

3-axis Gyro (Qty:9) - - - - - √

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 33 Journal of Intelligent Learning Systems and Applications

where Hr is the reward for not experiencing a catastrophic failure, such as flip-
ping over. Aw is the weight that determines the importance of penalizing ac-
tions, ta . Vw is the weight that determines the importance of penalizing actu-
ator velocities, tΩ . TVw is the importance weight for the target velocity, and

Dw is the importance weight for penalizing linear velocity in the lateral direc-
tion. TQw is the importance weight for deviation from the target quaternion.
The final weights used are listed in Table 2.

4.9. Training

A simulated environment is set up to recreate the agent environment described
previously. Every 50 ms in simulation time, the agent reads the current state of
the robot, which is described by the robot’s sensors. The sensors that are used
depend on which configuration is being tested. The agent then uses the state
space to generate target motor positions. The updated motor positions are sent
to the robot. After 50 ms, the robot’s state is read again, and a reward is given
based on the reward function described in section 1. This process is repeated for
one thousand iterations. The simulation is reset Upon completing an episode of
a thousand steps. TD3 and SAC algorithms update following each episode’s end,
while PPO updates at fixed intervals. Each algorithm is trained on each sensor
configuration for three million steps. This is repeated five times for each algo-
rithm configuration combination.

A second group of policies was trained under identical circumstances except
with domain randomization to evaluate if an algorithm is suitable for transfer
learning to a real robot. The group using dynamics randomization experienced
random variations in the robot’s mass, inertia, and friction coefficients, as well as
actuator stiffness, friction loss, damping, and reflected inertia variations.

4.10. Models and Hyper Parameters

To compare the optimal performance of each algorithm, the Stable-Baselines3
(SB3) implementation was used for all three algorithms. SB3 is a set of reliable
implementations of reinforcement learning algorithms in PyTorch [20]. Several
combinations of hyperparameters were tested for each algorithm. However, the
default SB3 values were found to be the best. Table 3 summarizes each algo-
rithm’s ANN architectures and hyperparameters.

4.11. Performance Metrics

The performance of trained policies was evaluated through several quantitative
metrics of a walking gait. These metrics include average forward velocity (m/s),
average forward velocity variance, average lateral velocity (m/s), average lateral

Table 2. Reward function parameters.

Parameter ˆxv q̂ Hr Aw Vw TVw Dw TQw

Value 0.5 m/s [1, 0, 0, 0] 1.0 −0.05 −0.05 −1.0 −0.5 −0.5

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 34 Journal of Intelligent Learning Systems and Applications

Table 3. Hyperparameters for each RL algorithm.

Hyperparameter PPO TD3 SAC

Network Architecture [64, 64] [256, 256] [256, 256]

Activation ReLU ReLU ReLU

Optimizer Adam Adam Adam

Learning Rate 0.0003 0.001 0.0003

Target Update Rate 2048 Steps 1 Episode 1 Episode

Batch Size 64 100 256

Epochs 10 - -

Discount Factor (γ) 0.99 0.99 0.99

Replay Buffer Size - 106 106

Clip Range (ε) 0.2 - -

GAE (λ) 0.95 - -

Soft Update Coefficient (τ) - 0.005 0.005

Target Entropy (α) - - Auto

Action Noise - ()0,0.1
 -

Policy Delay - 2 -

velocity variance, and quaternion root mean square deviation (RMSD). The
most important metric is the forward velocity. Ideally, an agent should achieve
an average forward velocity of 0.5 m/s, a lateral velocity of 0.0 m/s, no forward
or lateral velocity variance, and no deviation in the quaternion. The algorithm
considered the “best” would be the one that achieves a forward velocity closest to
the target velocity of 0.5 m/s.

5. Results

This section presents the results of transferred agents’ performance before and
after real-world training.

5.1. Training without Domain Randomization

For PPO, only four configurations, v1, v2, v3, and v4, were tested on the robot
since configurations v0, v5, and v6 did not generate a walking gait with a for-
ward velocity close to 0.5 m/s in the simulation. Similarly, for TD3, only confi-
gurations v2, v3, and v4 were transferred to the real robot for retraining. Finally,
using SAC, five configurations, v2, v3, v4, v5, and v6, were selected to be re-
trained on the real robot. The analysis of training results in simulation was pre-
sented in our previous work [1].

Figures 3-5 show the average reward during the fifty thousand step retraining
process. It can be seen that PPO has a much higher initial reward than both TD3
and SAC. This suggests that PPO is better for transfer learning than SAC and

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 35 Journal of Intelligent Learning Systems and Applications

Figure 3. Learning curves for on-robot retraining using PPO without domain randomi-
zation pretraining.

Figure 4. Learning curves for on-robot retraining using TD3 without domain randomi-
zation pretraining.

TD3. It is worth noting that PPO has a smaller network size than TD3 and SAC.
A smaller network can prevent overfitting, leading to better transfer learning.
However, by the end of fifty thousand training steps, the average reward for SAC
and TD3 is on par with PPO. Additionally, from the SAC learning curve, it can
be seen that the average reward for configurations v5 and v6 falls as training

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 36 Journal of Intelligent Learning Systems and Applications

Figure 5. Learning curves for on-robot retraining using SAC without domain randomi-
zation pretraining.

Table 4. Gait analysis of PPO agents pretrained without domain randomization before
and after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v1
Before 0.00195 0.00020 0.00084 0.00021 0.02509

After 0.00209 0.00021 0.00033 0.00012 0.03308

v2
Before 0.00306 0.00033 0.00082 0.00021 0.03313

After 0.00421 0.00038 0.00199 0.00040 0.06026

v3
Before 0.01208 0.00138 −0.00216 0.00404 0.13871

After −0.00017 0.00074 −0.00067 0.00138 0.15649

v4
Before 0.00966 0.00081 0.00101 0.00123 0.11345

After 0.00461 0.00037 −0.00138 0.00064 0.17060

progresses. This would indicate that adding the IMU data is detrimental to
learning to walk in the real world. Furthermore, the retrained PPO agents show
little improvement in average reward over the retraining period.

Tables 4-6 show the performance of each algorithm-configuration combina-
tion before and after retraining on the physical robot. As expected, the perfor-
mance of all agents before retraining is very poor due to the reality gap. Despite
having a significantly higher starting average reward, the performance of the
PPO agents is not quantitatively better than TD3 or SAC on the tests conducted
before retraining. Additionally, none of the agents could generate a stable walking

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 37 Journal of Intelligent Learning Systems and Applications

Table 5.Gait analysis of TD3 agents pretrained without domain randomization before
and after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v2
Before 0.01596 0.00269 0.01143 0.00541 0.21354

After 0.00203 0.00012 0.00062 6.63379 0.07300

v3
Before 0.01186 0.01421 0.00208 0.01412 0.89055

After 0.00212 0.00129 −0.00142 0.00209 0.04866

v4
Before 0.01381 0.00734 −0.00188 0.01885 0.15346

After −0.00133 0.00015 −0.00258 0.00025 0.05366

Table 6. Gait analysis of SAC agents pretrained without domain randomization before
and after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v2
Before 0.00539 0.01122 −0.01874 0.00801 0.96871

After 0.00026 4.05038 0.00065 2.48638 0.02376

v3
Before −0.01718 0.00634 −0.02856 0.00959 0.71353

After 0.00057 4.29408 0.00040 1.81922 0.01397

v4
Before −0.00047 0.00545 0.01309 0.01372 0.58807

After 0.01069 0.00137 −0.00304 0.00338 0.03931

v5
Before 0.01723 0.01564 0.01079 0.00847 0.93631

After −0.00049 0.00564 −0.02849 0.03754 0.27413

v6
Before 0.00845 0.01047 −0.02836 0.01001 0.90481

After 0.00560 0.00072 −0.00159 0.00191 0.02564

gait after retraining on the robot. In most cases, the robot only learns to main-
tain its forward orientation and minimize erratic movements of the legs at the
expense of forward movement. This is corroborated by the fact that the average
forward velocity and quaternion RMSD are lower for most trials after retraining.
Ultimately, no agent demonstrated significant improvements in forward velocity
from retraining.

5.2. Training with Domain Randomization

The experimental results using agents pretrained with domain randomization
are similar to previous results. Figures 6-8 show the learning curves for each al-
gorithm-configuration combination using domain randomization pretraining.
Similar to the simulated results, the average rewards are slightly lower than those
without domain randomization. This is unexpected since domain randomization

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 38 Journal of Intelligent Learning Systems and Applications

Figure 6. Learning curves for on-robot retraining using PPO with domain randomization
pretraining.

Figure 7. Learning curves for on-robot retraining using TD3 with domain randomization
pretraining.

aims to help the agent generalize for better transfer learning. However, the per-
formance of configurations v5 and v6 for SAC shows significant improvement
over the agents trained without domain randomization. Unlike the agents pre-
trained without domain randomization, the average return does drop as training
progresses. Also, surprisingly configuration v6 achieved a higher average reward

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 39 Journal of Intelligent Learning Systems and Applications

than configuration v5. A similar trend was seen in the simulation.
From Tables 7-9, it can be seen that no agent generated a stable walking gait

at the desired forward velocity even when pretrained with domain randomiza-
tion. The walking performance for agents using TD3 and SAC is on par with
those pretrained without domain randomization. However, retrained PPO
agents consistently show a significantly higher forward velocity and a lower qu-
aternion RMSD. Configuration v2 achieved the highest average forward velocity
of 0.11786 m/s after being retrained on the physical robot. Despite having the
highest forward velocity, this agent had the lowest average return by the end of

Figure 8. Learning curves for on-robot retraining using SAC with domain randomization
pretraining.

Table 7. Gait analysis of PPO agents pretrained with domain randomization before and
after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v1
Before 0.00811 0.00159 −0.00014 0.00122 0.11504

After 0.01768 0.00159 −0.00165 0.00209 0.08928

v2
Before 0.04184 0.01127 0.01694 0.00677 0.65451

After 0.11786 0.00934 0.01633 0.00359 0.27343

v3
Before 0.00428 0.00112 −0.00054 0.00096 0.24305

After 0.01630 0.00298 −0.00424 0.00160 0.14709

v4
Before 0.04817 0.00312 −0.00385 0.00479 0.31144

After 0.06142 0.00212 0.01391 0.00644 0.11721

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 40 Journal of Intelligent Learning Systems and Applications

Table 8. Gait analysis of TD3 agents pretrained with domain randomization before and
after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v2
Before 0.00806 0.00717 −0.01078 0.00735 0.53355

After 0.00779 0.00138 0.00151 0.00200 0.05436

v3
Before 0.01594 0.00517 −0.00575 0.00780 0.31721

After 0.00114 0.00017 0.00019 6.82285 0.02599

v4
Before 0.02810 0.01114 0.01725 0.01278 0.39417

After −0.00094 0.00070 −0.00311 0.00077 0.02860

Table 9. Gait analysis of SAC agents pretrained with domain randomization before and
after real-time retraining.

Config Training
Avg

Forward
Velocity

Forward
Velocity

Var

Avg Lateral
Velocity

Lateral
Velocity

Var

Quaternion
RMSD

v2
Before 0.01860 0.00501 0.01622 0.00736 0.48510

After 0.00246 0.00014 −0.00898 8.96179 0.02470

v3
Before 0.05471 0.10599 −0.00958 0.06394 1.53760

After 0.00088 3.24642 −0.00079 7.81647 0.02532

v4
Before −0.00047 0.00545 0.01309 0.01372 0.58807

After −0.00682 0.00733 0.03574 0.00867 0.24176

v5
Before 0.02872 0.02078 0.01295 0.01616 0.76279

After 0.04291 0.01532 −0.01927 0.02627 0.24463

v6
Before −0.00739 0.01301 −0.01959 0.00641 0.80840

After −0.00650 0.00752 −0.00858 0.01636 0.22429

the fifty thousand training steps. However, given more training time, the agent
may be able to achieve the desired forward velocity.

5.3. Results Summary

The results show that no policy trained in simulation, regardless of the algorithm
or use of domain randomization, successfully transferred to the physical robot,
indicating no policy trained in simulation could be used to make the physical
robot walk. This shows that the simulated world differs from the real world sig-
nificantly to be used to pretrain policies. Only a single PPO policy, pre-trained
with domain randomization and then retrained on the physical robot, could
generate a walking gait with any significant forward velocity (greater than 0.1
m/s). The policy used configuration v2, which only includes the body quater-
nion, actuator position, and actuator velocity. Regardless, all PPO policies pre-

https://doi.org/10.4236/jilsa.2024.162003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 41 Journal of Intelligent Learning Systems and Applications

trained with domain randomization show significant improvement in the walk-
ing gait metrics after being retrained on the physical robot. This indicated that
using PPO with domain randomization is the best way to overcome the reality
gap compared to TD3 and SAC. While the real-time training proved unsuccess-
ful for the TD3 and SAC algorithms, it can not be conclusively stated that these
algorithms are unsuitable for real-time learning. However, it is interesting that
TD3 and SAC are off-policy algorithms and are generally considered faster
learners. However, faster learning may lead to overfitting to the simulated do-
main. Alternatively, PPO may generalize better due to a smaller network size.
This is supported by the real-time learning curves of the PPO agents, which all
start with much higher rewards than the TD3 or SAC agents.

6. Conclusions and Future Work

This research has demonstrated transfer learning augmented by real-time rein-
forcement learning for gait generation on a quadruped robot. The effect of do-
main randomization before and after real-time training has been shown. From
the experimental data, it appears that the PPO pretrained with domain rando-
mization greatly improves the ability to transfer a simulated agent to the real
world. Additionally, once retrained in real-time, the agents improve further.
This shows that life-long learning tasks could be viable strategies for robotic ap-
plications.

In our future work, we propose to study the use of a different simulated envi-
ronment focused on digital twins reflective of the real world, like Nvidia Omni-
verse. Also, a more robust robot like Boston Dynamic’s Spot or Unitree’s Go1
could be a more suitable testbed. Training the robots for a longer time may give
some of the agents time to develop a stable walking gait. Compared to the three
million training steps of the simulated environment, fifty thousand training
steps on the robot is not a lot of training time. Training for an additional fifty
thousand steps in the real world could lead to further improvements but still be
accomplished within a single day. Furthermore, tuning of the reward function
weights may be required for real-world training to prioritize forward movement.
However, tuning reward weights for real-world training would be extremely
time-intensive.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Mock, J.W. and Muknahallipatna, S.S. (2023) A Comparison of PPO, TD3 and SAC

Reinforcement Algorithms for Quadruped Walking Gait Generation. Journal of In-
telligent Learning Systems and Applications, 15, 36-56.
https://doi.org/10.4236/jilsa.2023.151003

[2] Salvato, E., Fenu, G., Medvet, E. and Pellegrino, F.A. (2021) Crossing the Reality

https://doi.org/10.4236/jilsa.2024.162003
https://doi.org/10.4236/jilsa.2023.151003

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 42 Journal of Intelligent Learning Systems and Applications

Gap: A Survey on Sim-to-Real Transferability of Robot Controllers in Reinforce-
ment Learning. IEEE Access, 9, 153171-153187.
https://doi.org/10.1109/ACCESS.2021.3126658

[3] Zhao, W., Queralta, J.P. and Westerlund, T. (2020) Sim-to-Real Transfer in Deep
Reinforcement Learning for Robotics: A Survey. 2020 IEEE Symposium Series on
Computational Intelligence (SSCI), Canberra, 1-4 December 2020, 737-744.
https://arxiv.org/abs/2009.13303
https://doi.org/10.1109/SSCI47803.2020.9308468

[4] Xie, Z., Clary, P., Dao, J., Morais, P., Hurst, J. and van de Panne, M. (2020) Learning
Locomotion Skills for Cassie: Iterative Design and Sim-to-Real. Proceedings of the
Conference on Robot Learning, Vol. 100, 317-329.
https://proceedings.mlr.press/v100/xie20a.html

[5] Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsounis, V., Koltun, V. and
Hutter, M. (2019) Learning Agile and Dynamic Motor Skills for Legged Robots.
Science Robotics, 4, eaau5872. http://arxiv.org/abs/1901.08652
https://doi.org/10.1126/scirobotics.aau5872

[6] Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y., Hafner, D., Bohez, S. and Van-
houcke, V. (2018) Sim-to-Real: Learning Agile Locomotion for Quadruped Robots.
http://arxiv.org/abs/1804.10332

[7] Muratore, F., Gienger, M. and Peters, J. (2019) Assessing Transferability from Si-
mulation to Reality for Reinforcement Learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 43, 1172-1183. http://arxiv.org/abs/1907.04685

[8] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W. and Abbeel, P. (2017) Do-
main Randomization for Transferring Deep Neural Networks from Simulation to
the Real World. 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, 24-28 September 2017, 23-30.
http://arxiv.org/abs/1703.06907
https://doi.org/10.1109/IROS.2017.8202133

[9] Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W. and Abbeel, P. (2017)
Asymmetric Actor Critic for Image-Based Robot Learning.
http://arxiv.org/abs/1710.06542

[10] Rudin, N., Hoeller, D., Reist, P. and Hutter, M. (2021) Learning to Walk in Minutes
Using Massively Parallel Deep Reinforcement Learning.
https://arxiv.org/abs/2109.11978

[11] Mahmood, A.R., Korenkevych, D., Komer, B.J. and Bergstra, J. (2018) Setting up a
Reinforcement Learning Task with a Real-World Robot. 2018 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Madrid, 1-5 October
2018, 4635-4640. http://arxiv.org/abs/1803.07067

[12] Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G. and Levine, S. (2019) Learning to
Walk via Deep Reinforcement Learning. https://doi.org/10.15607/RSS.2019.XV.011

[13] Schulman, J., Levine, S., Moritz, P., Jordan, M.I. and Abbeel, P. (2015) Trust Region
Policy Optimization. Proceedings of the 32nd International Conference on Machine
Learning, Vol. 37, 1889-1897. http://arxiv.org/abs/1502.05477

[14] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O. (2017) Proximal
Policy Optimization Algorithms. http://arxiv.org/abs/1707.06347

[15] Schulman, J., Moritz, P., Levine, S., Jordan, M.I. and Abbeel, P. (2016)
High-Dimensional Continuous Control Using Generalized Advantage Estimation.
4th International Conference on Learning Representations, ICLR 2016, San Juan,
2-4 May 2016. http://arxiv.org/abs/1506.02438

https://doi.org/10.4236/jilsa.2024.162003
https://doi.org/10.1109/ACCESS.2021.3126658
https://arxiv.org/abs/2009.13303
https://doi.org/10.1109/SSCI47803.2020.9308468
https://proceedings.mlr.press/v100/xie20a.html
http://arxiv.org/abs/1901.08652
https://doi.org/10.1126/scirobotics.aau5872
http://arxiv.org/abs/1804.10332
http://arxiv.org/abs/1907.04685
http://arxiv.org/abs/1703.06907
https://doi.org/10.1109/IROS.2017.8202133
http://arxiv.org/abs/1710.06542
https://arxiv.org/abs/2109.11978
http://arxiv.org/abs/1803.07067
https://doi.org/10.15607/RSS.2019.XV.011
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1506.02438

J. W. Mock, S. S. Muknahallipatna

DOI: 10.4236/jilsa.2024.162003 43 Journal of Intelligent Learning Systems and Applications

[16] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D. and
Wierstra, D. (2016) Continuous Control with Deep Reinforcement Learning. 4th
International Conference on Learning Representations, ICLR 2016, San Juan, 2-4
May 2016. http://arxiv.org/abs/1509.02971

[17] Fujimoto, S., van Hoof, H. and Meger, D. (2018) Addressing Function Approxima-
tion Error in Actor-Critic Methods. http://arxiv.org/abs/1802.09477

[18] Haarnoja, T., Zhou, A., Abbeel, P. and Levine, S. (2018) Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Ac-
tor. http://arxiv.org/abs/1801.01290

[19] Mock, J. and Muknahallipatna, S. (2023) A Comparison of PPO, TD3 and SAC
Reinforcement Algorithms for Quadruped Walking Gait Generation. Journal of In-
telligent Learning Systems and Applications, 15, 36-56.
https://doi.org/10.4236/jilsa.2023.151003

[20] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M. and Dormann, N. (2021)
Stable-Baselines3: Reliable Reinforcement Learning Implementations. Journal of
Machine Learning Research, 22, 1-8. http://jmlr.org/papers/v22/20-1364.html

https://doi.org/10.4236/jilsa.2024.162003
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1801.01290
https://doi.org/10.4236/jilsa.2023.151003
http://jmlr.org/papers/v22/20-1364.html

	Sim-to-Real: A Performance Comparison of PPO, TD3, and SAC Reinforcement Learning Algorithms for Quadruped Walking Gait Generation
	Abstract
	Keywords
	1. Introduction
	2. Methodologies for Solving RG
	2.1. System Identification
	2.2. Domain Randomization
	2.3. Imitation Learning
	2.4. Real-Time Training

	3. Overview of Algorithms
	4. Experimental Setup
	4.1. Robot
	4.2. Controller
	4.3. Actuators
	4.4. Position Tracking
	4.5. Contact Sensing
	4.6. Inertial Measurement
	4.7. State and Action Spaces
	4.8. Reward Function
	4.9. Training
	4.10. Models and Hyper Parameters
	4.11. Performance Metrics

	5. Results
	5.1. Training without Domain Randomization
	5.2. Training with Domain Randomization
	5.3. Results Summary

	6. Conclusions and Future Work
	Conflicts of Interest
	References

