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Abstract 
Deep reinforcement learning (deep RL) has the potential to replace classic 
robotic controllers. State-of-the-art Deep Reinforcement algorithms such as 
Proximal Policy Optimization, Twin Delayed Deep Deterministic Policy Gra-
dient and Soft Actor-Critic Reinforcement Algorithms, to mention a few, 
have been investigated for training robots to walk. However, conflicting per-
formance results of these algorithms have been reported in the literature. In 
this work, we present the performance analysis of the above three state-of- 
the-art Deep Reinforcement algorithms for a constant velocity walking task 
on a quadruped. The performance is analyzed by simulating the walking task 
of a quadruped equipped with a range of sensors present on a physical qua-
druped robot. Simulations of the three algorithms across a range of sensor 
inputs and with domain randomization are performed. The strengths and 
weaknesses of each algorithm for the given task are discussed. We also iden-
tify a set of sensors that contribute to the best performance of each Deep 
Reinforcement algorithm. 
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1. Introduction 

Robots have become extremely common within the past few decades. From 
manufacturing to healthcare, robots play an important integral role in the mod-
ern world and with likely be even more integral in the future. However, bio- 
mimetic robots, such as humanoid and quadruped robots, are significantly less 
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common. This is primarily due to the limitation of their control algorithms. 
Many of these controllers utilize sophisticated kinematic and dynamic models 
separated into submodules so they are easier to manage [1]. These models are 
difficult and time-consuming to develop and require expertise in both robotics 
and walking locomotion. Furthermore, these controllers routinely fail to achieve 
the performance of their biological counterparts. Though more difficult to con-
trol, walking robots offer an attractive alternative to typical locomotion systems. 
Walking robots are more suited for efficiently moving over uneven terrain due 
to their ability to select where they make contact with the terrain. They also pos-
sess an edge with regard to navigation since they are cable of stepping or jump-
ing over obstacles that wheeled or tracked vehicles could not pass [1] [2]. 

Despite limited use outside of research applications, many walking robots 
have been developed. Examples of humanoid robots include NASA’s Valkyrie 
[3], Boston Dynamics’ Atlas, and Agility Robotics’ Cassie. Prominent quadruped 
robots include Boston Dynamics’ Spot, MIT’s Mini Cheetah [4] and Robotic 
Systems Lab’s ANYmal [5]. All of these robots are sophisticated enough to per-
form incredible feats of agility but lack the control systems require to operate at 
their peak performance. To address this shortfall, machine learning (ML) is em-
ployed to develop more complex and robust control systems. 

Reinforcement learning (RL) is a sub-field of machine learning that learns 
through interacting with an environment rather than from large datasets as with 
supervised and unsupervised learning. The goal of RL is to map states to actions 
with an artificial neural network (ANN) through a trial-and-error process. There 
are two primary components in RL, the agent and the environment. Figure 1 
depicts the agent environment interaction. The agent is responsible for making 
decisions based on the current state of the environment. The environment is an-
ything the agent cannot change arbitrarily. In robotic applications, it would be 
natural to assume that the robot is the agent. However, the robot’s actuators, 
links, sensors, etc. are considered to be part of the environment since the agent 
cannot explicitly change them. Therefore, the agent is not the robot but actually 
the control algorithm for the robot. 

The fundamental basis for modern reinforcement learning algorithms is the 
Markov Decision Process (MDP). A MDP is a discrete time state transition 
model which consists of four components: state space, action space, state transi-
tion probabilities and reward. This is usually represented as the tuple ( , , ,    ).  
 

 

Figure 1. Agent-environment interaction. Image credit: [6]. 
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The state space is defined by a set of observations of the robot and its environ-
ment. An observation at timestep t is given as t ∈s . In virtual environments 
many observations can be obtained directly from the physics engine. For real 
robots observations usually come in the form of a variety of sensors such as IM-
Us, motor encoders and cameras. In robotic applications the action space is 
usually defined by the range of each actuator. The action taken at timestep t is 
represented as t ∈a .   represents the probability density of the next state 

1t+s  given the current state ts  and action ta . Reward t ∈r  is received after 
transitioning from state ts  to state 1t+s , due to action ta . The reward is always 
a real scalar value. The function that provides the reward is defined be the sys-
tem designer to achieve some goal (e.g. walking). The return is defined as the 
discounted sum of rewards 0

T t
t ttJ γ

=
= ∑ r  where ( ]0,1γ ∈  is the discount fac-

tor determining the priority of long term rewards. Values of γ  closer to 0 will 
cause the agent to prioritize short term rewards over long term rewards. 

A solution to an MDP is defined as policy π , which maps each state to an ac-
tion to take in this state to return the highest average reward. RL methods speci-
fy how the agent updates its policy as a result of its experience to maximize the 
return. Additionally, most RL algorithms involve estimating value functions. 
These functions estimate either the value of being in a particular state or the 
value of taking particular action. The state-value function, ( )tVπ s , for policy π  
is the expected return when starting in ts  and following π . ( )tVπ s  is for-
mally defined as 

( ) [ ] 1
0

| | .k
t t t t k t

k
V Jπ π π γ

∞

+ +
=

 = =   
∑ s s r s               (1) 

The action-value function, also know as the Q-function, ( ),t tQπ s a , is the ex-
pected return starting from ts , taking the action ta , and thereafter following 
policy π . ( )tQπ s  is defined as 

( ) [ ] 1
0

, | , | , .k
t t t t t t k t t

k
Q Jπ π π γ

∞

+ +
=

 = =   
∑ s a s a r s a           (2) 

Both value functions can be estimated from experience. A policy π  is de-
fined to be better than or equal to a policy π ′  if its expected return is greater 
than or equal to that of π ′  for all states. The optimal policy is defined as the 
policy with state-value function ( ) ( )* maxt tV Vππ

=s s  and action-value func-
tion ( ) ( )* , max ,t t t tQ Qππ

=s a s a . 
Using reinforcement learning over traditional control methods has three po-

tential advantages over traditional controller designs. The first and most signifi-
cant advantage is the ability to create more sophisticated and robust control al-
gorithms for walking robots. Currently, even mildly rough terrain would pose a 
serious challenge for most walking robots. The second advantage is a reduction 
in human effort to develop complex control algorithms. In many cases it may 
take months or even years to develop control schemes for walking robots. A ro-
bot that could learn to walk on its own could drastically reduce the time it takes 
to develop a suitable control algorithm. The third advantage is the possibility of 
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creating more complex robots. Currently, robots are intentionally simplified so 
they are easier to control. For example, all of the quadruped robots mentioned 
previously use the same three degrees of freedom (DOF) per leg configuration. A 
real dog has at least six DOF per leg excluding toes. This anatomical simplifica-
tion is likely contributing to the limited capabilities of bio-mimetic robots. 

This paper is organized as follows: Section 2 provides a brief summary of the 
related work. In Section 3, an in-depth mathematical background of the three RL 
algorithms is presented. Section 4 discusses the experimental setup, training and 
performance metrics. In Section 5, the simulation results of the training are pre-
sented. Section 6 presents the conclusion and future work. 

2. Related Work  

It has been widely shown that RL algorithms can produce highly sophisticated 
control policies for tasks in simulations [7] [8] [9]. Three of the top performing 
algorithms often used for robotics task are Twin Delayed Deep Deterministic 
Policy Gradient (TD3), Proximal Policy Optimization (PPO) and Soft Actor 
Critic (SAC). Nevertheless, few performance comparisons of the RL algorithms 
for robotics applications can be found in the literature, and the few existing 
comparisons exhibit contradictory performance results. For example, in Fuji-
moto et al. [9], TD3 is shown be the top performing algorithm in several robotic 
walking tasks, including the “HalfCheetah” and “Ant” walking tasks, compared 
to PPO and SAC. However, this is contradicted in Haarnoja et al. [8] where SAC 
is shown to be the top performing algorithm for the same tasks compared to 
TD3 and PPO. Such contradictions make it difficult to ascertain which algo-
rithm is suitable for a particular robot application. 

This work seeks to clearly demonstrate how each algorithm performs on a si-
mulated quadruped robotic walking task. Additionally, the algorithms are com-
pared over a variety of sensory inputs. Lastly, each algorithm is tested with do-
main randomization which is essential for transfer learning of real robots. 

3. Overview of Algorithms 

RL algorithms are roughly separated into two categories, model-based and mod-
el-free. The key distinction between the two is whether or not the agent uses a 
model of the environment to predict state transitions and rewards. Model-based 
RL is a deductive approach for solving a problem. The agent uses its under-
standing of the system to select a best action. Model-based algorithms may learn 
or be given the environment model. Model-free RL is an inductive approach for 
solving a problem. The agent uses its past experience to estimate the value of its 
action. Since model-free algorithm does not rely on the transition probabilities 
of the MDP in order to find a policy. This is ideal for robots with high dimen-
sion, continuous state and action spaces. 

The most common type of reinforcement learning used in robotic applica-
tions are model-free actor-critic algorithms. Actor-critic methods are time dif-

https://doi.org/10.4236/jilsa.2023.151003


J. W. Mock, S. S. Muknahallipatna 
 

 

DOI: 10.4236/jilsa.2023.151003 40 Journal of Intelligent Learning Systems and Applications 
 

ference (TD) methods that have a separate structures to explicitly represent the 
policy independent of a value function. The policy structure is known as the ac-
tor, because it is used to select actions, and the estimated value function is 
known as the critic, because it criticizes the actions made by the actor. The cri-
tique takes the form of a TD error which is shown in Equation (3).  

( ) ( )1t t t tV Vδ γ += + −r s s                       (3) 

where tr  is the reward at time t given state ts  and action ta , γ  is the dis-
count factor and V is the value function implemented by the critic at time t. This 
scalar signal is the only output of the critic and drives all learning in both actor 
and critic. Figure 2 shows the actor-critic architecture. Typically, the critic is a 
state-value function. After each action selection, the critic evaluates the new state 
to determine whether things have improved or worse than expected. If the TD 
error is positive, the action is encouraged in the future, whereas if the TD error 
is negative, it becomes adverse to it. 

Model-free actor-critic algorithms can be subdivided into two groups, on- 
policy and off-policy. On-policy methods, also known as policy optimization, 
only uses data collected while acting according to the most recent version of the 
policy to make updates to the policy. Policy optimization also usually involves 
learning an approximator ( )tVφ s  for the on-policy value function ( )tV π s , 
which is used to update the policy. Q-Learning methods learn an approximator 

( ),t tQθ s a  for the optimal action-value function, ( )* ,t tQ s a . This optimization 
is usually performed off-policy. Meaning that each update can use data collected 
at any point during training, regardless of how the agent was choosing to explore 
the environment when the data was obtained. These methods often make use of 
memory buffers that store state-action-state tuples. The primary strength of on- 
policy methods is that they tend to be stable and reliable. By contrast, off-policy 
methods tend to be less stable but substantially more sample efficient, because 
they can reuse data more effectively than on-policy techniques. Both methods 
have shown good performance in robotic tasks [7] [8] [9]. 
 

 

Figure 2. Actor-critic architecture. Image credit: [6]. 
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Three state-of-the-art continuous control policy learning algorithms were 
chosen to benchmark the gait learning and performance. Proximal Policy Opti-
mization, Twin Delayed Deep Deterministic Policy Gradient and Soft Actor- 
Critic are consistently shown to be the top performing model-free actor-critic 
algorithms used for robotic tasks. 

PPO is an on-policy RL algorithm that attempts to improve the on Trust Re-
gion Policy Optimization (TRPO) algorithm [10]. TRPO attempts to control the 
policy updates through a Kullback-Leibler (KL) divergence constraint, which 
quantifies how much a probability distribution differs from another [10]. A ma-
jor disadvantage of this approach is that it’s computationally expensive. PPO 
clips the objective function to prevent large updates to the policy [7]. This make 
PPO easier to implement and computationally faster. The clipped objective 
function is shown in Equation (4). 

( ) ( )
( )

( )
( )

| |ˆ ˆ ˆmin ,clip ,1 ,1
| |

old old

t t t tCLIP
t t t

t t t t

L A Aθ θ

θ θ

π π
θ ε ε

π π

    
 = − +             


a s a s
a s a s

  (4) 

where θπ  is a stochastic policy. The clipping function limits the lower and up-

per value of the probability ratio 
( )
( )

|
|

old

t t

t t

θ

θ

π
π

a s
a s

 and ε  is the hyperparameter  

that sets clip range. The larger the the value of ε , larger the potential policy 
changes. ˆ

tA  is the advantage function shown in Equation (5). 

( ) ( ) 1
1 1

ˆ T t
t t t TA δ γλ δ γλ δ− +

+ −= + + +                 (5) 

where tδ  is the TD error defined in Equation (3), γ  is the discount factor, 
and λ  is the bias-variance trade-off factor for the generalized advantage esti-
mator [11]. During each episode of training the actor collects T timesteps of data. 
Then the surrogate loss is computed over T timesteps and optimized with mini-
batch stochastic gradient descent for K epochs. Algorithm 1 summarizes the 
training process for PPO. As training progresses the policy will try to exploit re-
wards that it has already found over exploration. 

TD3 is an off-policy algorithm that significantly improves upon the deep de-
terministic policy gradient (DDPG) algorithm [12]. The primary downfall of 
DDPG is the overestimation bias of the critic network which leads to degraded 
performance. TD3 implements three key features to improve performance [9]. 
First, TD3 proposes the use of a clipped double Q-learning algorithm to replace  
 

 

Algorithm 1. PPO, actor-critic style. 
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the standard Q-learning found in DDPG. The second feature implemented is the 
use of action noise to reduce overfitting to narrow peaks in the value estimate, a 
problem often encountered with deterministic policies. The addition of action 
noise also results in target policy smoothing. For each timestep, both Q networks 
(

1 2
,Q Qθ θ ) are updated towards the minimum target value of actions selected by 

the target policy shown in Equation (6)  

( )( )1 11,2
min , .

it t ti
y Qθ φγ π ε

′ ′+ +=
= + +r s s                  (6) 

where tr  is the reward at time t, γ  is the discount factor and φπ  is a deter-
ministic policy, with parameters φ , which maximizes the expected return. ε  
is the clipped Gaussian action noise added and is defined by Equation (7). 

( )( )~ clip 0, , ,c cε σ −                       (7) 

The third feature of TD3 is to delay the policy updates by a fixed number of 
updates to the critic. This is done to suppress the value estimate variance caused 
by the accumulated TD-error. Parameters φ  are updated according to the de-
terministic policy gradient shown in Equation (8). 

( ) ( ) ( ) ( )~ , .
t t t

p a t t tJ Q
π φ

φ π φ φπ
φ π

=
 ∇ = ∇ ∇  

s a s
s a s            (8) 

where Qπ  is the action-value function defined in Equation (2). TD3 is summa-
rized in Algorithm 2.  

SAC is an off-policy actor-critic algorithm that seeks to maximize a trade-off 
between expected return and entropy. This encourages a high degree exploration 
compared to other algorithms. The entropy augmented objective is defined by 
Equation (9).  

( ) ( )( )*
, ~arg max | ,

t t t t
t

πρπ
π α π = + ⋅ ∑ s a r s             (9) 

 

 

Algorithm 2. TD3. 
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tr  is the reward at time t and α  determines the relative importance of the 
entropy term, ( )( ) ( )( )| log |t t tφπ π⋅ = s a s , against the reward. φπ  is a de-
terministic policy, with parameters φ . SAC utilizes two soft Q-functions to mi-
tigate positive bias in the policy improvement step. The soft Q-function para-
meters, θ , are trained to minimize the soft Bellman residual given in Equation 
(10).  

( ) ( ) ( ) ( )( )( )1

2

~ 1, ~
1 , ,
2 tt tQ t t t p tJ Q r Vθ θθ γ

+ +
  = − +    

  ss a s a s     (10) 

where ( ),t tQθ s a  is the minimum of the two soft Q-functions and γ  is the 
discount factor. The value function Vθ  is the value function implicitly parame-
terized through the soft Q-function parameters via Equation (11).  

( ) ( ) ( )~ , log |
tt t t t tV Qπ α π = − as s a a s             (11) 

The policy parameters are trained by minimizing the objective function in 
Equation (12).  

( ) ( )( ) ( )~ ~ log | , .
t t t t t tJ Q

φπ π φ θφ α π  = −   s a a s s a        (12) 

Additionally, the temperature parameter α  can be learned with the follow-
ing objective function in Equation (13).  

( ) ( )~ log |
t t t t tJ πα α π α = − −  a a s               (13) 

The pseudo code for SAC is listed in Algorithm 3. SAC alternates between 
collecting experience from the environment with the current policy and updat-
ing the actor and critic network parameters using stochastic gradients from 
batches randomly sampled from a replay buffer [8]. 

4. Experimental Setup 

This section covers the design and setup of the simulated quadruped robot and 
its environment. 
 

 

Algorithm 3. SAC. 
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4.1. System Identification 

The simulated environment is constructed using the MuJoCo’s physics simulator. 
MuJoCo is a free and open source physics engine that aims to facilitate research 
and development in robotics, biomechanics, graphics and animation [13]. Mu-
JoCo makes it possible to scale up computationally-intensive techniques such 
optimal control, physically-consistent state estimation, system identification and 
automated mechanism design, and apply them to complex dynamical systems in 
contact-rich behaviors. It is well suited for training RL policies for robotic tasks. 
The simulation environment consists of a single 2 DOF quadruped robot and a 
ground plane. Figure 3 shows the simulated robot. The robot is similar to the 
popular Mujoco “Ant” benchmark, but has more realistic actuator torques and 
includes a variety common sensors that can be found on real robots. These sen-
sors include a body position, body quaternion, foot contact sensors, and actuator 
position, actuator velocity, actuator load (force), IMUs on the body and legs. 
The large yellow spheres at the end of the feet represent the feet contact sensors. 
The smaller yellow spheres on the legs represent the locations of the IMU sen-
sors. An additional IMU is located at the center of the main body. The body po-
sition and quaternion are measured at the center of the main body. Gaussian 
noise was added to each sensor to imitate the imprecision of real sensors. The 
robot has eight actuators. No actuator or latency models were considered for the 
simulation. 

4.2. State and Action Spaces 

Actions ta  are actuator target positions mapped to values between −1 and 1. 
The state ts  consists of the most recent readings of various sensors. Seven sen-
sor configurations were tested with each algorithm to identify the best possible 
level of sensory input for each algorithm. The sensors used in each configuration 
are listed in Table 1. The first configuration (v0) uses only the body quaternion 
for the state space and the last configuration (v6) utilizes all sensor data on the 
robot for the state space. 
 

 

Figure 3. Simulated quadruped robot testbed. 
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Table 1. State space configurations. 

Config v0 v1 v2 v3 v4 v5 v6 

Body Quaternion ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Actuator Position (Qty: 8) - ✓ ✓ ✓ ✓ ✓ ✓ 

Actuator Velocity (Qty: 8) - - ✓ ✓ ✓ ✓ ✓ 

Actuator Load (Qty: 8) - - - ✓ ✓ ✓ ✓ 

Foot Pressure Sensor (Qty: 4) - - - - ✓ ✓ ✓ 

3-axis Accelerometer (Qty: 9) - - - - - ✓ ✓ 

3-axis Gyro (Qty: 9) - - - - - - ✓ 

4.3. Reward Function 

The reward function was designed to encourage a stable forward walking gait at 
a target velocity ˆxv  with a target orientation q̂ . The reward function is given 
by the Equation (14)  

( ) ( )
( )

2 2 ˆ

ˆsum ,
H A t V t TV x x D y

TQ

R r w w w v v w v

w q q

= + ∗ + ∗ Ω + ∗ − + ∗

+ ∗ −

∑ ∑a
    (14) 

where Hr  is the reward for not experiencing a catastrophic failure, such as flip-
ping over. Aw  is the weight that determines the importance of penalizing ac-
tions, ta . Vw  is the weight that determines the importance of penalizing actu-
ator velocities, tΩ . TVw  is the importance weight for the target velocity and 

Dw  is the importance weight for penalizing linear velocity in the lateral direc-
tion. TQw  is the importance weight for deviation from the target quaternion. 
The final weights used are listed in Table 2. 

4.4. Domain Randomization 

The inevitable imperfections of physics simulations will automatically be ex-
ploited by any optimization method to achieve an improvement. However, since 
these exploits don’t exist in the real world, policies transferred to the real world 
will not perform as expected. This is known as the simulation optimization bias 
(SOB) [14]. One method to combat SOB is to randomize parameters of the si-
mulation. Unlike system identification which aims to carefully model the real 
world, domain randomization aims to randomize the visuals or system dynamics 
of a simulation to encourage generalization. System identification and domain 
randomization are often used together to achieve better results [1] [15] [16]. 
Early domain randomization techniques largely consisted of adding i.i.d. noise 
to observations and actions [14]. Newer techniques involve changing the ap-
pearance and core dynamics of a simulated environment. Vision based learning 
have a particularly wide reality gap because it is very difficult to generate suffi-
ciently high-quality rendered images [16]. Additionally, simulated cameras fail 
to incorporate noise and optical distortions produced by real cameras [17]. For a 
vision based object manipulation tasks, Pinto et al. [18] randomized textures,  
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Table 2. Reward function parameters. 

Parameter ˆxv  q̂  Hr  Aw  Vw  TVw  Dw  TQw  

Value 0.5 m/s [1, 0, 0, 0] 1.0 −0.05 −0.05 −1.0 −0.5 −0.5 

 
lighting and the position of the camera. They found that policies trained without 
domain randomization failed to perform when transferred to the real robot. For 
non-vision based robots parameters like mass, friction coefficients and actuator 
behavior are randomized. Tan et al. [15] found that using inertia randomization 
when learning a quadruped gait significantly improves robustness at the cost op-
timality. Meaning that using domain randomization causes the simulated policy 
to have degraded performance but will perform better on the physical robot. 
Adversarial disturbances to the agent are another common form of domain 
randomization. Rudin et al. [19] implemented this idea by pushing the simulated 
robot every 10 seconds. The robots’ base is accelerated up to ±1 m/s in both x 
and y directions. This results in a highly stable and dynamic walking gait which 
was successfully deployed on a real robot. 

4.5. Training 

The simulated environment is setup to recreate the agent-environment de-
scribed previously. Every 50 ms in simulation time the agent reads in the current 
state of the robot which is described by the robot’s sensors. The sensors that are 
used depend on which configuration is being tested. The agent then uses the 
state space to generate target motor positions. The updated motor positions are 
sent the robot. After 50 ms the state of the robot is read again and a reward is 
given based on the reward function described in Section 4.3. This process repeats 
for one thousand iterations. Upon completion of an episode of one thousand 
steps the simulation is reset. TD3 and SAC make updates following the end each 
episode while PPO makes updates at a fixed interval. Each algorithm was trained 
on each sensor configuration for three million steps. This was repeated five 
times for each algorithm configuration combination. 

To evaluate if an algorithm is suitable for transfer learning to a real robot a 
second group of policies were trained under identical circumstances except with 
domain randomization. The group using dynamics randomization experienced 
random variations in robot’s mass, inertia and friction coefficients as well as 
variations in actuator stiffness, friction loss, damping, and reflected inertia. 

4.6. Models and Hyperparameters 

To compare optimal performance of each algorithm the Stable-Baselines3 (SB3) 
implementation was used for all three algorithms. SB3 is a set of reliable imple-
mentations of reinforcement learning algorithms in PyTorch [20]. Several com-
binations of hyperparameters were tested for each algorithm. However, the de-
fault SB3 values were found to be the best. Table 3 summarizes the ANN archi-
tectures and hyperparameters used for each algorithm. 
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Table 3. Hyperparameters for each RL algorithm. 

Hyperparameter PPO TD3 SAC 

Network Architecture [64, 64] [256, 256] [256, 256] 

Activation ReLU ReLU ReLU 

Optimizer Adam Adam Adam 

Learning Rate 0.0003 0.001 0.0003 

Target Update Rate 2048 Steps 1 Episode 1 Episode 

Batch Size 64 100 256 

Epochs 10 - - 

Discount Factor (γ) 0.99 0.99 0.99 

Replay Buffer Size - 106 106 

Clip Range (ε) 0.2 - - 

GAE (λ) 0.95 - - 

Soft Update Coefficient (τ) - 0.005 0.005 

Target Entropy (α) - - Auto 

Action Noise - ( )0,0.1  - 

Policy Delay - 2 - 

4.7. Performance Metrics 

The performance of trained policies was evaluated by comparing the quantita-
tive metrics of walking gait for the three algorithms. The metrics associated with 
the walking gait are the average forward velocity (m/s), average forward velocity 
variance, average lateral velocity (m/s), average lateral velocity variance, and qu-
aternion root mean square deviation (RMSD). Ideally an agent should achieve 
an average forward velocity of 0.5 m/s, a lateral velocity of 0.0 m/s, no forward 
or lateral velocity variance and no deviation in the quaternion. The maximum 
reward per time step that can be achieved is 1.0. Performance was evaluated as 
the average of all five trials over one thousand steps or fifty seconds in simula-
tion time. 

5. Results  

This section provides an analysis of the simulated agent’s performance. It also 
offers a comparison of algorithm performance across sensor configurations and 
with domain randomization. 

5.1. Training without Domain Randomization 

Figures 4-6 show the average learning curve in terms of the reward of each ro-
bot configuration using PPO, TD3 and SAC respectively without domain ran-
domization. Across all three algorithms configurations v2, v3, and v4 achieve the  

https://doi.org/10.4236/jilsa.2023.151003


J. W. Mock, S. S. Muknahallipatna 
 

 

DOI: 10.4236/jilsa.2023.151003 48 Journal of Intelligent Learning Systems and Applications 
 

 

Figure 4. Average learning curve for each sensor configuration using PPO algorithm. 
 

 

Figure 5. Average learning curve for each sensor configuration using TD3 algorithm. 
 

 

Figure 6. Average learning curve for each sensor configuration using SAC algorithm. 

https://doi.org/10.4236/jilsa.2023.151003


J. W. Mock, S. S. Muknahallipatna 
 

 

DOI: 10.4236/jilsa.2023.151003 49 Journal of Intelligent Learning Systems and Applications 
 

highest average reward. Configuration v2 is the first sensor configuration that 
includes actuator velocities. Unlike the body quaternion and actuator position, 
actuator velocity has a temporal relation which is likely the reason its inclusion 
in the state space significantly improves learning performance. The addition of 
actuator load in configuration v3 and contact sensors in configuration v4 do not 
improve the max reward beyond configuration v2. The addition of more sensors 
does not degrade learning till the IMU sensor data is added in configurations v4 
and v5. SAC was the only algorithm to achieve a high reward for these configu-
rations. However, training is significantly slower compared to other configura-
tions. Configuration v6 achieve a reward comparable to configurations v2, v3, 
and v4 while configuration v5 has a slightly lower max reward. The fact that 
configuration v6 is higher than v5 would indicate that the policy is developing a 
form of sensor fusion for the IMU data. The inclusion of IMU data significantly 
increases the size of the state space. This indicates that for agents with large state 
spaces SAC may perform better. In contrast, PPO was the only algorithm to 
achieve an average reward higher than 500 using configurations v0 and v1, 
though they are still not on par with configurations v2, v3 and v4. This indicates 
that PPO performs better with smaller state spaces. It can also be seen that the 
TD3 and SAC agents have significantly steeper learning curves compared to 
PPO agents. This is due to the fact that off-policy algorithms make far more up-
dates than on-policy algorithms. However, from Figure 5 it can be seen that 
TD3 takes significantly longer to reach its max reward compared to the other 
two algorithms. PPO and SAC converge at their maximum reward before five 
hundred thousand steps, TD3 takes nearly two million steps to converge. 

Tables 4-6 show the average quantitative metrics of the walking gaits achieved 
for each sensor configuration. Table 4 shows the average performance of each 
sensor configuration using PPO. Configurations v2, v3 and v4 show the best 
performance with average forward velocities very close to the target velocity of 
0.5 m/s. Additionally, all other metrics are close to zero as desired. Overall, it 
appears that configuration v3 performs the best as it was able to achieve an av-
erage velocity closest to the target velocity. Configurations v0 and v1 also seem  
 
Table 4. Average performance of each sensor configuration trained with PPO algorithm. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 0.37207 0.01229 0.01903 0.00649 0.06534 

v1 0.44240 0.01486 0.00388 0.00136 0.03266 

v2 0.49090 0.00246 −0.00108 0.00055 0.01823 

v3 0.49341 0.00273 −0.00175 0.00051 0.01984 

v4 0.49204 0.00267 0.00023 0.00053 0.01843 

v5 0.00222 0.04943 0.01359 0.04511 0.80789 

v6 0.07267 0.03297 −0.00192 0.03139 0.30946 
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Table 5. Average performance of each sensor configuration trained with TD3 algorithm. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 −0.00078 0.00404 0.00027 0.00148 0.09021 

v1 0.36572 0.02110 0.01244 0.02461 0.06642 

v2 0.49277 0.00189 −0.00063 0.00075 0.02226 

v3 0.49724 0.00208 −0.00197 0.00074 0.02036 

v4 0.49554 0.00183 0.00666 0.00084 0.02175 

v5 −0.00001 0.00053 −0.00039 0.00024 0.06395 

v6 0.00026 0.00028 0.00019 0.00010 0.06356 

 
Table 6. Average performance of each sensor configuration trained with SAC algorithm. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 0.05932 0.01301 −0.01809 0.01040 0.05622 

v1 0.34406 0.01992 0.01017 0.02643 0.04924 

v2 0.48994 0.00182 0.00018 0.00046 0.02003 

v3 0.49091 0.00166 −0.00111 0.00056 0.01956 

v4 0.49191 0.00182 −0.00114 0.00062 0.01939 

v5 0.48757 0.00184 −0.00896 0.00074 0.01924 

v6 0.49165 0.00185 0.00066 0.00054 0.01824 

 
to generate stable walking gaits. However, they were unable to come as close to 
the target velocity as the previously mentioned configurations. Lastly, configura-
tions v5 and v6 fail to generate any walking gaits. 

From Table 5, it can be seen that the TD3 algorithm only generates walking 
gaits for configurations v1 through v4. Like PPO, the average forward velocity 
for configuration v1 does not reach the target velocity. Also similar to PPO, the 
best gait was achieved with configuration v3. For configurations v2, v3, and v4 
TD3 achieves a higher average velocity than both PPO and SAC. However, the 
other four metrics seem to be worse as a result. For configurations v5 and v6 all 
agents learn to remain still to achieve a maximum reward. 

Table 6 shows that SAC was able to generate walking gaits for all configura-
tions except v0. Like PPO and TD3, the average velocity of configuration v1 fails 
to achieve to desired velocity. Configurations v4 and v6 are the top performing 
configurations in terms of average forward velocity. 

5.2. Training with Domain Randomization 

Figures 7-9 show the average learning curve in terms of the reward of each ro-
bot configuration using PPO, TD3 and SAC respectively using domain  
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Figure 7. Average learning curve for each sensor configuration using PPO algorithm with 
domain randomization. 
 

 

Figure 8. Average learning curve for each sensor configuration using TD3 algorithm with 
domain randomization. 
 

 

Figure 9. Average learning curve for each sensor configuration using SAC algorithm with 
domain randomization. 
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randomization. The learning curves are very similar to the simulations without 
domain randomization. The most significant difference being the lower maxi-
mum reward compared to agents trained without domain randomization. This is 
expected since randomization of dynamics makes walking much more difficult 
with the goal of achieving a more robust walking gait. Additionally, for some al-
gorithm-configuration combinations, training is significantly slower. All confi-
gurations of PPO require approximately an additional three hundred thousand 
steps to reach their maximum reward. TD3 shows a notable preference for con-
figuration v4 over v2 and v3 in terms of learning speed. Likewise, SAC also 
shows a slight preference for configuration v4. This indicates that foot sensors 
should be an important sensory input for real-world walking tasks. 

Tables 7-9 show the average performance metrics for each algorithm-configura- 
tion combination. A notable difference that can be observed is the overshooting 
of the target forward velocity for PPO and TD3. TD3 especially overshoots be a 
considerable margin for configurations v2 and v3. Interestingly, SAC does not 
demonstrate the same overshooting behavior. It can also be seen that  
 
Table 7. Average performance of each sensor configuration trained with PPO algorithm 
and domain randomization. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 0.08164 0.00315 −0.00813 0.00479 0.04419 

v1 0.51125 0.00537 −0.01126 0.00272 0.03613 

v2 0.50433 0.00290 0.00051 0.00088 0.02525 

v3 0.50494 0.00320 0.00125 0.00082 0.02259 

v4 0.50726 0.00281 0.00185 0.00122 0.02613 

v5 0.01854 0.04464 −0.02413 0.04370 0.84128 

v6 0.03879 0.03025 −0.00069 0.02937 0.41497 

 
Table 8. Average performance of each sensor configuration trained with TD3 algorithm 
and domain randomization. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 −0.00034 0.00129 −0.00062 0.00075 0.10078 

v1 0.00113 0.00293 0.00111 0.00092 0.02000 

v2 0.51670 0.00318 0.00751 0.00170 0.02845 

v3 0.51140 0.00414 0.01952 0.00348 0.03058 

v4 0.49742 0.00388 0.00312 0.00205 0.02617 

v5 0.11113 0.00282 0.00086 0.00145 0.08520 

v6 0.11087 0.00166 −0.00901 0.00125 0.05135 
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Table 9. Average performance of each sensor configuration trained with SAC algorithm 
and domain randomization. 

Config 
Avg Forward 

Velocity (m/s) 
Forward 

Velocity Var 
Avg Lateral 

Velocity (m/s) 
Lateral 

Velocity Var 
Quaternion 

RMSD 

v0 0.00680 0.01492 0.00400 0.01125 0.05964 

v1 0.31937 0.02401 0.00403 0.04855 0.05884 

v2 0.47342 0.00366 −0.02700 0.00293 0.02600 

v3 0.48273 0.00452 0.01178 0.00190 0.02776 

v4 0.48594 0.00348 0.00818 0.00173 0.02344 

v5 0.49743 0.00390 −0.02039 0.00265 0.03122 

v6 0.49873 0.00239 −0.00677 0.00327 0.03284 

 
the performance of configuration v0 with PPO is significantly worse than with-
out domain randomization. This can also be seen with configuration v1 with 
TD3. Lastly, SAC shows a significant performance increase for configurations v5 
and v6 over other configurations. 

5.3. Results Summary 

 Actuator velocity is essential for generating stable walking gaits for all three 
RL algorithms.  

 The performance of all three algorithms is very similar for configurations v2, 
v3 and v4 both with and without domain randomization.  

 TD3 and SAC both learn significantly quicker than PPO.  
 PPO excels with minimal state spaces but performs very poorly with the ad-

dition of IMU data.  
 SAC was the only algorithm to generate a stable walking gait with IMU data 

both with and without domain randomization.  
 TD3 does not perform well with minimal state spaces or with the addition of 

IMU data.  
 Domain randomization does affect the performance of all three algorithms in 

a negative manner. However, in most cases the algorithms are still able to 
generate stable gaits comparable to policies trained without domain rando-
mization.  

 Contact sensors in the feet significantly improve performance in all three al-
gorithms when using domain randomization.  

6. Conclusion 

In this paper, the performance of three state-of-the-art RL algorithms was com-
pared with the walking gait of a quadruped robot. The performance of the three 
algorithms was studied on a quadruped robot simulated by modeling the robot 
using the MuJoCo’s native MJCF modeling language. Each algorithm perfor-
mance was evaluated in seven different state spaces along with addressing the 
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simulation optimization basis (domain randomization). The performance results 
demonstrated that the performance of the three algorithms was dependent on 
the sensor configurations, i.e., the state space. Without domain randomization, 
the SAC algorithm was able to generate walking gaits for all state spaces other 
than the state space which consisted only of the body quaternion. The PPO and 
TD3 algorithms were not able to generate walking gaits for the state spaces in-
cluding the accelerometer and gyro data. The TD3 and PPO algorithms were no-
ticed to have overshooting of the target velocity with domain randomization 
while SAC did not exhibit overshooting. Also, SAC had a significant perfor-
mance improvement with the use of an accelerometer and gyro along with do-
main randomization. The performance results of the three algorithms do not 
present a clear winner. The results demonstrate the preference of the algorithms 
to state spaces. It can be seen that PPO tends to perform better with smaller state 
spaces while SAC excels with larger state spaces. Finally, it was shown that do-
main randomization does not significantly degrade policy performance in most 
cases for any algorithm. Even though all three algorithms can potentially be used 
for transfer learning on real robots, their performance needs to be evaluated on a 
real physical quadruped robot. 
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