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Abstract 
The Einstein ring is usually explained in the framework of the gravitational 
lens. Conversely here we apply the framework of the expansion of a super-
bubble (SB) in order to explain the spherical appearance of the ring. Two 
classical equations of motion for SBs are derived in the presence of a linear 
and a trigonometric decrease for density. A relativistic equation of motion 
with an inverse square dependence for the density is derived. The angular 
distance, adopting the minimax approximation, is derived for three relativis-
tic cosmologies: the standard, the flat and the wCDM. We derive the relation 
between redshift and Euclidean distance, which allows fixing the radius of the 
Einstein ring. The details of the ring are explained by a simple version of the 
theory of images. 
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1. Introduction 

A theoretical prediction of the existence of gravitational lenses (GLs) is due to 
Einstein in 1936 [1] where the formulae for the optical properties of a gravita-
tional lens for stars A and B were derived. An initial sketch, which dates back to 
1912, is reported at p. 585 in [2]. GLs were also predicted by Chwolson in 1924 
[3] and therefore before the year 1936: due to this fact, the name Einstein- 
Chwolson ring appears in the literature. We now report some points of discus-
sion about GLs. An Einstein ring recognition approach based on computer vi-
sion techniques was analysed in [4]. A study of the mass discrepancy-acceleration 
relation (MDAR) of 57 elliptical galaxies by their Einstein rings from the Sloan 
Lens ACS Survey (SLACS) was carried out in [5]. A collection of GLs has been 
used as a statistical probe of cosmic shear [6]. An investigation of GLs appears in 
the context of the MOG modified theory of gravity [7]. Some features of the 
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Einstein ring are accurately reproduced by allowing a smooth, freely oriented 
DM halo in the lens model [8]. The line-of-sight shear can be accurately meas-
ured from a simple simulated strong lensing image with per cent precision [9]. 
The historical evolution of a GL can be found in two reviews [10] [11]. When the 
GL was introduced, super-shells were unknown. Now they are a common field 
of research in astrophysics. Super-shells started to be observed firstly in our ga-
laxy by [12], where 17 expanding H I shells were classified, and secondly in ex-
ternal galaxies, see as an example [13], where many super-shells were observed 
in NGC 1569. In order to model such complex objects, the term super bubble 
(SB) has been introduced but unfortunately astronomers often associate SBs 
with sizes of ≈ 10 - 100 pc and super-shells with ring-like structures with sizes of 
≈ 1 kpc. At the same time an application of the theory of images explains the 
limb-brightening visible on the maps of intensity of SBs and allows associating 
the observed filaments to undetectable SBs, see [14]. 

The present paper derives the classic equation of motion of an SB for a linear 
profile of density in the framework of the conservation of energy for the thin 
layer approximation, see Section 2. A relativistic equation of motion for an SB in 
the presence of an inverse square profile for the decrease in density is presented 
in Section 3. Section 4 is devoted to checking the two new equations of motion 
for the evolution of a supernova remnant (SNR) and a supernova (SN). Section 5 
presents an approximation for the angular distance in three relativistic cosmolo-
gies: the standard, the flat and the wCDM. Section 6 reviews the existing situa-
tion of the Euclidean cosmology. Section 7 presents the results for the Einstein 
ring and Section 8 reviews the theory of images which allows building a ring. 

2. Classic Equation of Motion 
The conservation of kinetic energy in spherical coordinates within the frame-
work of the thin layer approximation when thermal effects are negligible is 

( ) ( )2 2
0 0 0

1 1 ,
2 2

M r v M r v=                       (1) 

where ( )0 0M r  and ( )M r  are the swept masses at r0 and r, while v0 and v are 
the velocities of the thin layer at r0 and r. The above conservation law, when 
written as a differential equation, is 

( ) ( )
2

2
0 0

1 d 1 0.
2 d 2

M r r t M v
t

  − = 
 

                  (2) 

Different forms of density profiles along the radial direction produce different 
equations of motion. The already analysed cases for the medium’s density are a 
constant profile, a hyperbolic profile, an inverse square profile, a power law pro-
file, an exponential profile, a Gaussian profile, an auto-gravitating profile and an 
NFW profile, see [15]. In the two following sections we analyse the linear and 
the trigonometric decreases in the density of matter. 

2.1. Medium with a Linear Profile of Density 

We assume that the medium around the SN scales with the piece-wise depen-
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dence 

( ) ( )
0 0

0
0

; , ,c c

r r
r r b b r r

r r
b

ρ
ρ ρ

<
= − +

<

                (3) 

where cρ  is the density at 0r = , r0 is the radius after which the density starts 
to decrease and b is an adjustable parameter. The mass swept, M0, in the interval 
[0, r0] is 

( ) 3
0 0 0

4, .
3c cM r rρ ρ π=  

The total mass swept, ( )0; , cM r r ρ , in the interval [0, r] is 

( ) ( ) ( )3 33
0 0 00

0

3 4 4 44; , , .
3 3 3

c cc
c

r r b r r r brM r r b
b b

ρ ρρ
ρ

− + + +
= +

ππ
−

π
   (4) 

The application of the conservation of energy gives the velocity as a function 
of the radius: 

( )
3
2

0 0
0 0 3 4 3 4

0 0

2; , , ,
4 3 4

b r vv r r b v
br r r r r

=
− + −

              (5) 

or 

( ) ( )0 0
d ; , , .
d

r t v r r b v
t

=                       (6) 

The above ordinary differential equation (ODE) does not have an analytical 
solution. An approximation for the trajectory is obtained by a series solution of 
the above ODE to fourth order, 

( )
( )

( )

( ) ( )
( )

( )

0 0 00 0
0 0 0 0 0

0 0

2 2
0 0 0 0 0 0 2

0
0 0 0 0

3
33 2

0 0 0 0 0 0

2
0 0

; , , ,

3 2 3

4 4

3 5 2
.

8

v r b r br bv
r t r v t b r t t

r b r b

v r b r b v r b r b
t t

r r b r b r

v r b b r b r r b t t

r b r b

 −
 ≈ + − −
 
 

 − −
 + − −
 
 
 

+ + −  
 +

  (7) 

2.2. Medium with a Trigonometric Profile of Density 

We assume that the medium around the SN scales with a trigonometric profile 
of the type 

( )
0

0
0

,
cos

2

c

c

r r

r r
r r

b

ρ

ρ

<


 − <


π



                  (8) 

where cρ  is the density at 0r = , r0 is the radius after which the density starts 
to decrease and b is an adjustable parameter. The total mass swept,  
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( )0; , ,cM r r bρ , in the interval [0, r] is 

( ) ( )

( ) ( )

03 3 2 2
0 02

0 02 2 3
0

1; , , 4 6 sin
23

24 cos 24 48 sin .
2 2

c c

r r
M r r b r br

b

r r r r
b r b r b

b b

ρ ρ
π

π
π π

π π
π

  −
= +    

   − −
+ − −       

π

(9) 

The velocity as a function of the radius is  

( )
3 3
2 2

0 0
0 0; , , ,r vv r r b v

D
π

=                    (10) 

where 

( ) ( )

( )

0 03 3 2 2 2
0

1
2

02 3
0

6 sin 24 cos
2 2

24 48 sin .
2

r r r r
D r br b r

b b

r r
b r b

b

    − −
= + +

π π
π π π

π

        

 −
− −  


π 



    (11) 

The first order ODE to be solved is 

( )
3 3
2 2

0 0d .
d

r vr t
t D

=
π                       (12) 

A series solution for the above ODE to fourth order is 

( )
( )

( )

( ) ( )
( )

( )( )

0 0 00 0
0 0 0 0 0
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0 0 0 0 0 0 2

0
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+ −

π

π π

π
+

π
(13) 

3. Relativistic Equation of Motion 

In SR, the total energy of a particle is 
2 ,E M cγ=                       (14) 

where M is the rest mass, c is the speed of light, γ  is the Lorentz factor 

2

1

1 β−
, v

c
β =  and v is the velocity. The relativistic kinetic energy, kE , is 

( )2 1 ,kE Mc γ= −                      (15) 

where the rest energy has been subtracted from the total energy, see formula 
(23.1) in [16]. The relativistic conservation of kinetic energy in the thin layer 
approximation in two points ( )0 0,r v  and ( ),r v  is 

( ) ( ) ( ) ( )2 2
0 0 0 1 1 ,M r c M r cγ γ− = −                 (16) 
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where ( )0 0M r  and ( )M r  are the swept masses at r0 and r, respectively, 

0 2
0

1

1
γ

β
=

−
, v0 the velocity at r0 and 0

0
v
c

β = . The already analysed relativistic 

cases for the medium’s density are a constant, a power law profile, an exponen-
tial profile and the Emden profile, which is an auto-gravitating profile, see [17]. 
In the following section we analyse an inverse square profile for the decrease in 
the density of the matter. 

An Inverse Square Profile for the Density 

The medium is supposed to scale as 

0 0
2

0 0
02

,
r r

r r r
r

ρ

ρ

<



<

                        (17) 

where cρ  is the density at 0r = , and r0 is the radius after which the density 
starts to decrease. 

The total mass swept, ( )0; , cM r r ρ , in the interval [0, r] is 

( ) 3 2
0 0 0

8; , 4 .
3c c cM r r r r rρ ρ ρπ + π= −  

The conservation of energy in SR gives the following differential equation  

( )0 0d ; , ,
,

d
r t r v c PN

t PD
=                       (18) 

where 

( ) ( )( )( )

( ) ( )( )( )

2 2 2 20
0 0 0 0 0 0 0

1
2 22

0 02 2 2 2 2
0 0 0 0 0 0 0

536
6

33 53 ,
2 3 2

rPN r r r c v r c v c c v c v r r

v r r
r rr r c c v cr c v c v r r c

   = − + − − + − + − +       

  − +    − + − − + − + − +       

(19) 

and 
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 0 0 0 0

2 2 2 2 2 2 2 3 3 2 2 2 2
0 0 0 0 0 0 0 0 0 0 0 0

9 18 10 9

18 9 6 6 6 6 ,

PD c v c r c v c rr c v c r c v r v

c v rr v c v r v c rr c r crr v cr v

= − − − + − − −

+ − − − + − − +
(20) 

which does not have an explicit solution. An implicit solution exists:  

( ) ( )0 0 ,F r F r t t− = −                        (21) 

where 

( ) ,FNF r
FD

=                            (22) 

with 

( )
( )
( )

2 2 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2 2
0 0 0 0 0 0

2 2 2 2 2 2
0 0 0 0 0 0

2 3 4 3 4

3 3 3 3

6 5 6 5 ,

FN c v cr rc r c rv r v

c v cr rc r c rv r v

c v cr rc r c rv r v

= − + − − +

× − + − − +

× − + − − +

          (23) 
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and 

( ) ( )( )

( )
( ) ( )

2 23
0 02 2 02

0 0 0 0

2 2 2 2
0 0

1
22 2

20 0 0 2 2 2 2
0 0 0 0

59 54
6 6

2 102 .
3 9

c v cr rFD c v r c v c v r

c c v c v

cr r r c v
r rr r c v r r c

  −    = − − + − + −     

× − − −

 − + −    × + − + − − +    

(24) 

4. Astrophysical Tests 

We now test the reliability of the numerical and approximate solutions on five 
SNRs: Tycho, see [18], Cas A, see [19], Cygnus loop, see [20], SN 1006, see [21], 
and Puppis, see [22] [23] [24]. 

The three astronomically measurable parameters are the time since the explo-
sion in years, t, the actual observed radius in pc, r, and the present velocity of 
expansion in km∙s−1, see Table 1. The astrophysical units are pc for length and yr 
for time. With these units, the initial velocity is  

( ) ( )1 5 1
0 0km s 9.7968 10 pc yrv v− −⋅ = × ⋅ . In all the models here considered, the in-

itial velocity, v0, is constant in the time interval [ ]00,t . 
The goodness of the model is evaluated through the percentage error rδ  of 

the radius, which is 

100,theo obs
r

obs

r r
r

δ
−

= ×                     (25) 

where obsr  is the radius of the SNR as given by the astronomical observations 
and theor  is the radius suggested by the model. In an analogous way, we can de-
fine the percentage error of the velocity. Another useful astrophysical variable is 
the predicted decrease in the theoretical velocity in 10 years, ( )1

10 km sv −∆ ⋅ . 

4.1. A Classical Test 

The numerical results for a medium with a linear decrease in density are pre-
sented in Table 2. The results for a medium with a cosine profile of density are 
presented in Table 3. Figure 1 presents the Taylor approximation of the trajec-
tory for the linear profile as given by Equation (7) in the restricted range of time 
[27.75 yr, 55 yr]. 

Figure 2 presents the Taylor approximation of the trajectory in the trigono-
metric profile as given by Equation (13) in the restricted range of time [27.75 yr, 
40 yr]. 

4.2. A Relativistic Test on an SN 

In the case of an inverse square profile for the density, we present a numerical 
solution as given by the numerical integration of the differential Equation (18). 
Figure 3 displays the theoretical model for SN 1993J 1993j as well as the ob-
served trajectory [25]. 
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Table 1. Observed astronomical parameters of the SNRs. 

Name Age (yr) Radius (pc) Velocity (km∙s−1) References 

Tycho 442 3.7 5300 Williams et al. (2016) 

Cas A 328 2.5 4700 Patnaude and Fesen (2009) 

Cygnus loop 17000 24.25 250 Chiad et al. (2015) 

SN 1006 1000 10.19 3100 Uchida et al. (2013) 

Puppis A 3700 10 3700 Reynoso et al. (2017) 

 
Table 2. Theoretical parameters of the SNRs for the equation of motion in the case of conservation of energy with linear decrease 
in density, see Section 2.1. 

Name t0 (yr) r0 (pc) ( )1
0 km sv −⋅  b (pc) ( )%rδ  ( )%vδ  ( )1

10 km sv −∆ ⋅  

Tycho 27.75 0.85 30,000 20 0.064 34.37 −46.66 

Cas A 17.3 0.52 30,000 8 0.1 31.78 −55.59 

Cygnus loop 50.94 1.55 30,000 50 0.15 140.1 −0.18 

SN 1006 88.17 2.7 30,000 100 0.72 36.62 −26.18 

Puppis A 35.26 1.08 30,000 100 0.87 44.9 −1.74 

 
Table 3. Theoretical parameters of the SNRs for the equation of motion in the case of conservation of energy with a cosine profile 
in density, see Section 2.2. 

Name t0 (yr) r0 (pc) ( )1
0 km sv −⋅  b (pc) ( )%rδ  ( )%vδ  ( )1

10 km sv −∆ ⋅  

Tycho 28.24 0.86 30,000 12 0.067 34.93 −46.62 

Cas A 17.79 0.03 30,000 8 0.863 33.66 −56 

Cygnus loop 54.53 1.66 30,000 50 0.28 133.1 −0.18 

SN 1006 90.13 2.75 30,000 100 4.58 × 10−4 36.44 −26.41 

Puppis A 35.26 1.08 30,000 100 4.3 × 10−2 42.27 −1.73 

 

 
Figure 1. Numerical solution (full red line) and Taylor ap-
proximation (blue full line) for the linear profile. Parameters 
as in Table 2 for Tycho. 
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Figure 2. Numerical solution (full red line) and Taylor ap-
proximation (blue full line) for the cosine profile. Parameters 
as in Table 3 for Tycho. 

 

 
Figure 3. Theoretical radius in the case of an inverse square profile (full line) 
and astronomical data of SN 1993J 1993j with vertical error bars. The parame-
ters of the model are 5

0 5 10 pcr −= × , 4
0 1.81 10 yrt −= ×  and 0 0.9β = , which 

gives 2 5760χ = . 

5. Relativistic Cosmologies 

In order to derive the radius in pc of the Einstein ring, we briefly review the an-
gular distance in three relativistic cosmologies: the standard, the flat and the 
wCDM. The minimax approximation allows the derivation of three approximate 
formulae for the angular distance which are calibrated on the Pantheon sample 
[26] [27] [28]. 

5.1. The Standard Cosmology 

In ΛCDM cosmology the Hubble distance HD  is defined as 
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H
0

,cD
H

≡                             (26) 

where c is the speed of light and H0 is the Hubble constant. We then introduce a 
parameter MΩ  

0
M 2

0

8 ,
3

G
H
ρ

Ω
π

=                            (27) 

where G is the Newtonian gravitational constant and 0ρ  is the mass density at 
the present time. Another is ΛΩ   

2

2
0

,
3

c
HΛ
Λ

Ω ≡                             (28) 

where Λ is the cosmological constant, see [29]. Once ΛΩ  and H0 are found, the  

numerical value of the cosmological constant is derived, 2
11.2

m
Λ ≈ . 

The two previous parameters are connected with the curvature KΩ  by 

M 1.KΛΩ +Ω +Ω =                        (29) 

The comoving distance, CD , is 

( )C H 0

d ,
z zD D
E z

′
=

′∫                        (30) 

where ( )E z  is the “Hubble function” 

( ) ( ) ( )3 2
M 1 1 .KE z z z Λ= Ω + +Ω + +Ω                (31) 

The above integral cannot be done in analytical terms, except for the case of 
0ΛΩ = , but the Padé approximant, see Appendix A in [28], allows us to derive 

an approximation for the indefinite integral. In the relativistic models, the angu-
lar diameter distance, AD  [30], is 

( )
L

A 2 .
1

DD
z

=
+

                         (32) 

We now introduce the minimax approximation. Let ( )f x  be a real function 
defined in the interval [ ],a b . The best rational approximation of degree ( ),k l  
evaluates the coefficients of the ratio of two polynomials of degree k and l, re-
spectively, which minimizes the maximum difference of 

( ) 0 1

0 1

max ,
k

kp p x p xf x
q q x q x
+ + +

−
+ + + 







                 (33) 

on the interval [ ],a b . The quality of the fit is given by the maximum error over 
the considered range. The coefficients are evaluated through the Remez algo-
rithm, see [31] [32]. The minimax approximation for the angular distance in the 
interval 0 8z< <  with data as in Table 4 for the ΛCDM cosmology when 

2k =  and 2p =  is 

( )
( ),2,2

0.08214096 297.0835166 2.721712660
Mpc

0.0672226102 0.0810609648 0.02497466229A
z z

D
z z

− + +
=

+ +
  (34) 

maximum error 0.6925458 Mpc.=  
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Table 4. Numerical values of parameters for the Pantheon sample, H0 is expressed in 
km∙s−1∙Mpc−1; 1048 SN Ia. 

Cosmology Parameters 

ΛCDM 0 68.209 0.2H = ± ; M 0.278 0.02Ω = ± ; 0.651 0.02ΛΩ = ±  

flat 0 69.94 0.171H = ± ; M 0.296 0.002Ω = ±  

wCDM 0 69.8 0.27H = ± ; M 0.3 0.016Ω = ± ; 0.989 0.03w = − ±  

 
A field of investigation in applied cosmology is the maximum of the angular 

distance as a function of the redshift [33] [34], maxz , which is finite in relativis-
tic cosmologies and infinite in Euclidean cosmology. The numerical values of 

maxz  are presented in Table 5, as a reference max 1.594z =  for the flat Planck- 
ΛCDM cosmology [35]. 

5.2. The Flat Cosmology 

The starting point is Equation (1) for the luminosity distance in [36] 

( ) ( )
( )

L 0 M 0 3
0 M M

1 1; , , d ,
1 1

zc z
D z c H t

H t

+
Ω =

Ω + + −Ω
∫       (35) 

where the variable of integration, t, denotes the redshift. 
By first changing the parameter MΩ  by introducing 

M3

M

1s −Ω
=

Ω
                       (36) 

the luminosity distance becomes  

( ) ( )
( ) ( )

L 0 0 3
0 13

3

1 1; , , 1 d .
1

1 1
1

z
D z c H s c z t

H t
s

s
−

= +
+

+ − +
+

∫       (37) 

The following change of variable, s ut
u
−

= , is performed for the luminosity 

distance, which becomes 

( ) ( )( ) ( )
( )

3 3
3 1

L 0 2 3 3 3
0

1
; , , 1 1 d .

1 1

s
z

s

s uc uD z c H s z s u
H s u u s

+
+

= − + +
+ +∫     (38) 

The integral for the luminosity distance is 

( ) ( )

( )

( )

3

L 0
0

4

4

3 41 3 1
; , , 1 3

1 3
2 , 2 3 2

3 1

3 1
2 , 2 3 2 ,

1 3

1 4 1 4

1 4 1 4

c z s
D z c H s

sH

s s z
F

s s z

s s
F

s s

+ +
= −

  + +  × +

 
 

  

  + + + 

+
+ 

+
−

+

     (39) 
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Table 5. Numerical values of maxz  and radius of Einstein ring in kpc when ave 1.54R =  
arcsec. 

Cosmology maxz  Radius (kpc) 

ΛCDM 1.6403 12.72 

flat 1.614 11.88 

wCDM 1.591 11.17 

 
where s is given by Equation (36) and ( ),F kφ  is Legendre’s incomplete elliptic 
integral of the first kind, 

( ) sin

0 2 2 2

d, ,
1 1

tF k
t k t

φ
φ =

− −
∫                  (40) 

see [37]. The minimax approximation for the angular distance in the interval 
0 8z< <  with data as in Table 4 for the flat cosmology when 2k =  and 

2p =  is  

( )
( ),2,2

0.03784870 274.0072985 2.188226163
Mpc

0.0640891726 0.0767235768 0.02582989582A
z z

D
z z

− + +
=

+ +
   (41) 

maximum error 0.629028 Mpc.=  

5.3. Dynamical Dark Energy or wCDM 

In the dynamical dark energy cosmology (wCDM), first introduced by [38], the 
Hubble distance is 

( )
( ) ( )

M 3 3 3
M

1; , , ,
1 1

H DE w
DE

D z w
z z +

Ω Ω =
+ Ω +Ω +

           (42) 

where w is the equation of state, here considered a constant, see Equation (3.4) 
in [39] or Equation (18) in [40] for the luminosity distance. Here we assumed w 
to be constant but the case of w as function of z can also be considered, see Equ-
ation (19) in [40]. In the above cosmology the cosmological constant is absent. 
In flat cosmology 

M 1,DEΩ +Ω =                          (43) 

and the Hubble distance becomes 

( )
( ) ( )( )

M 3 3 3
M M

1; , .
1 1 1

H w
D z w

z z +
Ω =

+ Ω + −Ω +
          (44) 

The indefinite integral in the variable z of the above Hubble distance,  

C

H

DIz
D

≡ , is 

( ) ( )M M; , ; , d ,HIz z w D z w zΩ = Ω∫                   (45) 

where the new symbol Iz  underlines the mathematical operation of integration. 
In order to find the indefinite integral, we perform a change of variable  

1 31 z t+ =  
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( )
( )( )M 2 3

M M

1 1; , d .
3 1 w

Iz t w t
t t t

Ω =
− − +Ω −Ω

∫           (46) 

The indefinite integral is 

( )

( )1 1 M
2 1

M
M 6

M

11 1 12 , ;1 ;
2 6 6

; , ,

wt
F w w

Iz t w
t

− − − −Ω
− − − −  Ω Ω =

Ω
     (47) 

where ( )2 1 , ; ;F a b c z  is the regularized hypergeometric function, see [37] [41] 
[42] [43] [44]. We now return to the variable z, the redshift. The indefinite 
integral becomes  

( )

( ) ( )3 2
M1 1

2 1
M

M 3 26
M

3 3 1 11 1 12 , ;1 ;
2 6 6

; , .
3 3 1

w
z z z

F w w

Iz z w
z z z

− −
 − + + + −Ω − − − −
 −Ω
 Ω =

Ω + + +
(48) 

We denote by ( )M; ,F z wΩ  the definite integral  

( ) ( ) ( )M M M; , ; , 0; , .F z w Iz z z w Iz z wΩ = = Ω − = Ω         (49) 

The luminosity distance, LD , for the wCDM cosmology in the case of the 
analytical solution is 

( ) ( ) ( )L 0 M M
0

; , , , 1 ; , ,cD z c H w z F z w
H

Ω = + Ω          (50) 

where ( )M; ,F z wΩ  is given by Equation (49) and the distance modulus is 

( )( )10 L 0 M25 5log ; , , , .m M D z c H w− = + Ω               (51) 

More details can be found in [45]. The minimax approximation for the angu-
lar distance in the interval 0 8z< <  with data as in Table 4 for the wCDM 
cosmology when 3k =  and 2p =  is 

( )( )
( ),3,2

0.039674109 261.8382247 2.155808744 0.04094111183
Mpc

0.0597028175 0.0839556948 0.02480097583A

z z z
D

z z
+ + −

=
+ +

 (52) 

maximum error 0.0622614 Mpc.=  

6. Euclidean Cosmology 

The New Tired Light (NTL) has equations 

0
2 ,e e

e

n hrH
m

=                         (53a) 

0exp 1H dz
c
∗

= −                       (53b) 

where ne is the number density of matter, h is the Planck constant, re is the clas-
sical radius of the electron, me is the mass of the electron, c is the speed of light 
in km∙s−1, d is the distance in Mpc and H0 is the Hubble constant in km∙s−1∙Mpc−1; 
see Equations (13) and (14) in [46]. Inverting the above formula we obtain the 
distance as a function of the redshift: 
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( )
0

ln 1
Mpc.

z c
d

H
+

=                       (54) 

The transversal distance, td  in pc, of an astrophysical object in Euclidean 
cosmology can be obtained from the formula 

( )arcsec

0

4.8481 ln 1
pc,t

z c
d

H
α +

=                   (55) 

where arcsecα  is the angular distance expressed in arcsec. 

7. The Einstein Ring 

This section reviews the theory connected with the Einstein ring, the observed 
lensing system SDP.81, the Canarias ring and the derived numerical results 
which simulate the ring. 

7.1. The Existing Theory 

In the case of a circularly symmetric lens and when the source and the length are 
on the same line of sight, the radius of the ER in radians is 

( )
2

4
,E ds

E
d s

GM D
D Dc

θ
θ =                      (56) 

where ( )EM θ  is the mass enclosed inside the radius of the ER, , ,d s dsD  are the 
lens, source and lens-source distances, respectively, G is the Newtonian gravita-
tional constant, and c is the speed of light, see Equation (20) in [47] and Equa-
tion (1) in [48]. The mass of the ER can be expressed in units of solar mass, 
M



: 

( )
2

,arcsec ,Mpc ,Mpc8
,arcsec

,Mpc

1.228 10 ,E ds s
E

d

D D
M M

D
θ

Θ
= ×



          (57) 

where ,arcsecEθ  is the radius of the ER in arcsec and the three distances are ex-
pressed in Mpc. 

7.2. The Galaxy-Galaxy Lensing System SDP.81 

The ring associated with the galaxy SDP.81, see [49], is generally explained by a 
GL. In this framework we have a foreground galaxy at 0.2999z =  and a back-
ground galaxy at 3.042z =  [50]. This ring has been studied with the Atacama 
Large Millimeter/sub-millimeter Array (ALMA) by [50]-[55]. The system SDP.81 
as analysed by ALMA presents 14 molecular clumps along the two main lensed 
arcs. We can therefore speak of the ring’s appearance as a “grand design” and we 
now test the hypothesis of circular symmetry. In order to test the departure from 
a circle, an observational percentage of reliability is introduced that uses both the 
size and the shape, 

obs ave
obs

obs

100 1 ,j j

jj

R R

R
ε

 −
 = −
 
 

∑
∑

                (58) 
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where obsR  is the observed radius in arcsec and aveR  is the average radius in 
arcsec, which is ave 1.54 arcsecR = . Figure 4 presents the astronomical data of 
SDP.81; the percentage of reliability is obs 92.78%ε = . According to Equation 
(55) the Euclidean average radius of the SDP.81 ring is 46.66 kpc when  

1299792.458 km sc −= ⋅ , 1 1
0 67 km s MpcH − −= ⋅ ⋅  and arcsec 1.54α = , see Table 6. 

7.3. Canarias ER 

The object IAC J010127-334319 has been detected in the optical region with the 
Gran Telescopio CANARIAS; the background starburst galaxy is at 1.165z =  
and the radius of the ER is 2.16 arcsecEθ =  according to [48] and  

2.25 arcsecEθ =  according to [56]. As an example, inserting the above radius, 

,Mpc 1192 MpcsD = , ,Mpc 498 MpclsD =  and ,Mpc 951 MpclD =  in Equation (57), 
we obtain a mass for the foreground galaxy of ( ) 12

,arcsec 1.3 10EM Mθ = ×


. Ac-
cording to Equation (55) the Euclidean average radius of the Canarias ring is 
36.19 kpc when 1299792.458 km sc −= ⋅ , 1 1

0 67 km s MpcH − −= ⋅ ⋅  and  

arcsec 2.16α = , see Table 6. 

7.4. Numerical Results 

We now simulate the ring connected with SDP.81 and its Euclidean radius of 
46.66 kpc. The free parameters of the model with a linear profile are presented in 
Table 7, Figure 5 presents the law of motion and Figure 6 the behavior of the 
velocity as a function of time. 

The free parameters of the model with a trigonometric profile are presented in 
Table 8, Figure 7 presents the numerical solution of the law of motion. 

The Canarias ring is now simulated in a relativistic framework, see Section 3. 
The free parameters of the model with an inverse square profile of density are 
presented in Table 9 and Figure 8 presents the law of motion. 

8. The Image 

We now briefly review the basic equations of the radiative transfer equation, the 
conversion of the flux of energy into luminosity and the symmetric theory of the 
image. 

8.1. Radiative Transfer Equation 

The transfer equation in the presence of emission and absorption, see for exam-
ple Equation (1.23) in [57] or Equation (9.4) in [58] or Equation (2.27) in [59], is 

d ,
d
I k I j
s
ν

ν ν νζ ζ= − +                      (59) 

where Iν  is the specific intensity or spectral brightness, s is the line of sight, jν  
the emission coefficient, kν  a mass absorption coefficient, ζ  the mass density 
at position s, and the index ν  denotes the involved frequency of emission. The 
solution to Equation (59) is 
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Figure 4. Real data of SDP.81 ring (empty red stars) 
and average circle (full green points). The real data are 
extracted by the author from Figure 6 in [55] using 
WebPlotDigitizer. 

 
Table 6. Radius of the Einstein ring in kpc for different cosmologies. 

Cosmology SDP.81 ring Canarias ring 

ΛCDM 12.72 18.72 

flat 11.88 17.89 

wCDM 11.17 16.86 

Euclidean 46.66 36.19 

 
Table 7. Theoretical parameters of an SB evolving in a medium with a linear profile. 

Name t (yr) t0 (yr) b (pc) r0 (pc) v0 (km∙s−1) 

SDP.81 1.5 × 108 32,003 55,992 980 300,000 

 

 
Figure 5. Numerical solution for the radius as function of time 
for SB associated with SDP.81 (full line) in presence of a linear 
decrease in density, see Equation (6). Parameters as in Table 7, 
both axes are logarithmic. 
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Figure 6. Velocity as a function of time for SDP.81 (full line) 
in presence of a linear decrease in density. Parameters as in 
Table 7, both axes are logarithmic. 

 
Table 8. Theoretical parameters of an SB evolving in a medium with a trigonometric pro-
file. 

Name t (yr) t0 (yr) b (pc) r0 (pc) v0 (km∙s−1) 

SDP.81 2 × 108 32,002 233,300 980 300,000 

 

 
Figure 7. Numerical solution for the radius as function of time 
for SB associated with SDP.81 (full line) in presence of a trigo-
nometric decrease in density, see ODE (12). Parameters as in 
Table 8, both axes are logarithmic. 

 
Table 9. Theoretical parameters of a relativistic SB evolving in a medium with an inverse 
square profile. 

Name t (yr) t0 (yr) r0 (pc) β0 

Canarias ring 1.7 × 107 3.26 0.9 0.9 

 

( ) ( )( )1 e ,sjI
k

ντν
ν ν

ν

τ −= −                     (60) 

where ντ  is the optical depth at frequency ν  

https://doi.org/10.4236/jhepgc.2024.102036


L. Zaninetti 
 

 

DOI: 10.4236/jhepgc.2024.102036 590 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
Figure 8. Implicit solution for the relativstic radius as function 
of time for the SB connected with the Canarias ring (full line) 
in presence of an inverse square profile for density, see implicit 
solution (21). Parameters as in Table 9, both axes are loga-
rithmic. 

 

d d .k sν ντ ζ=                          (61) 

We now continue analysing the case of an optically thin layer in which ντ  is 
very small (or kν  very small) and the density ζ  is replaced by the number 
density of particles, ( )n s . In the following, the emissivity is taken to be propor-
tional to the number density 

( ) ,j Kn sνζ =                         (62) 

where K is a constant. The intensity is therefore  

( ) ( )
0

0 d ,
s

s
I s I K n s' s'ν = + ∫       (63) 

where I0 is the intensity at the point s0. The MKS units of the intensity are 
W∙m−2∙Hz−1∙sr−1. The increase in brightness is proportional to the number densi-
ty integrated along the line of sight: in the case of constant number density, it is 
proportional only to the distance along the line of sight. 

As an example, synchrotron emission has an intensity proportional to l, the 
dimension of the radiating region, in the case of a constant number density of 
the radiating particles, see formula (1.175) of [60]. 

8.2. The Source of Luminosity 

The ultimate source of the observed luminosity is assumed to be the rate of ki-
netic energy, Lm, 

31 ,
2mL AVρ=                              (64) 

where A is the considered area, V is the velocity of a spherical SB and ρ  is the 
density in the advancing layer of the spherical SB. In the case of the spherical 
expansion of an SB, 24A r= π , where r is the instantaneous radius of the SB, 
which means 
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2 31 4 .
2mL r Vρ= π                             (65) 

The units of the luminosity are W in MKS and erg∙s−1 in CGS. The astrophys-
ical version of the rate of kinetic energy, maL , is 

29 2 3
1 1 1

ergs1.39 10 ,
smaL n r v= ×                       (66) 

where n1 is the number density expressed in units of 1 particle/cm3, r1 is the 
radius in parsecs, and v1 is the velocity in km/s. As an example, inserting 

3
1 46.66 10r = × , 1 0.1n =  and 1 26.08v =  in the above formula, the maximum  

available mechanical luminosity is 41 ergs5.37 10
smaL = × . The spectral luminos-

ity, Lν , at a given frequency ν  is 
2
L4 ,L D Sν νπ=                            (67) 

where Sν  is the observed flux density at the frequency ν  with MKS units 
W∙m−2∙Hz−1. The observed luminosity at a given frequency ν  can be expressed 
as 

,maL Lν ε=                             (68) 

where ε  is a conversion constant from the mechanical luminosity to the ob-
served luminosity. More details on the synchrotron luminosity and the con-
nected astrophysical units can be found in [59]. 

8.3. The Theory of a Symmetrical Image 

We assume that the number density of the emitting matter n is variable, and in 
particular rises from 0 at r a=  to a maximum value nm, remains constant up to 
r b= , and then falls again to 0. This geometrical description is shown in Figure 9. 

The length of the line of sight, when the observer is situated at the infinity of 
the x-axis, is the locus parallel to the x-axis which crosses the position y in a 
Cartesian x-y plane and terminates at the external circle of radius b. The length 
of this locus is 

( )2 2 2 2
0

2 2

2 ; 0

2 ; .

a

ab

l b y a y y a

l b y a y b

= × − − − ≤ <

= × − ≤ <
           (69) 

When the number density of the emitting matter nm is constant between two 
spheres of radii a and b, the intensity of radiation is  

( )2 2 2 2
0

2 2

2 ; 0

2 ; ,

a I m

ab I m

I K n b y a y y a

I K n b y a y b

= × × × − − − ≤ <

= × × × − ≤ <
        (70) 

where IK  is a constant. The ratio between the theoretical intensity at the 
maximum ( y a= ) and at the minimum ( 0y = ) is given by 

( )
( )

2 2

.
0

I y a b a
I y b a

= −
=

= −
                     (71) 
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Figure 9. The two circles (sections of spheres) which include 
the region with constant number density of emitting matter 
are represented by a full line. The observer is situated along 
the x direction, and three lines of sight are indicated. 

 
The parameter b is identified with the external radius, which means the ad-

vancing radius of an SB. The parameter a can be found from the following for-
mula: 

( )
( )

( )
( )

2

obs
2

obs

1
0

,

1
0

I y a
b

I y
a

I y a
I y

  = −   =  =
 =

+  = 

                     (72) 

where 
( )
( ) obs

0
I y a
I y

 =
  = 

 is the observed ratio between the maximum intensity at  

the rim and the intensity at the centre. The distance y∆  after which the inten-
sity is decreased by a factor f in the region a y b≤ <  is 

2 2 2 2 2 4 2 4 2 2 2 2 2 22 2 2
.

2
b f a b a f b f a f b f a b

y
f

+ − − − + + + −
∆ =    (73) 

We can now evaluate the half-width half-maximum by analogy with the 
Gaussian profile UHWHM , which is obtained by the previous formula upon in-
serting 2f = : 

2 2 2 21 13 25 9 .
2 4UHWHM a b a b= + − −                (74) 

In the above model, b is associated with the radius of the outer region of the 
observed ring, a conversely can be deduced from the observed UHWHM : 

2 2 2 2 41 441 464 32 441 100 .
21 U U Ua b HWHM b HWHM HWHM= + − +   (75) 
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As an example, inserting in the above formula 1.54b =  arcsec and  
0.1UHWHM =  arcsec, we obtain 1.46a =  arcsec. A cut in the theoretical in-

tensity of SDP.81, see Section 7.2, is presented in Figure 10 and a theoretical 
image in Figure 11. 

The effect of the insertion of a threshold intensity, trI , which is connected 
with the observational techniques, is now analysed. The threshold intensity can 
be parametrized to maxI , the maximum value of intensity characterizing the ring: 
a typical image with a hole is visible in Figure 12 when maxtrI I fac= , where 
fac  is a parameter which allows matching theory with observations. 

For a comparison the observed image of the Einstein ring connected with 
SDP.81 is presented in Figure 13. 

9. Conclusions 

Equations of motion. We derived two classical equations of motion for an SB 
by coupling the thin layer approximation with the conservation of energy. The 
first model implements a profile in the presence of a linear decrease of density 
and the second a trigonometric profile of density. A relativistic equation of mo-
tion for an SB was derived assuming an inverse square profile of density. 

Relativistic Cosmologies. The transversal dimension of an astrophysical ob-
ject is connected in relativistic cosmologies with the angular distance, which is 
here presented in the framework of the minimax approximation: Equation (34) 
for the standard cosmology, Equation (41) for the flat cosmology and Equation 
(52) for the wCDM cosmology. We recall that the angular distance reaches a 
maximum at 1.6z ≈ , which produces a big difference from the Euclidean eval-
uation of the transversal dimension. 

Euclidean Cosmology 
The transversal distance in the Euclidean cosmology is easily derived, see Eq-

uation (55); it scales logarithmiclly: ( )1z∝ + . 
 

 
Figure 10. Cut of the intensity I of the ring model, Equation (70), 
crossing the centre. The x and y axes are in arcsec, 1.23a =  arc-

sec, 1.54b =  arcsec and ( )
( )

3
0

I y a
I y

=
=

=
. This cut refers to SDP.81. 
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Figure 11. Contour map of I, the x and y axes are 
in arcsec, parameters as in Figure 10. 

 

 
Figure 12. The same as Figure 11 but with  

maxtrI I fac= , parameters as in Figure 10 and  
1.85fac = . 

 

 
Figure 13. ALMA image of SDP.81. Credit is given to NRAO/AUI/NSF. 

 
Einstein Ring 
Now that a reliable value for the radius of the ER has been derived in the 

framework of the Euclidean cosmology, we simulate the evolution of the ER in 
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the framework of the SB. In a classical framework, the results for the radius ver-
sus time are presented in Figure 5 for a linear decrease in the surrounding den-
sity and in Figure 7 for a trigonometric decrease in density. In a relativistic 
framework the temporal evolution in the presence of an inverse square profile 
for the Canarias ring is presented in Figure 8. A geometrical model based on the 
length of the line of sight allows the appearance of the image, see Figure 12. 
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