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Abstract 
This paper describes a new numerical QCD calculation method (direct mini-
mization of QCD-QED-action) and its results for the first-generation (u, d) 
hadrons. Here we start with the standard color-Lagrangian LQCD = LDirac + 
Lgluon, model the quarks qi as parameterized gaussians, and the gluons Agi as 
Ritz-Galerkin-series. We minimize the Lagrangian numerically with parame-
ters par = (par(q), {αk}, par(Ag)) for first-generation hadrons (nucleons, pseu-
do-scalar mesons, vector mesons). The resulting parameters yield the correct 
masses and correct magnetic moments for the nucleons, the gluon-distribution 
and the quark-distribution with interesting insights into the hadron struc-
ture.  
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1. Introduction 

The Quantum Chromodynamics (QCD) is based on the SU(3)-color interaction, 
and is in general considered as a theory, which is both mathematically compli-
cated and numerically hard-to-handle. 

We present here a new calculation method (on-lattice minimization of ac-
tion), which is numerically simpler than the other methods, and which uses a 
new ansatz for wavefunctions.  

We also present calculation results for energy-mass of first-generation ha-
drons, which agree well with the observed values, and new results for internal 
component distribution, which give interesting insights into the symmetry and 
internal structure of these hadrons. 
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In Chapter 2 we compare the different calculation methods. 
In Chapter 3 we describe the ansatz for the component quark and gluon wa-

vefunctions. 
In Chapter 4 the numerical algorithm is described. 
In Chapter 5 the calculation results for energy-mass and component distribu-

tion are presented for the three families of first-generation hadrons: nucleons, 
pseudo-scalar mesons, and vector mesons. 

2. Solutions Methods in Lattice-QCD 

[1] [2] [3] [4] 
Basically, there are four solution methods in lattice-QCD (LQCD): 
Perturbative analytic Feynman solution  
[5] [6] [7] 
Here one calculates the reaction cross-sections from Feynman diagrams eva-

luating the corresponding Feynman-integrals in analogy to the QED. As the 
QCD is renormalizable, all Feynman integrals can be made finite. 

However, this works only for convergent Feynman series, i.e. if the interaction 
constant gc < 1. This is the case for large energies E > EΛ = 220 MeV.  

Non-perturbative on-lattice Wilson-loop method  
[8] [9] [10] 
Here the expectation value of an operator (e.g. energy = Hamilton operator) is 

calculated using path integrals  

 ( ) [ ]( ) ( )( )d det expO Tr U x O M U S U xµ µ= Π −   ∫  (1) 

with interaction matrix M[U], under ( ) ( )( )expU x i ga A xµ µ=  the local gauge 
transformation, with coupling constant g, lattice step size a, gluon field ( )A xµ , 
action ( )S U x   , on closed loops on the lattice. 

We get the Wilson action on equidistant lattice ( ),k k k k k kL x t t r θ φ= × × ×  
with lattice constant a  

 ( ),i i f gS A S Sψ = +  the fermionic action becomes (2) 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )0 ?1
2f q

x x
S m x x x U x x U x x

a µ µ µψ ψ ψ γ ψ µ µ ψ µ= + + − − −∑ ∑  

with lattice translations y x aµ= +  ( ) ( ) 2,
igaA x

U x U x x e
µ

µ

µ µ
 + 
 ≡ + = . 

And the gluon action is  

 ( )( )1 1
2

2 1g
x

S ReTr W x
g µν

µ ν

×

<

= −∑∑  (3) 

with Wilson plaquette action  

( ) ( ) ( ) ( ) ( )1 1

2 2 2 2
iga A x A x A x A x

W x U x U x U x U x

e
µ ν µ ν

µν µ ν µ ν

µ ν µ νµ ν

µ µ×

        + + + + − + + − +        
        

= + +

=

† †

 

The Wilson action ( ),i iS A ψ  is minimized in ( ), ,i iA x Eµ  ( ),i ix Eµψ  on lat-
tice ( ),k kL x t .  
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The solution ( ), ,i iA x Eµ  ( ),i ix Eµψ  yields the corresponding masses ,q im  
for fermions and energies iE  for gluons. 

Non-perturbative on-lattice eom solution  
[11] 
The QCD equations-of-motion (eom) are derived from the minimal-action- 

principle as the Euler-Lagrange-equations corresponding to the QCD Lagrangian. 
They are 0a abc b cF gf A Fµ µ

µν µν∂ + =  the Yang-Mills-equations for the gluon 
wavefunction ( )aA xµ  and the color-field-tensor ( )aF xµν   

 a a a abc b cF A A gf A Aµν µ ν ν µ µ ν= ∂ − ∂ +  (4) 

or taking into account self-interaction with the self-current a a aJ gµ µψ γ ψ=  
the Yang-Mills field equations become 

 a abc b c a aF gf A F gµ µ µ
µν µν ψ γ ψ∂ + =  (5) 

and the Dirac equation 

 ( ) 0ai D mcµ
µγ ψ− =  (6) 

or ( ) 0ai D mµ
µγ ψ− =  with the usual convention 1c= =  with the col-

or-covariant-derivative a aD I igT Aµ µ µ= ∂ −  and the quark-wavefunction  
( )a xµψ . 

These are nq + ng partial differential equations (pdeq) first order in xµ , for 
the nq = 2 or nq = 3 quarks and ng = 8 gluons, adding a gauge condition and a 
boundary condition for ( )aA xµ .  

They must be solved numerically on a lattice as an eigenvalue problem of the 
Dirac equation, which is very difficult and time-consuming for a one-dimensional 
lattice of, say, n1 = 100 points (total number of points n = n1

4 = 108). 
Non-perturbative on-lattice minimization of action (new) 
The starting point is the minimum-action-principle for QCD: 

 ( ), , d minQCD i iS L x q Ag xµ= =∫  (7) 

with a gauge condition and a boundary condition for ( )iAg x .  
It can be extended to QCD + QED 

( ) ( )( ), , , , d minQCD i i QED i iS L x q Ag L x q Ae xµ µ= + =∫  

for the quarks iq , QCD-gluons iAg , QED-photons iAe . 
In order to carry out the minimization numerically, we introduce an equidis-

tant 4-dimensional lattice 

( ), , ,k k k k k k k kL t r t rθ φ θ ϕ= × × × , 

extract a small random sub-lattice Lsub. 
And approximate the integral by a sum over Lsub:  

 ( ), ,
sub

QCD i i
x L

S L x q Ag V
∈

= ∆∑  (8) 

where V t r θ ϕ∆ = ∆ ∆ ∆ ∆  is the elementary integration volume in spherical 
coordinates, and model the quark wavefunctions as parameterized Gauss func-
tions ( )( ),q q x par q= . 
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And the gluon-wavefunctions as Ritz-Galerkin series on a function system 
( )kf x  with coefficients kα :  

( ) ( )( ),k kAg Ag f x par Agα= ∑ , 

accordingly the photon-wavefunctions { } ( )( ), ,kAe Ae x par Aeα= . 
We impose the gauge condition for iAg : 0iAg µ

µ∂ =  and a boundary con-
dition: ( )0 0iAg r r= = , the quark-wavefunctions are normalized ( ) 3d 1iq x x =∫ .  

The minimization is carried out in dependence on  

( ) { } ( )( ), ,kpar par q par Agα=  

( )0 min ,par S par=  , 

where par0 yields information about the energy (= mass), the sizes and the inner 
structure of the considered hadron. 
 

 

3. The Ansatz for the Quark and Gluon Wavefunctions 

Gluon wavefunction  
For the gluon wavefunction we apply here the full Ritz-Galerkin series on the 

function system 

( ) ( ){ }
( ){ }

1

2 2

0 0 1

2

, , , , 0, ,

cos ,cos sin , 0, ,

k
k r

k k

f r bfunc r r dr r k n

k nθ

θ

θ θ θ

= =

× =





 with coefficients kα ,  
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where ( )0 0
0

0

1, ,
1 exp

bfunc r r dr
r r
dr

=
 −

+  
 

 is a Fermi-step-function which limits 

the region 0r r≤  of the hadron with “smearing width” dr0.  

( ) ( )
( )

, , cos
, , , 1, ,8

, , sin
i i

i i

Ag t r aA
Ag t r i

Ag t r aA
θ

θ
θ

   = =  
   

 ,  

where iaA  is the phase angle between the particle and the anti-particle part of 
the gluon, and with the Ritz-Galerkin-expansion 

( ) [ ] ( ) ( ), , , , expk j k
j

Ag t r k j f r i t EAθ α θ= −∑  with energies kEA . 

Because of color-symmetry, the active (non-zero) gluons are (9) 
{ }1 8, ,Ag Ag Ag=   all gluons for nucleons. 
{ }1 2 4 5 6 7, , , , ,Ag Ag Ag Ag Ag Ag Ag=  6 non-diagonal gluons for vector-mesons. 
{ }2 5 7, ,Ag Ag Ag Ag=  3 quark-antiquark gluons for for pseudo-scalar mesons.  

Quark wavefunction 
The first-generation (u, d)-hadrons consist of three quarks (nucleons) or three 

color-symmetric quark-antiquark-combinations (vector-mesons) or two quark- 
antiquark-combinations (pseudo-scalar mesons) (10). 

For nucleons 

1 2 3, ,
0 0 0
q q q

q
       =       
       

  

For vector-mesons 

1 2 1 2 1 2

1 2 1 2 1 2, ,
2 2 2

q q q q q q
q q q q q q

q

                 
± ± ±                 

                 =                         

 

or 

1 1 1

2 2 2

, ,
q q q

q
q q q

       =       
       

  

For pseudo-scalar mesons (pi+, pi0) 

1

2

0
, ,0

0
q

q
q

    =    
     

 or 

1 1

2 2

0 0
0 0

, ,0
2 2

q q
q q

q

          
+ −          

          =                 

  

A Ritz-Galerkin series for quarks would blow up the complexity of calcula-
tion, therefore we use here a simpler model, based on the asymptotic-freedom 
property of quarks: gaussian “blobs” 

( ) ( ) ( )2
,

,

, , exp exp cos
2

u k
k k k

u k

r r
q t r i t Eu a

dr
θ

 − = − −
 
 

 

, 
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where kEu  is the energy, ( ), ,u k k kr ru uθ=


 and ,u kdr  is the position (r, θ) and 
its width, ka  is the quark-antiquark phase and the antiquark is 

( ) ( ) ( )2
,

,

, exp exp sin
2

u k
k k k

u k

r r
q t r i t Eu a

dr

 − = − −
 
 

 

 

The ansatz and the color symmetry 
The form of the quark color-wavefunction and the corresponding set of active 

gluons are enforced by the color-symmetry and the number of particles equal to 
the number of combinations. 

The 8 gluons of the SU(5) form 3 families:  
 The diagonal { }3 8,Ag Ag , which map color indices into itself,  
 The non-diagonal { }1 4 6, ,Ag Ag Ag , which exchange color-index with a dif-

ferent color index, and  
 The non-diagonal { }2 5 7, ,Ag Ag Ag , which exchange color-index with a dif-

ferent anti-color index.  
The nucleons consist of three quarks with color (r, g, b), and the color wave-

function q is mapped into itself under color-permutations, therefore the full set 
of 8 gluons Agi is required, and there are only two possibilities for first-generation 
hadrons: p = uud and n = ddu.  

The vector mesons consist of quark-antiquark pairs, where the color wave-
function q has three identical components. 

q is mapped into itself under the corresponding set of 6 non-diagonal gluons 
{ }1 2 4 5 6 7, , , , ,Ag Ag Ag Ag Ag Ag Ag=  (each flips two color indices). 

It is seen immediately that the three combinations listed above are the only 
possible ones, which is confirmed by the existence of the three v-mesons ome-
ga0, rho0, rho+. 

The pseudo-scalar mesons consist of quark-antiquark pairs, where the color 
wavefunction q has two non-zero components. The corresponding gluon set are 
the 3 non-diagonal color-anticolor gluons { }2 5 7, ,Ag Ag Ag Ag= , which ex-
change a color-quark with a different anti-color-quark. For example, 2Ag  flips  

color-indices (3, 1) and transforms 1
12

2

0
, ,0

0
c

c

q
q

q
    =    
     

 into  

1
23

2

0
0, ,

0
c

c

q
q

q
    =    
     

. So in reality, the wavefunction is a superposition of the 

three ( )12 23 31, ,q q q  and is mapped by the gluon set into itself. 

Again, one can see immediately that there are only two possible combinations, 
which correspond to the two known ps-mesons pi+ and pi0.  

The corrected coupling constant 
In the original Callan-Symanzik relation the QCD coupling constant has the 

(asymptotic) energy dependence 

( ) ( )

( )

2

2

0 2

1 12
4 8 log 33 2 log

s

f

g

n

µ
α µ

µ µβ
= = =

   
−   Λ  Λ

π

π


π
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( )
( )

34
11 2 2logf

g
N n

µ
µ

=
 −  Λ 

π  

where 
Λ ≈ 220 MeV critical QCD energy; 
nf = 3 generations, N = 3 QCD charges. 
For energies μ ≈ Λ it must be modified to avoid the singularity 

 ( )
2

2
0

34

54 log
c

GE

g

c

µ
µ

=
   +  Λ  

π  (11) 

for the numerical calculation we set  

( )0
1 0.683 log 2

log
GE

QCD

c
m p

= = ≈
 
  Λ 

, 

which is consistent with the Callan-Symanzik relation for 2µ > Λ , as shown 
below (Figure 1). 

4. The Numerical Algorithm 
The energy, length, and time are made dimensionsless by using the units: E 

( 0 0.196 GeV
1fm

cE = =
 ), r(fm), t(fm/c) fm = 10−15 m. The hadrons have axial 

symmetry, so we can set φ = 0 and use the spherical coordinates (t, r, θ).  
We choose the equidistant lattice for the intervals ( ) [ ] [ ] [ ], , 0,1 0,1 0,t r θ ∈ × × π  

with 21 × 21 × 11 points and, for the minimization 8× in parallel, 8 random 
sublattices:  

[ ] ( ) ( ) ( ){ }{ }1 2 3, , , | 1, 2, 3 , 1, ,100 | 1, ,8i i il ix j t r t i i i random lattice j ix= = = =  .  

For the Ritz-Galerkin expansion we use the 12 functions  

( ) ( ){ } ( ){ }1 2 2
0 0 1 2, , , , 0, , cos ,cos sin , 0, ,k k k

k rf r bfunc r r dr r k n k nθθ θ θ θ= = × =   

 

 

Figure 1. QCD coupling constant gc(μ), μ in Λ-units [12]. 
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The action  

 ( ) 2, , sinQCD i iS L x q Ag r dt dr d dµ θ θ ϕ= ∫  (12) 

becomes a mean-value on the sublattice [ ]l ix  

 [ ] [ ]( ) ( )
[ ]

1 , , 2
sub

QCD i i tr
x l ix

S ix L x q Ag V
N l ix θ

∈

= π∑  (12a) 

where trV θ = π  the ( ), ,t r θ -volume and [ ]( )N l ix  is number of points of the 
sublattice, we set [ ]( ) 100N l ix = .  

We impose the gauge condition and the boundary condition for iAg  via pe-
nalty-function (imposing exact conditions is possible, but slows down the mini-
mization process enormously). 

S  is minimized 8× in parallel with the Mathematica-minimization method 
“simulated annealing”, the execution time on a 2.7 GHz Xeon E5 is 9100s for the 
proton p = uud, the complexity [ ]( ) 8.4K S ix =  million terms. 

The minimization is performed in the parameters  
( ) { } ( )( ), ,kpar par q par Agα= , for the proton is the number of parameters 

{ }( ) 16 12 164kN α = × = , ( )( ) 3 5 15N par q = × = , ( )( ) 8 2 16par AgN = × = .  
The proper parameters of the quarks and the gluons are: 

( ) { }, , , ,i i i i i ipar q Eu a ru u druθ= , ( ) { },i i ipar Ag EA aA=  

Criteria for correctness of the ansatz 
1) Convergence of minimization 
As we found out during the computation, a wrong ansatz, e.g. lacking color 

symmetry, leads to a non-convergent minimization. We chose a high goal preci-
sion of prec = 10−4, so there was a high probability that a convergent minimiza-
tions hits a real (global) minimum. 

2) High relative deviation between solutions 
Strongly differing solutions indicate a non-correct ansatz, as we found out e.g. 

for the nucleons with too many degrees-of-freedom for the gluons: the relative 
deviation for crucial variables, like energy, should be no more than 2% for the 
nucleons and 6% for the ps-mesons. 

3) Vanishing parameter-derivatives 

A true minimum must satisfy the derivative-condition 0
i

S
p
∂

=
∂

, where ip  is  

one of the minimization parameters, Normally, the parameter-derivatives are 
close to zero, otherwise the minimum is not genuine, or the ansatz is wrong. 

4) Boundary condition and gauge condition 
The boundary and gauge condition must have values close to zero, otherwise 

the weight for the penalty function is too low. 
5) Minimum value 
The minimum value should be −30, …, 30 for the considered parameter 

range. Very large positive values result in the case of too high penalty weights. 
Very large negative values may come out, if the Ritz-Galerkin parameters iα  
are not bounded appropriately. 
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6) Correct energy scale and number of particles  
The three types of first-generation hadrons have energy scales: E (nucleon) ≈ 

0.98 GeV, E (v-meson) ≈ 0.78 GeV, E (ps-meson) ≈ 0.14 GeV, and these values 
emerge automatically with 8, 6 and 3 gluons respectively. 

Furthermore, with the above ansatz, the number of possible particles is 2, 3, 2 
respectively. 

5. The Results for First-Generation Hadrons  

[13] [14] 
nucleons n, p quarks (3), gluons (8), spin = 1/2. 
Masses (Table 1). 
Energy for quark-number (n = 1, 2, 3), gluon-number (n = 4, …, 11), both 

sorted with increasing energy (Figure 2). 
Distribution quarks (r[fm], θ) sorted with increasing energy (Figure 3). 

 

 

Figure 2. Energy for quark-number (n = 1, 2, 3), gluon-number (n = 4, …, 11) in nucle-
ons [12]. 
 

 

Figure 3. Distribution of quarks (r, θ) in nucleons [12]. 
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Table 1. Nucleon masses [12]. 

 M (n) M (p) 

exp. 939.6 MeV 938.3 MeV 

calc. 945 MeV 945 MeV 

 
The quark distribution differs largely between the nucleons: the proton is 

ring-symmetric (no θ-component), the neutron has two orbitals with an angle of 
α = π/2. The small mass difference is due to the electromagnetic contribution, 
which is about 1% of the total mass.  

The mass of the nucleons, as is the case for all first-generation-hadrons is 
generated almost exclusively by the energy of the gluons and the quarks, the rest 
masses of u and d (mu = 2.3 MeV, md = 4.8 MeV) contribute very little to the to-
tal mass. 

The gluon distribution is practically the same for both nucleons, which is to be 
expected, since the two particles are identical for the color interaction.  

The radius of the nucleons can be assessed from the above diagram: r(p) ≈ 0.8 
fm, r(n) ≈ 1 fm. 

Proton p = uud. 
m = 0.938 GeV, r0 = 0.84 fm. 
Etot = 0.945 GeV, ΔEtot = 0.032, dEem = −0.013 (Table 2). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 4). 
The proton p has one rotation plane (orbital), the two quarks (u, d) are close 

at r = 0.15 low energy E ≤ 0.03, the second u-quark further outside r = 0.4, and 
high energy E = 0.2. The “smearing” width is comparable, δr ≈ 0.3.  

The electromagnetic correction is negative and much larger than with the 
neutron, dEem = −0.013 GeV, which is apparently the reason for the proton’s 
smaller mass. 

Neutron n = ddu 
m = 0.939 GeV, r0 = 0.84 fm. 
Etot = 0.945 GeV, ΔEtot = 0.018, dEem = +0.0017 (Table 3). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 5) 
The neutron n has two orbitals with an angle of α = π/4, the u-quark is at the 

center with low energy E = 0.05, the two d-quarks sit in the orbitals with higher 
energies E = 0.09, 0.013. The “smearing” width is comparable, δr ≈ 0.4 and 
higher than with the proton. 

The gluon distribution is practically the same as for the proton, which is to be 
expected, since the two particles are identical for the color interaction.  

The electromagnetic correction is positive and much smaller than with the 
proton, dEem = +0.0017 GeV, which is apparently the reason for the proton’s 
smaller mass. 
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Figure 4. Selected gluon wave functions in the proton [12]. 
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Figure 5. Selected gluon wave functions in the neutron [12]. 
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Table 2. Energy of quarks in the proton, Eui and gluons EAi sorted by energy, quark am-
plitude ai and gluon amplitude aAi, quark position rui θui, quark radial smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.0047, 
0.028, 
0.211 

0.044, 0.071, 
0.083, 0.098, 0.105, 
0.108, 0.113, 0.146 

−0.99, 
−0.99, 
0.99 

0, 
…, 
0 

0.16, 
0.27, 
0.75 

0.16, 
0.15, 
0.41 

−0.12, 
0.08, 

0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.004, 
0.007, 
0.014 

0.018, 0.006, 
0.005, 0.006, 0.004, 
0.002, 0.001, 0.062 

0.0041, 
0.0037, 
0.0014 

0, 
…, 
0 

0.29, 
0.26, 
0.25 

0.20, 
0.050, 
0.016 

0.50, 
0.42, 

0 

 
Table 3. Energy of quarks in the neutron, Eui and gluons EAi sorted by energy, quark 
amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.048, 
0.086, 
0.126 

0.024, 0.054, 0.08, 
0.086, 0.096, 

0.103, 0.113, 0.117 

−0.92, 
−0.95, 
0.93 

0, 
…, 
0 

0.72, 
1.05, 
0.82 

0.71, 
0.016, 
0.50 

−0.68, 
0.35, 

0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.011, 
0.012, 
0.002 

0.0005, 0.005, 
0.0009, 0.004, 0.00001, 
0.0005, 0.0004, 0.003 

0.017, 
0.021, 
0.041 

0, 
…, 
0 

0.031, 
0.052, 
0.034 

0.042, 
0.021, 
0.021 

0.008, 
0.007, 

0 

 
Magnetic moment of nucleons 

The magnetic moment is 2

2 2
q qL m r
m m

µ ω= = , for a rotating charge distri-

bution:  

2

2 2i i q
i

q r Iω ωµ = =∑ , 

where 2 2dq i i
i

I q r r q= →∑ ∫  is the momentum of charge, in analogy to the 
momentum of inertia 2dmI r m= ∫ . 

For a rotating solid sphere with radius r0 with constant charge density 
2

0
2
5qI qr= .  

The magnetic moment of the nucleons is measured in nuclear magnetons 

2N
e
m

µ =
 , which is the magnetic moment of a rotating solid sphere with con-

stant charge density ( ) 2
0

2
2 2 5N qI sphere erω ωµ = = .  

The actual momentum of charge is therefore: 

( ) ( )2
q i i

i
I q q r q=∑  

We have to take into account the “smearing” Δri of radius ri  
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( )

( )

2
2

2
2

exp d
2

exp d
2

i

i

i

r r
r r

r
r

r r
r

r

 −
 −
 ∆ =
 −
 −
 ∆ 

∫

∫
, 

so it becomes 

( ) ( )2
q i i

i
I q q r q=∑  

We get for the neutron. 

Iqn = −0.1766e, IqNn = 0.106e, so qn

qNn

I
I

 = −1.766, measured 
N

µ
µ

 = −1.91. 

And for the proton 

Iqp = +0.2226e, IqNp = 0.0909e, so qp

qNp

I
I

 = +2.448, measured 
N

µ
µ

 = +2.793. 

The calculation does not take into account the orbitals, and there is also the 
statistical uncertainty of the order 7%, so the results are satisfactory. 

Pseudo-scalar mesons pi+, pi0 quarks (2), gluons (3), spin = 0- 
[6] 
Masses (Table 4) 
Energy for quark-number (n = 1, 2), gluon-number (n = 3, 4, 5), both sorted 

with increasing energy (Figure 6) 
Distribution quarks (r[fm], θ): independent (θ) = spherical (Figure 7) 

 

 

Figure 6. Energy for quark-number (n = 1, 2, 3), gluon-number (n = 4, …, 11) in 
ps-mesons [12]. 
 
Table 4. Ps-meson masses [12]. 

 m (pi+) m (pi0) 

exp. 139.6 MeV 135.0 MeV 

calc. 129 MeV 155 MeV 
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Figure 7. Distribution of quarks (r, θ) in ps-mesons [12]. 
 

The pseudo-scalar mesons are spherically-symmetric, there is no θ-dependence: 
θ ≈ 0 in the quark-distribution, the gluon-wavefunctions show little θ-dependence, 
and the gluon amplitudes are much smaller (factor 30) for pi0 than for pi+. 

For the pi0, uu  and dd  sit at r = 0.4 E ≈ 0, and at r = 0.75 E ≈ 0.1. 
For the pi+, the u and d  have practically equal radii, but different energies: r 

= 0.6 E ≈ 0.001, and r = 0.6 E ≈ 0.01.  
The measured masses of the ps-mesons (0.135, 0.139) are reproduced by the 

calculation (0.155 ± 0.025, 0.129 ± 0.026), but only roughly within the error 
bounds. 

Ps-meson pi0 = ( ) 2uu dd− . 
m = 0.135 GeV, r0 = 0.66 fm. 
Etot = 0.155 GeV, ΔEtot = 0.025, dEem = +0.007 (Table 5). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 8). 
Ps-meson pi+ = ud . 
m = 0.139 GeV, r0 = 0.66 fm. 
Etot = 0.129 GeV, ΔEtot = 0.026, dEem = +0.0014 (Table 6). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 9). 
Vector mesons rho0, rho+, omega0 quarks (2), gluons (6 non-diagonal), 

spin = 1. 
[15] 
Masses (Table 7). 
Energy for quark-number (n = 1, 2), gluon-number (n = 3, …, 8), both sorted 

with increasing energy (Figure 10). 
Distribution quarks (r[fm], θ) (Figure 11). 
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Figure 8. Selected gluon wave functions in the pi0-meson [12]. 
 
Table 5. Energy of quarks in the pi0-meson, Eui and gluons EAi sorted by energy, quark 
amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.0007, 
0.098 

0, 0, 0, 0, 0.0012, 
0, 0.045, 0 

0.073, 
−0.650 

0, −0.77, 0, 0, 
−0.131, 0, −0.634, 0 

0.985, 
0.631 

0.387, 
0.746 

−0.058, 
0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.001, 
0.013 

0, 0, 0, 0, 0.002, 
0, 0.022, 0 

0.028, 
0.018 

0, 0.40, 0, 0, 
0.38, 0, 0.25, 0 

0.040, 
0.031 

0.039, 
0.011 

0.010, 
0 
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Figure 9. Selected gluon wave functions in the pi+ -meson [12]. 
 
Table 6. Energy of quarks in the pi+ -meson, Eui and gluons EAi sorted by energy, quark 
amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.0004, 
0.009 

0, 0.005, 0, 0, 0.014, 
0, 0.0945, 0 

−0.136, 
−0.319 

0, −0.868, 0, 0, 
−0.011, 0, −0.556, 0 

0.020, 
0.025 

0.588, 
0.560 

0.180, 
0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.001, 
0.012 

0, 0.003, 0, 0, 0.016, 
0, 0.017, 0 

0.68, 
0.67 

0, 0.294, 0, 0, 
0.100, 0, 0.223, 0 

0.0, 
0.008 

0.190, 
0.171 

0.243, 
0 
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Figure 10. Energy for quark-number (n = 1, 2, 3), gluon-number (n = 4, …, 11) in vector 
mesons [12]. 
 

 

Figure 11. Distribution of quarks (r, θ) in vector mesons [12]. 
 
Table 7. Vector meson masses [12]. 

 m (rho+) m (rho0) m (omega) 

exp. 775.1 MeV 775.3 MeV 782.6 MeV 

calc. 779 MeV 771 MeV 782 MeV 

 
The vector mesons are spin-1 bosons but only rho+ shows an explicit 

θ-dependence of quark-distribution: it is ellipsoidal. The gluons show explicit 
θ-dependence and are, as for the nucleons, practically equal for all three par-
ticles. 

For rho0: the quarks uu  and dd  have identical parameters r = 0.5, δr = 
0.3, E = 0.1. 

For omega0: the quarks uu  and dd  again have identical parameters, are at 
center, δr = 0.25, E = 0.1. 
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For rho+: the heavier quark d  has r = 0.5, δr = 0.05, E = 0.05, the light quark 
u has r = 0.9, δr = 0.5, E = 0.07, rho+ has two orthogonal orbitals. Its two quarks 
have completely different width; the d  quark closer to the center has a small 
bandwidth, the light u quark is strongly “smeared” like all the other quarks in 
the 3 particles. 

The measured masses of the v-mesons (0.775, 0.775, 0.782) are reproduced 
correctly by the calculation (0.771 ± 0.0052, 0.779 ± 0.012, 0.782 ± 0.007).  

V-meson rho0 = ( ) 2uu dd− . 
m = 0.775 GeV, r0 = 0.75 fm. 
Etot = 0.771 GeV, ΔEtot = 0.0052, dEem = +0.002 (Table 8). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 12). 
V-meson rho+ = ud . 
m = 0.775 GeV, r0 = 0.75 fm. 
Etot = 0.779 GeV, ΔEtot = 0.012, dEem = +0.002 (Table 9). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 13). 
V-meson omega0 = ( ) 2uu dd+ . 
m = 0.782 GeV, r0 = 0.75 fm. 
Etot = 0.782 GeV, ΔEtot = 0.007, dEem = +0.002 (Table 10). 
Mean calculation error ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui [12]. 
Gluons Agi (Figure 14). 

 
Table 8. Energy of quarks in the rho0-meson, Eui and gluons EAi sorted by energy, quark 
amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.094, 
0.094 

0.045, 0.088, 0, 
0.094, 0.099, 

0.111, 0.138, 0 

−0.0057, 
−0.0057 

0.018, −0.003, 0, 
0.250, −0.809, 

0.227, −0.533, 0 

0.56, 
0.56 

0.2327, 
0.327 

0, 
0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.0003, 
0.0003 

0.005, 0.0005, 0, 
0.0005, 0.0005, 
0.002, 0.0005, 0 

0.0005, 
0.0006 

0.015, 0.002, 
0, 0.008, 0.002, 
0.006, 0.003, 0 

0.071, 
0.071 

0.033, 
0.033 

0, 
0 

 
Table 9. Energy of quarks in the rho+ -meson, Eui and gluons EAi sorted by energy, 
quark amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial 
smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.047, 
0.073 

0.054, 0.102, 0, 
0.107, 0.113, 

0.124, 0.152, 0 

−0.628, 
0.620 

0.011, −0.003, 0, 
0.250, −0.810, 

0.229, −0.534, 0 

1.05, 
0.02 

0.89, 
0.48 

0, 
−1.0 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.004, 
0.009 

0.006, 0.001, 0, 
0.001, 0.001, 

0.003, 0.001, 0 

0.018, 
0.0 

0.012, 0.003, 0, 
0.011, 0.001, 

0.003, 0.001, 0 

0.019, 
0.012 

0.018, 
0.011 

0, 
0.001 
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Figure 12. Selected gluon wave functions in the rho0-meson [12]. 
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Figure 13. Selected gluon wave functions in the rho+ -meson [12]. 
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Figure 14. Selected gluon wave functions in omega0-meson [12]. 
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Table 10. Energy of quarks in the omega0-meson, Eui and gluons EAi sorted by energy, 
quark amplitude ai and gluon amplitude aAi, quark position rui θui, quark radial 
smear-out drui. 

Eui EAi ai aAi drui rui θui 

0.092, 
0.092 

0.045, 0.092, 0, 
0.097, 0.103, 

0.113, 0.142, 0 

0.750, 
−0.750 

0.012, −0.003, 0, 
0.241, −0.810, 

0.228, −0.534, 0 

0.517, 
0.517 

0, 
0 

−0.45, 
−0.07 

ΔEui ΔEAi Δai ΔaAi Δdrui Δrui Δθui 

0.002, 
0.002 

0.006, 0.0008, 0, 
0.0008, 0.0007, 
0.002, 0.0008, 0 

0.707, 
0.707 

0.007, 0.002, 0, 
0.012, 0.001, 0.005, 

0.003, 0 

0.118, 
0.118 

0.0, 
0.0 

0.207, 
0.200 

6. Conclusions 

We present here (Chapter 2) a new calculation method for on-lattice QCD, 
namely on-lattice minimization of action.  

It works by direct minimization on parameters of action  

( ), , d minQCD i jS L x q Ag xµ= =∫ ,  

where the action integral is approximated as a summation on a random sublat-
tice of an equidistant lattice. 

This has the following advantages:  
 The minimal-action principle is a fundamental principle, from which the 

equation-of-motion (eom), i.e. the Dirac equation for QCD is derived. The 
parameters ,i jq Ag  of quarks iq  and gluons jAg  in the Lagrangian  

( ), ,QCD i iL x q Agµ  (e.g. energy-mass of a quark) can be calculated from it in 
principle exactly without solving the eom. In comparison, the Wilson loop 
method uses an approximation in order to make the path integral tractable 
numerically. 

 The calculation is a simple summation, which is very fast numerically, as 
opposed to the analytical integral calculation of the perturbative analytic 
Feynman solution. 

 The calculation is scalable, i.e. the precision can be increased arbitrarily, 
simply by making the step size of the lattice smaller, or the size of the sublat-
tice larger. 

 The calculation can be carried-out in parallel by Np processes on Np different 
sublattices with the same number of points (in this implementation we have 
Np = 8). The mean of the Np resulting values is then the calculation result for 
a parameter, whereas the standard-deviation assesses the calculation error. 

 On-lattice minimization of action uses parameter minimization algorithms 
instead of solving partial differential equations (as in on-lattice eom solution) 
or instead of calculation of parameterized integrals (as in Wilson-loop me-
thod or in analytic Feynman method). Nowadays, there exists a large selec-
tion of powerful algorithms for parameter minimization which can be used 
for this purpose. 
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 On-lattice minimization of action, as opposed to the other solution methods, 
yields information about radial and axial distribution within hadrons. 

The calculation ansatz in Chapter 3 for the quark wavefunctions: 
For nucleons 

1 2 3, ,
0 0 0
q q q

q
       =       
       

  

For vector-mesons 

1 2 1 2 1 2

1 2 1 2 1 2, ,
2 2 2

q q q q q q
q q q q q q

q

                 
± ± ±                 

                 =                         

  

or  

1 1 1

2 2 2

, ,
q q q

q
q q q

       =       
       

  

For pseudo-scalar mesons (pi+, pi0) 

1

2

0
, ,0

0
q

q
q

    =    
     

 or 

1 1

2 2

0 0
0 0

, ,0
2 2

q q
q q

q

          
+ −          

          =                 

 

And gluon wavefunctions  
{ }1 8, ,Ag Ag Ag=   all 8 gluons for nucleons. 
{ }1 2 4 5 6 7, , , , ,Ag Ag Ag Ag Ag Ag Ag=  6 non-diagonal gluons for vector-mesons. 
{ }2 5 7, ,Ag Ag Ag Ag=  3 quark-antiquark gluons for pseudo-scalar mesons.  

Explains effectively the mass scale for the three types of first-generation ha-
drons. 

Nucleons 940 MeVnucM ≈ . 
Vector-mesons 780 MeVvmM ≈ . 
Pseudo-scalar mesons 150 MeVpsmM ≈ . 
Simply by using gluon configurations compatible with the SU(3) symmetry, 

i.e. corresponding to subgroups of the SU(3). 
In Chapter 5 we present the results of calculations for first-generation ha-

drons. 
The calculated masses agree well with the observed values, and the calculation 

shows that individual gluons on average contribute as much as individual quarks 
to the total energy-mass of hadrons. 

On-lattice minimization of action, as opposed to the other solution methods, 
yields information about radial and axial distribution within hadrons, which 
gives interesting insights into their symmetry, “smearing-out” of components, 
and internal energy-mass distribution. 
 Structure of nucleons 

The proton is spherically symmetric, the neutron is axial with two orbitals. 
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The gluon distribution is practically the same for both. 
The small mass difference is due to the electromagnetic contribution, which is 

about 1% of the total mass. 
 Structure of pseudo-scalar mesons 

The pseudo-scalar mesons are spherically-symmetric. 
The gluon amplitudes are much smaller (factor 30) for pi0 than for pi+. 

 Structure of vector mesons 
The neutral v-mesons are spherically-symmetric. 
For neutral rho0: the quarks uu  and dd  have identical parameters with 

distribution peak at r = 0.5.  
For neutral omega0: the quarks uu  and dd  again have identical parame-

ters, with distribution peak at the center. 
The charged rho+ is axial, has two orthogonal orbitals, its two quarks have 

completely different width; the d  quark closer to the center has a small band-
width, the light u quark is strongly “smeared-out”.  
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