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Abstract 
By using the standard PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing 
matrix and applying the rule for the sum of the oscillation probabilities of 
three neutrinos, the equations of motion were derived in which the Dirac CP 
violating phase appeared as an unknown quantity. The equations of motion 
were separately derived for each of the three possible transitions for fla-
vor-neutrino oscillations. Two roots of those equations were obtained in the 
form of two formulas for the Dirac CP violating phase with opposite signs. In 
the mathematical sense, the connection between those formulas was estab-
lished in order to maintain the continuous process of oscillation of three neu-
trinos. This made it possible to calculate the numerical value for the Dirac CP 
violating phase, the Jarlskog invariant and to write the general form of the 
PMNS mixing matrix in the final form in which all its elements are defined 
with explicit numerical values. 
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1. Introduction 

In the process of theoretical investigation of possible physical properties and pa-
rameters for three neutrinos, our intention was to show that the obtained results 
could be consistent with the results published in Refs. [1] [2] [3] [4] in which the 
hypothesis of the possible existence of the fourth-sterile neutrino is challenged. 
That is why we devoted ourselves to the research of three neutrinos and the re-
sults that we obtained at the end of this paper could be considered as a confir-
mation of agreement with the STEREO experiments [2] that rejected the possi-
bility of the existence of a sterile neutrino in nature.  

In previous papers [5] [6] [7] an explicit formula for the Dirac CPV phase was 
derived. It can be seen from the form of the formula that it does not depend on 
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the mixing angles embedded in the PMNS mixing matrix, but that it directly 
depends on the ratio between the corresponding differences of the squares of the 
neutrino masses. 

In this paper, special attention is devoted to researching the application of 
rules for maintaining the sum of the probability of oscillation of three neutri-
nos, which is equal to one, for all three possible transitions: e µν ν→ , e τν ν→ ,

e eν ν→ ; , ,eµ µ τ µ µν ν ν ν ν ν→ → →  and ; ,eτ τ µ τ τν ν ν ν ν ν→ → → . 
In this sense, the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) mixing matrix 

was applied, and the final results of the introduced procedure are in the form of 
formulas for the Dirac CP violation phase. 

However, as will be seen in the following chapters, the resulting formulas for 
the transitions in question differ in sign and this is a kind of unexpected pheno-
menon that could be characterized as an anomalous phenomenon. 

Thus, in the mathematical sense, two formulas for Dirac’s CP phase violation 
appeared, which differ from each other only in sign, and how this problem was 
solved can be seen in the following chapters. 

2. Equation of Motion for Three Neutrinos and Final  
Solutions for Dirac’s CP Violation Phase 

The procedure for deriving the equation of motion for three neutrinos and its 
final form is given in papers [5] [6] [7], which reads: 

( )2 cos sin 0 0W Vδ δ− × =                       (1) 

where W and V are represented by the corresponding ratio between the differ-
ences of the squares of the eigenstates of the neutrino masses: 

2 2 2 2
2 231 32 31 32

2 2 2 2
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And δ is the Dirac CP violation phase as an unknown quantity of this equation. 
By inserting explicit values for parameters (2) into Equation (1), it is reduced 

to the following two identical forms. The first form looks like this: 
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Mathematically, we see that both Equation (3) and Equation (4) consist of a 
general solution and a particular one. The general solution satisfies all the values 
from the set [ )0,2δ ∈ π , which are countless and such solutions have no physi-
cal meaning. 

But from the particular equation 
2 2 2
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2
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we extract only two solutions that satisfy a particular equation from countless 
possible ones and they make physical sense: 
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Everything we said about Equation (3) also applies to Equation (4). Namely, 
we can also explain it in the following way: 
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Which gives solutions that are identical to solutions (6). 

3. Sum Rule for Three Neutrino Oscillation Probabilities 

In general, we can write sum rules for oscillation probabilities for three neutri-
nos in the form of the following relations: 

( ) ( ) ( ) 1e e e eP P Pµ τν ν ν ν ν ν→ + → + → =            (8) 

( ) ( ) ( ) 1eP P Pµ µ τ µ µν ν ν ν ν ν→ + → + → =            (9) 

( ) ( ) ( ) 1eP P Pτ τ µ τ τν ν ν ν ν ν→ + → + → =           (10) 

We are in Refs. [5] [6] [7] already used one of the sum rules for the oscillation 
probabilities for three neutrinos, which is related to the transition  

, ,e e e eµ τν ν ν ν ν ν→ → →  and then we derived an equation of the form (1). 

Appearance of Factor 
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In Ref. [8] are derived relations for the probability of oscillation for three neu-
trinos under the conditions when the neutrino beam moves through the me-
dium with a constant density of matter and corresponding mathematical devel-
opments and approximations (See details in the mentioned paper Ref. [8]) and 
each of them written individually looks like this: 
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We note that in Ref. [8] marked factor Δ defined with the following formula: 
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We will use these relations by applying the rule for the sum of the oscillation 
probabilities for three neutrinos (9), on the basis of which we obtain the follow-
ing equation: 
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We can write this equation in the form: 
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This equation has a general solution that is satisfied for every arbitrarily taken 
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value from the set ( )0, 2π  and such solutions have no physical meaning. 
That’s why we write a particular equation and the solutions that make physical 
sense are extracted from the set ( )0, 2π  and they read: 
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We obtained a formula for the Dirac CP phase with a negative sign compared 
to the original Formula (1). Where such a formula comes from will be explained 
in the next chapter. 

4. Derivation of the Equation of Motion for Three Neutrinos  
for Transitions e , ,µ µ τ µ µν ν ν ν ν ν→ → →  and  

e , ,τ τ µ τ τν ν ν ν ν ν→ → → : The Occurrence of an Anomaly 

4.1. Transition eµ µ τ µ µν ν ν ν ν ν→ → →, ,  

Derivation of the equation without approximations for three neutrinos dur-
ing the motion of the neutrino beam through the vacuum 

In order to eliminate any ambiguities and for the sake of comparison between 
the case without approximations and the example with approximations, we will 
show again the way in which the final Equation (1) and Equation (2) was de-
rived, which is shown in Refs. [6] [7]. 

In further research, we will see that we will get the same formula for the Dirac 
CP violating phase (15) when the neutrino beam moves through the physical 
vacuum. 

We emphasize this especially because we have already derived the equation of 
motion (14) and found its roots (15) in the analysis of the case when the neutri-
no beam moves through a medium with a constant density of matter. 

Based on the derived final formulas for the Dirac CP violation phase, it can be 
seen that they all coincide with each other, which shows that the Dirac CP viola-
tion phase does not depend on the medium through which the neutrino beam 
propagates. 

And what is very important to point out is that the Dirac CP violating phase 
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depends exclusively on the ratio between the differences of the squares of the 
neutrino masses and does not depend on the mixing angles. 

In the processes known as neutrino flavor oscillations, the Dirac CP violation 
phase δ is singled out as the cause of those oscillations in the propagation of the 
neutrino beam through the physical vacuum. For that reason, there arises the 
question of writing the equation in which δ would appear as an unknown quan-
tity. On the basis of that equation, it would be possible to determine that un-
known quantity. So far, there appears to be only one way to derive that equa-
tions for a neutrino beam, and it is related to the use of the equations of the neu-
trino oscillations probabilities. The procedure for deriving those equations is 
given here. 

To find the equation of motion for three neutrinos, we use the standard form 
of the mixing matrix [9] [10] [11] [12] [13] which reads: 

1 2 3

1 2 3
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where the mixing angles from the (16) are taken into consideration:  

cos , sin ; 1,2,3ij ij ij ijc s i jθ θ= = ≠ = . 

What is the reason for the introduction of this matrix and what is its role are 
given in the following considerations. For now, let us note that the introduction 
of this matrix is of essential importance due to the need to indicate by theoretical 
considerations that the standard PMNS matrix of the form 3 × 3 is unique in de-
picting the physical characteristics of neutrinos. And therefore it can be consi-
dered that the entire description of the functionalization of this matrix essential-
ly represents a theoretical proof of the existence in nature of only three neutri-
nos, and that the idea related to the hypothesis of the existence of sterile neutri-
nos could not be found in the Standard Model. 

In our considerations, we will use the general formula for neutrino oscillations 
given in [11] [14]: 
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We will derive the equations of motion of the three neutrinos in such a way 
that we will use the property of the mixing matrix (16) which is expressed by the 
following relation: 

( ) ( ) ( ) 1eP P Pµ µ τ µ µν ν ν ν ν ν→ + → + → =              (18) 

The main goal of this work is to derive the equations of three neutrinos and 
then to determine their root from those equations, which represents the solution 
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for the normal neutrino mass hierarchy. In further considerations, we use the 
original PMNS matrix (16), where by applying the rule for maintaining the sum 
of oscillation probabilities for three neutrinos (18), we find: 
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And, from the Equation (19), the equation of neutrino motion is formed with 
a condition that the travelled distance of the neutrino beam, moving through a 
vacuum from the source, equals the neutrino wavelength 12L L= . So, it can be 
written as: 
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R U U U U W U U U U V

R U U U U W U U U U V

R U U U U W U U U U V

R U U U U W U U U U V

U U W U U W

µ µ µ µ

µ µ µ µ

µ τ µ τ µ τ µ τ

µ τ µ τ µ τ µ τ

µ µ µ µ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

− +

− +

− +

− +

− − =

            (20) 

where  
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( )

( )

2 2
31 32
2 2
21 21

2 2
2 231 32

2 2
21 21

sin 2 sin 2 ,

sin sin .

NO

NO

m mV
m m

m mW
m m

   ∆ ∆
= =   

∆ ∆   
   ∆

π π

π
∆

= =   
∆ ∆   

π

               (21) 

Detailed algebraic calculations in Equation (20) yield the explicit form of the 
Equation (it is understood that it is written for the normal hierarchy of neutrino 
masses): 

(
) (

)
( ( )

( )

1 3 2 3 3 3 3 3

3 3 3 3 1 3 2 3

3 3 3 3 3 3 3 3

1 3 2 3 3 3

2 2
3 3 3

4 4 4 4

4 4 cos 2 2

2 2 2 2 sin

4 4 4

4 4

e e

e e

e e

WU U AJ WU U CJ WU U AF WU U BE

WU U CH WU U DG VU U AJ VU U CJ

VU U AF VU U BE VU U CH VU U DG

WU U BJ WU U DJ WU U AE BF

WU U CG DH WU A B

µ µ µ τ µ τ

µ τ µ τ µ µ

µ τ µ τ µ τ µ τ

µ µ µ τ

µ τ µ

δ

δ

− − +

+ − + −

− − + +

+ + + −

+ − − +( )
( )

2

2 2 2
3

2 cos

4 2 cos 0;

AB

WU C D CDµ

δ

δ

+

− + − =

 

( ( )
( ) ( )

( )
( ) ( )

1 3 2 3 3 3

2 2 2
3 3 3

2 2 2
3

2 2 2 2 2 2 2 2 2 2
13 23 23 23 13 13 23 13 23 13

1 2

4 4 4

4 4 2 cos

4 2 cos

0,

, , ,

e e

e e

WU U BJ WU U DJ WU U AE BF

WU U CG DH WU A B AB

WU C D CD

C S C S S C S S C C

AB CD BE DG U A U C AF CH

µ µ µ τ

µ τ µ

µ

δ

δ

+ + −

+ − − + +

− + −

= + − + =

= = = =

            (22) 

The sum of all free members is equal to zero, so they are omitted in this equa-
tion. 

The first thing that can be noticed in this equation is that the algebraic expres-
sions with cosδ  and sinδ  are not identical. 

The second thing we can calculate is that each of these expressions are equal 
to zero, so in that case we can write: 

0 cos 0 sin 0δ δ× + × =                       (23) 

In the mathematical sense, this equation is satisfied for any arbitrarily taken 
value from the set ( )0,2δ ∈ π , so such solutions do not make physical sense. 

However, if we separate the members with the coefficients BE and DG we see 
that they repel each other because BE DG= , then we can write the Equation 
(22) in the form: 

( )
( )

1 3 2 3 3 3 3 3

1 3 2 3 3 3 3 3

4 4 4 4 cos

2 2 2 2 sin 0

e e

e e

WU U AJ WU U CJ WU U AF WU U CH

VU U AJ VU U CJ VU U AF VU U CH

µ µ µ τ µ τ

µ µ µ τ µ τ

δ

δ

− − +

+ − − + =
  (24) 

Now we see that the algebraic expressions with cosδ  and sinδ  are mu-
tually identical, so we can extract them as a common factor: 

( )
( )

1 3 2 3 3 3 3 34 4 4

4 cos 2 sin 0
e eU U AJ WU U CJ WU U AF WU U CH

W V
µ µ µ τ µ τ

δ δ

− − +

× + =
     (25) 
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Without going into the numerical value for the common factor, we find the 
solution of this equation: 

2 2
2 31 31

2 2
21 21

2 2 2
2 31 31 31

2 2 2
21 21 21

2 2 2
31 31 31
2 2 2
21 21 21

2 2
31 31
2
21

4 cos 2 sin 0 2sin cos sin 2 sin 0

2sin cos 2sin cos sin

2sin sin cos cos sin 0

2sin sin

m mW V
m m

m m m
m m m

m m m
m m m

m m
m

δ δ δ δ

δ δ

δ δ

∆ ∆
+ = → + = →

∆ ∆

∆ ∆ ∆
+ →

∆ ∆ ∆

 ∆ ∆ ∆
+ = → 

∆ ∆ ∆

π π

π π π

π π π

π π

 

∆ ∆
∆ ∆

2
31

2 2
21 21

2
31
2
21

0 sin 0

0, ;

m
m m

m
m

δ δ

δ

    ∆
+ = → + = →    

∆     
∆

+ =
∆

π ±

π

π →

 

2 2
31 31
2 2
21 21

2 2 2
31 31 32
2 2 2
21 21 21

2 2
32 32
2 2
21 21

2 2 2
31 31 32
2 2 2
21 21 21

2
32
2
21

: 0 ;

: 1

;

: 1

m mA
m m

m m mB
m m m

m m
m m

m m mC
m m m

m
m

δ δ

δ δ

δ δ

∆ ∆
+ = → = −

∆ ∆

 ∆ ∆ ∆
+ = → = − + = − + + 

∆ ∆ ∆ 
∆ ∆

= − − + = −
∆ ∆

 ∆ ∆ ∆
+ = − → = − − = − + −

π π

π π π π π π

π π π π

π π π π π π

π

 
∆ ∆ ∆ 

∆ ∆
= − − π − π = −π

∆

2 2
32 32
2 2
21 21

2 .m m
m m

∆
− = −

∆
π π

∆

          (26) 

We subsequently calculate the numerical value for the joint expression with 
cosδ  and sinδ  and find 

( )
( )

1 3 2 3 3 3 3 34 4 4

4 cos 2 sin 0
e eU U AJ WU U CJ WU U AF WU U CH

W V
µ µ µ τ µ τ

δ δ

− − +

× + =
      (27) 

So the Equation (25) takes a definite form:  

( )0 4 cos 2 sin 0W Vδ δ× + =                    (28) 

With this form of the equation, the solution (26) represents a particular solu-
tion and only it has physical meaning, while the general solution is satisfied for 
every arbitrarily taken value from the set ( )0,2δ ∈ π  and they have no physical 
meaning. 

Therefore, the essence of solving the Equation (25) is to find a solution that 
makes physical sense. In the first step of solving the Equation (22), we saw that 
due to the inequality of the expressions with cosδ  and sinδ , there could not 
be a solution that makes physical sense because it would be satisfied for any ar-
bitrarily taken value from the set ( )0,2δ ∈ π . 

However, since we see that in these apparently unequal expressions there are 
terms that cancel each other out, then we understand that in essence the alge-
braic expressions with cosδ  and sinδ  are identical to each other. 
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And for that reason, we can write the Equation (27) without entering the nu-
merical value of that common factor. 

4.2. Transition eτ τ µ τ τν ν ν ν ν ν→ → →, ,  

And in further considerations, we use the original PMNS matrix (16), where we 
apply the rules for maintaining the sum of oscillations for three neutrinos for the 
next transition: 

( ) ( ) ( ) 1eP P Pτ τ τ τ µν ν ν ν ν ν→ + → + → =              (29) 

The main goal of this work is to derive the equations of three neutrinos and 
then to determine their root from those equations, which represents the solution 
for Dirac’s ČP violating phase. Using relations (16) and (17) we can write: 

( ) ( ) ( )
2 2

2 21 21
1 1 2 2 1 1 2 22 2

21 21

2 2
2 31 31

1 1 3 3 1 1 3 32 2
21 21

1 4 sin 2Im sin 2

4 sin 2Im sin 2

e

e e e e

e e e e

P P P

m mR U U U U U U U U
m m

m mR U U U U U U U U
m m

τ τ µ τ τ

τ τ τ τ

τ τ τ τ

ν ν ν ν ν ν

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

→ + → + →

      ∆ ∆   = − +      ∆ ∆         
  ∆ ∆ − +  

∆ ∆  
π



π



π

π

2 2
2 32 32

2 2 3 3 2 2 3 32 2
21 21

2 2
2 21 21

1 1 2 2 1 1 2 22 2
21 21

4 sin 2Im sin 2

4 sin 2Im sin 2

e e e e
m mR U U U U U U U U
m m

m mR U U U U U U U U
m m

τ τ τ τ

τ µ τ µ τ µ τ µ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

   
  
   

      ∆ ∆   − +      
∆ ∆       

π π

π π

 
    ∆ ∆ − +    ∆ ∆     

  
 
  

 

( ) ( ) ( )
2 2

2 21 21
1 1 2 2 1 1 2 22 2

21 21

2 2
2 31 31

1 1 3 3 1 1 3 32 2
21 21

1 4 sin 2Im sin 2

4 sin 2Im sin 2

e

e e e e

e e e e

P P P

m mR U U U U U U U U
m m

m mR U U U U U U U U
m m

τ τ µ τ τ

τ τ τ τ

τ τ τ τ

ν ν ν ν ν ν

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

→ + → + →

      ∆ ∆   = − +      ∆ ∆         
  ∆ ∆ − +  

∆ ∆  
π



π



π

π

2 2
2 32 32

2 2 3 3 2 2 3 32 2
21 21

2 2
2 21 21

1 1 2 2 1 1 2 22 2
21 21

4 sin 2Im sin 2

4 sin 2Im sin 2

e e e e
m mR U U U U U U U U
m m

m mR U U U U U U U U
m m

τ τ τ τ

τ µ τ µ τ µ τ µ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

   
  
   

      ∆ ∆   − +      
∆ ∆       

π π

π π

 
    ∆ ∆ − +    ∆ ∆     

  
 
  

(30) 

So, it can be written as 

{ } { }
{ } { }
{ } { }
{ } { }

1 1 3 3 1 1 3 3

2 2 3 3 2 2 3 3

1 1 3 3 1 1 3 3

2 2 3 3 2 2 3 3

2 2 2 2
1 3 2 3

4 2 Im

4 2 Im

4 2 Im

4 2 Im

4 4 0

e e e e

e e e e

WR U U U U V U U U U

WR U U U U V U U U U

WR U U U U V U U U U

WR U U U U V U U U U

WU U W U U

τ τ τ τ

τ τ τ τ

τ µ τ µ τ µ τ µ

τ µ τ µ τ µ τ µ

τ τ τ τ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

− +

− +

− +

− +

− − =

            (31) 

where  

https://doi.org/10.4236/jhepgc.2024.101018


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2024.101018 208 Journal of High Energy Physics, Gravitation and Cosmology 
 

2 2
31 32
2 2
21 21

2 2
2 231 32

2 2
21 21

sin 2 sin 2 ,

sin sin .

m mV
m m

m mW
m m

   ∆ ∆
= =   

∆ ∆   
   ∆

π π

π
∆

= =   
∆ ∆   

π

                (32) 

Detailed algebraic calculations in Equation (31) yield: 
(

) (
)

( )
( )

1 3 2 3 3 3 3 3

3 3 3 3 1 3 2 3

3 3 3 3 3 3 3 3

1 3 2 3 3 3
2 2

3 3 3

4 4 4 4

4 4 cos 2 2

2 2 2 2 sin
4 4 4

4 4

e e

e e

e e

WU U EJ WU U GJ WU U EB WU U FA
WU U GD WU U HC VU U EJ VU U GJ

VU U EB VU U FA VU U GD VU U HC
WU U FJ WU U HJ WU U EA FB

WU U GC HD WU E

τ τ µ τ µ τ

µ τ µ τ τ τ

µ τ µ τ µ τ µ τ

τ τ µ τ

µ τ τ

δ

δ

− + + −

− + + − +

+ + − −

+ + + −

+ − − ( )
( )

2

2 2 2
3

2 cos

4 2 cos 0;

F EF

WU G H GHτ

δ

δ

+ −

− + + =

 

( )
( ) ( )

( ) ( )
( ) ( ) ( )

1 3 2 3 3 3
2 2 2 2 2

3 3 13 23 13 23 13

2 2 2 2 2 2
3 3

2 2 2 2 2 2 2 2 2 2 2
13 23 23 23 13 13 23 13 23 23 13

1 2

4 4 4

4 ,

4 2 cos 4 2 cos

; ,
, , , .

e e

e e

WU U FJ WU U HJ WU U EA FB

WU U GC HD C C S S C

WU E F EF WU G H GH

C C S C S S S C S C S
EF GH FA HC U E U G EB GD

τ τ µ τ

µ τ

τ τδ δ

+ + −

+ − = × +

+ − + + +

= × + → + = +

= = = =

        (33) 

As can be seen in the expressions shown in (33), the free terms are equal to 
zero, but it seems that the algebraic expressions with cosδ  and sinδ  are not 
equal to each other, so we write the following equation in the form: 

0 cos 0 sin 0δ δ× + × =                      (34) 

Mathematically, this equation is satisfied for any arbitrarily taken value from 
the set ( )0,2δ ∈ π , so such solutions do not make physical sense. 

The sum of all free members is equal to zero, so they are omitted in the Equa-
tion (33) and we write the final form of this equation: 

( )
( )

1 3 2 3 3 3 3 3

1 3 2 3 3 3 3 3

4 4 4 4 cos

2 2 2 2 sin 0

e e

e e

WU U EJ WU U GJ WU U EB WU U GD

VU U EJ VU U GJ VU U EB VU U GD

τ τ µ τ µ τ

τ τ µ τ µ τ

δ

δ

− + + −

+ − + + − =
 (35) 

Now we see that the algebraic expressions with cosδ  and sinδ  are mu-
tually identical, so we can extract them as a common factor: 

( )( )1 3 2 3 3 3 3 3 4 cos 2 sin 0e eU U EJ U U GJ U U EB U U GD W Vτ τ µ τ µ τ δ δ− + + − + =  (36) 

Without going into the numerical value for the common factor, we find the 
solution of this equation: 

2 2 2
2 31 31 31

2 2 2
21 21 21

2 2 2
31 31 31
2 2 2
21 21 21

2 2 2
31 31 31
2 2 2
21 21 21

4 cos 2 sin 0

2sin cos 2sin cos sin 0

2sin sin cos cos sin 0

2sin sin 0 sin

W V
m m m
m m m

m m m
m m m

m m m
m m m

δ δ

δ δ

δ δ

δ δ

+ = →
∆ ∆ ∆

+ = →
∆ ∆ ∆

 ∆ ∆ ∆
+ = 

∆ ∆ ∆ 
   ∆ ∆ ∆

→ + = → +   ∆ ∆

π π π

π

∆  

π

π


π

π π

2
31
2
21

0

0,
m
m

δ


= → 


∆

+ = ± →
∆

π π
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2 2 2
2 31 31 31

2 2 2
21 21 21

2 2 2
31 31 31
2 2 2
21 21 21

2 2 2
31 31 31
2 2 2
21 21 21

4 cos 2 sin 0

2sin cos 2sin cos sin 0

2sin sin cos cos sin 0

2sin sin 0 sin

W V
m m m
m m m

m m m
m m m

m m m
m m m

δ δ

δ δ

δ δ

δ δ

+ = →

∆ ∆ ∆
+ = →

∆ ∆ ∆

 ∆ ∆ ∆
+ = 

∆ ∆ ∆ 
   ∆ ∆ ∆

→ + = → +   ∆ ∆

π π π

π

∆  

π

π


π

π π

2
31
2
21

0

0,m
m

δ


= → 



∆
+ = ± →

∆
π π

    (37) 

We subsequently calculate the numerical value for the joint expression with 
cosδ  and sinδ  and find: 

1 3 2 3 3 3 3 3

1 2

0,

, .
e e

e e

U U EJ U U GJ U U EB U U GD
U E U G EB GD

τ τ µ τ µ τ− + + − =

= =
        (38) 

so the equation takes a definite form:  

( )0 4 cos 2 sin 0W Vδ δ× + =                  (39) 

With this form of the equation, the solution (37) represents a particular solu-
tion and only it has physical meaning, while the general solution is satisfied for 
every arbitrarily taken value from the set ( )0,2δ ∈ π  and they have no physical 
meaning. 

Note. The entire procedure that was done for the normal hierarchy of neutri-
no masses is also applied for the inverted hierarchy of neutrino masses, as long 
as the corresponding labeling should be adjusted accordingly. 

5. Unified Equation of Motion for Three Neutrinos 

The derived equations of motion for three neutrinos for transitions eµν ν→ ,
,µ τ µ µν ν ν ν→ →  and ; ,eτ τ µ τ τν ν ν ν ν ν→ → →  it gave solutions for the Dirac 

CP phase in the form of Formula (37), which in comparison with (5) has the 
opposite sign to the solution which is related to the transition ,e eµ τν ν ν ν→ → ,

e eν ν→ . 
For transition , ,e e e eµ τν ν ν ν ν ν→ → →  the sign in front of the formula is a 

plus: 
2
31
2
21
2
32
2
21

;

;

m
m

m
m

δ

δ
∆

π

∆
∆

=
∆

π=
                            (40) 

which represent the roots of the equation:  

2 cos sin 0W Vδ δ− =                         (41) 

While for transition , ,eµ µ τ µ µν ν ν ν ν ν→ → →  and ;eτ τ µν ν ν ν→ → , 

τ τν ν→  the sign in front of the formula is minus: 
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2
31
2
21
2
32
2
21

;

;

m
m
m
m

δ

δ

∆
= −

∆
∆

=
∆

π

−π
                         (42) 

which represent the roots of the equation:  
2 cos sin 0W Vδ δ+ =                       (43) 

The process of three-flavor neutrino oscillations is continuous in the neutrino 
beam, and as we can see from the solution of the particular Equations (40) and 
(42), two types of Dirac CP phases could participate in these processes: one 
phase is with a plus sign (40) and the other with a minus sign (42). 

It is obvious that the appearance of Dirac CP phases with different signs at 
first glance could not indicate any continuity of the process. 

However, in further considerations, we will see that this phenomenon is justi-
fied in a mathematical sense, and we will first show this by forming a union equ-
ation composed of two particular equations: 

2 cos sin 0,
2 cos sin 0.
W V
W V

δ δ
δ δ
− =
+ =

                     (44) 

These two equations give a common solution for the Dirac CP violating phase 
and it will be valid for the neutrino beam regardless of its distance from the 
source. 

By adding the left and right sides of the Equation (44), we get the general equation: 
4 cos 0.W δ =                         (45) 

In this equation, we can make a substitution for W given in (32). We can even 
take both signs ±W, and the equation will not lose its generality. 

That’s why we can write:  
2 2

2 2 231 32
2 2
21 21

4sin cos 0 sin cos 0 sin cos 0m m
m m

δ δ δ δπ π
   ∆ ∆
± = → ± = → =   

∆ ∆   
 (46) 

So, we got the equation of union 
2sin cos 0δ δ =                       (47) 

which contains two equations: the Equation (41) with the root (40) and the Equ-
ation (43) with the root (42). 

The unification Equation (47) should also include every particular solution 
shown in (40) and (42). We will show what that procedure looks like in further 
considerations. 

Another way of deriving the unification equation 
2 2

2 31 31
2 2
21 21

2 2 2
31 31 31
2 2 2
21 21 21
2 2
31 31
2 2
21 21

2
31
2
21

2 cos sin 0 2sin cos sin 2 sin 0

2sin sin cos cos sin 0

sin 0 ;

2 cos sin 0 sin 0

m m
W V

m m
m m m
m m m
m m
m m

m
W V

m

δ δ δ δ

δ δ

δ δ

δ δ δ δ

π π

π

∆ ∆
− = → − = →

∆ ∆
 ∆ ∆ ∆

− = → 
∆ ∆ ∆ 

 ∆ ∆
− = → = 

∆ ∆ 
 ∆

+ = → + = → = 
∆ 

π π

π π

π
2
31
2
21

.
m
m

∆
−

∆
π

  (48) 
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By adding the equations 
2 2
31 31
2 2
21 21

2 2 2 2
31 31 31 31
2 2 2 2
21 21 21 21

sin sin 0

sin cos cos sin sin cos cos sin

m m
m m

m m m m
m m m m

δ δ

δ δ δ δ

   ∆ ∆
− + + = →   

∆ ∆   
∆ ∆ ∆ ∆

− + +
∆

π π

π π π π
∆ ∆ ∆

   (49) 

we get the unification equation:  
2
31
2
21

2sin cos 0m
m

δ
∆

=
∆

π                        (50) 

Based on the roots of particular Equations (40) and (42) we have: 

( )2sin cos 0δ δ± =                         (51) 

As we have already mentioned ( )sin δ±  is not allowed to be equal to zero, so 
the only root of this equation is determined with the following formula: 

cos 0 3 270 .
2 2

δ δ= → = − = =
π π

                  (52) 

for two key reasons: 
1) sinδ  cannot be equal to zero because in that case the Jarlskog invariant 

would be equal to zero and thus there would be no neutrino oscillations. 
2) The measured values of the Dirac CP violating phase are mostly found in 

III. Quadrant of the trigonometric circle [14] [15] [16]. 
After all, from this solution (52) we see that the sign has no effect.  
Analysis of solutions for the unification equation  
According to the structure of the Equation (44), the following solutions are 

mathematically possible: 

1) 0,sin 0 0δ = = . 

2) 2,sin 2 1δ π= π = . 

3) ,sin 0δ π= π = . 

4) 3 2,sin3 2 1δ π π= = − . 

5) 0,cos0 1δ = = .                          (53) 

6) 2,cos 2 0δ π= π = . 

7) ,cos 1δ π= π = − . 

8) 3 2,cos3 2 0δ = π π = . 

Selection of solutions: 
The solutions under 1) and 5) fall away because the Jarlskog invariant would 

be equal to zero, which physically denies the flavor of neutrino oscillations. 
Solutions under 2) and 6) fall away because that value is out of range in the 

data in Ref. [14] [15] and Ref. [16]. 
Solutions under 3) and 7) fall away because the Jarlskog invariant would be 

equal to zero. 
Solutions under 4) and 8) are acceptable. 
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Therefore, we adopt the value for the Dirac CP violating phase for the solution 
of the unification equation 

This value for Dirac’s CP violating phase means that in the nature of three-flavor 
neutrino oscillations, the highest possible value for the Jarlskog invariant is 
present. 

Therefore, we adopt the value for the Dirac CP violating phase for the solution 
of the unification equation 

3 2 270δ = =π                         (54) 

This value for Dirac’s CP violating phase means that in the nature of three-flavor 
neutrino oscillations, the highest possible value for the Jarlskog invariant is 
present.  

6. Coupling between Dirac’s CP Violating Phases 

In this chapter, we will show how the coupling between two formulas for Dirac’s 
CP violating phases with different signs is realized. For this purpose, we will use 
two sources of data from experimental measurements of neutrino parameters. 

The calculations that we release will indicate that the published data from ex-
perimental measurements must be corrected in some cases. 

The basic idea is to equate Dirac’s CP violating phases with different signs, 
which is in agreement with the results that come from solving the unification 
equation. 

Reference [14] [15] 
In the following tables, the explicit numerous values that we will use in our 

procedure are given. 
Based on the data from Table 1, numerous values are calculated that are 

shown in the Formula (55). 

( )

( )

( )

2
32

32 2
21

2
32

32 2
21

2
31

31 2
21

31

180 180 24490 739 360 16 360 205.0879

180 180 24490 739 360 17 360 154.912

180 180 25229 739 360 17 360 25.0879

180

BF

BF

BF

BF

m
m

m
m

m
m

δ

δ

δ

δ

+

−

+

−

∆  = × = × − × = ∆

∆  = − × = − × + × = ∆

∆  = × = × − × = ∆

∆
= − ×

    

    

    

 ( )
2
31
2
21

180 25229 739 360 18 360 334.912m
m

 = − × + × = ∆
   

 (55) 

Ensuring agreement with the unification equation is achieved by applying the 
roots obtained from particular equations by establishing equality between the 
corresponding formulas for Dirac’s CP violating phase that have different signs. 

We show how it looks in the next section. 
The first thing we notice is that different values are obtained for the Dirac CP 

violating phase (55). This is due to the fact that there are some deviations during 
measurements from the true natural values for the ratio between the difference 
of the square of the neutrino masses. 
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Table 1. Measured neutrino parameters. 

 Range of measured parameters BF 1σ−  1σ+  

2
21

5 210 eV
m

−

∆
 0.21

0.207.39+
−  7.39 7.19 7.60 

2
32

3 210 eV
m

−

∆
 0.032

0.0302.449+
−  2.4490 2.4190 2.4810 

2
31

3 210 eV
m

−

∆
  2.5229 2.4909 2.5570 

/CPδ   38
28222+
−  222 194 260 

2
12

1

sin
10

θ
−

 0.12
0.11.3.10+
−  3.10 2.990 3.220 

2
23

1

sin
10

θ
−

 0.20
0.235.58+
−  5.580 5.350 5.780 

2
13

2

sin
10

θ
−

 0.065
0.0652.241+
−  2.2410 2.1760 2.3070 

 
Therefore, we will apply the rule that provides us with the same numerical 

value for Dirac’s CP violating phase regardless of the sign in front of the formu-
la. 

In other words, it means that we need to equalize these formulas and mark 
which unknown in that case we need to correct, and it looks like this: 

( )
( )

( ) ( )

32 31

2 5 2
32

2 5 2
31

2 5 2 2 5 2
32 32

2 5 3 2
32

180 7.39 10 eV 360 16 360

180 7.39 10 eV 360 18 360

1 17.39 10 eV 16 7.39 10 eV 1 18
2 2

7.39 10 33.5 2.47565 10 eV ;

BF BF

m

m

m m

m

δ δ+ −

−

−

− −

− −

= →

 ∆ × − 
 = − ∆ × + → 

∆ × − = − ∆ × + + →

∆ = × × = ×

  

    

( )
( )

( ) ( )

32 31

2 5 2
31

2 5 2
31

2 5 2 2 5 2
31 31

2 5 3 2
31

180 7.39 10 eV 1 360 17 360

180 7.39 10 eV 360 17 360

1 17.39 10 eV 1 17 7.39 10 eV 17
2 2

7.39 10 34.5 2.54955 10 eV .

BF BF

m

m

m m

m

δ δ− +

−

−

− −

− −

= →

 − ∆ × − + 
 = ∆ × − → 

− ∆ × − + = ∆ × − →

∆ = × × = ×

  

     (56) 

Here we introduced the assumption that the measured value for 2
21m∆  is the 

correct value during the measurement, and we marked with 2
32m∆  the un-

known value that we will calculate. In this way, we declare the calculated value to 
be the correct value and it should appear in the measurements. 

Based on the calculated values (56), we form the corrected Table 2 which 
looks like this: 
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Table 2. Corrected values from measured neutrino parameters. 

 
Range of measured 

parameters 
BF 1σ−  1σ+  

2
21

5 210 eV
m

−

∆
 7.39 7.39   

2
32

3 210 eV
m

−

∆
 ( ) 0.026652.4490

exp

+  0.026652.4490 2.47565+ =    

2
31

3 210 eV
m

−

∆
  2.54955   

( )/CP exp
δ   38

28222+
−  222 194 260 

( )/CP th
δ   38

28270+
−  270 242 308 

 
In the next step, we use the values in the corrected Table 2. And we calculate 

the Dirac CP violating phases: 

( )

( )

( )

2
32

32 2
21

2
32

32 2
21

2
31

31 2
21

2
31

31 2
21

180 180 24756.5 739 360 16 360 270

180 180 24756.5 739 360 17 360 90

180 180 25495.5 739 360 17 360 90

180

BF

BF

BF

BF

m
m

m
m

m
m

m
m

δ

δ

δ

δ

+

−

+

−

∆  = × = × − × = ∆
∆  = − × = − × + × = ∆

∆  = × = × − × = ∆
∆

= − ×
∆

    

    

    

 ( )180 25495.5 739 360 18 360 270 = − × + × = 
   

 (57) 

From all these values (57), we choose those that are consistent with the root of 
the unification Equation (52), so we write: 

( )
( )
( )
( )

32 31

180 24756.5 739 360 16 360

180 25495.5 739 360 18 360 270

sin 180 24756.5 739 1,

sin 180 25495.5 739 1.

BF BFδ δ+ −= →
 × − × 
 = − × + × = 
 × = − 
 − × = − 

  

   





           (58) 

Therefore, on the basis of Formula (56), it can be seen that the achievement of 
the Dirac CP violation phase, which represents the root of the unification Equa-
tion (51), is only possible with the condition that the formulas for the Dirac CP 
violating phase with different signs produce mutually equal values. 

Equating Dirac’s CP violating phases with different signs leads to a direct 
transformation of numerous values shown in Formulas (55) into numerous val-
ues shown in Formulas (57) and this can be shown in this way: 

32

32

31

31

: 205.0879 270 ,

:154.912 90 ,

: 25.0879 90 ,

:334.912 270 .

BF

BF

BF

BF

δ

δ

δ

δ

+

−

+

−

→

→

→

→

 

 

 

 

                    (59) 
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Note: Neutrino oscillation processes take place over the calculated value in the 
best fit for Dirac’s CP violating phase, which is 270 degrees. Deviation from that 
value is related to the precision of the measurements, which have nothing to do 
with the oscillation process. That is why measurements are adopted in the range 

1σ±  which is shown in Table 2. 
Calculation task: 
Establish a connection between the experimental and theoretical values shown 

in Table 1 and Table 2. Taking into account ( )2 5 2
21 7.39 10 eV

BF
m −∆ = ×  as the  

exact value when measuring, and then giving an estimate for ( )2
32 BF exp

m ∆   in  

BF range that the experiments should measure for the Dirac CP violating phase 
to be exactly 270 degrees. 

Solution: 
The difference in BF between the theoretical and experimental values is: 

( ) ( ) ( )2 2 3 2
32 32 2.47565 2.4490 10 eV .

BF BFth exp
m m −   ∆ − ∆ = − ×         (60) 

This difference (60) is positive, therefore the new value in BF moves towards 
the area defined in 1σ+  range in the original measurement, so we could estab-
lish a connection between the new value in BF and the original one: 

( ) ( )
( )

( )

2 2
32 32

3 2 3 2

2
32

0.02665
3 2

2.47565 2.4490 10 eV 0.02665 10 eV

2.4490 .
10 eV

BF BFth exp

BF exp

m m

m

− −

+
−

   ∆ − ∆   

= − × = × →

 ∆ 
=

       (61) 

Based on the appearance of two forms for Dirac’s CP violating phase with dif-
ferent signs and their unification, the corresponding transformations were 
formed and gave a unique numerical value of 270 degrees for the Dirac CP vi-
olating phase. 

And since ideal values cannot be obtained in the measurements, due to the 
appearance of systematic errors and others, then it is recommended to pay at-
tention to more precise measurements of the differences in the squared masses 
of neutrinos, bearing in mind that the theoretical value for the Dirac CP violat-
ing phase is equal to 270 degrees.. 

Because of the solution for the value of the Dirac CP violating phase obtained 
in this way, the following questions could be asked: Why exactly was the value of 
270 degrees obtained for the Dirac CP violating phase? Could it not be some 
other value? 

The answer is as follows: For an angle of 270 degrees, the highest possible val-
ue for the Jarlskog invariant is obtained, which is exactly: 

2
12 12 23 23 13 13 sin sin sin 270mas mas mas

CP CP CP CPJ s c s c s c J J Jδ δ= = = = −      (62) 

And it seems that this would be the possible behavior of three neutrinos in 
nature. 
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In a similar way as we obtained the results in the previous section, we will 
process the results given in the next section in Ref. [16]. In the following tables, 
the explicit numerous values that we will use in our procedure are given. 

Ref. [16]  
Based on the data from Table 3, numerous values are calculated that are 

shown in the Formula (63): 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

31

31

32

32

180 25110 741 180 25110 741 360 16 360 339.595

180 25110 741 180 25110 741 360 17 360 20.404

180 24369 741 180 24369 741 360 16 360 159.595

180 24369 741 180 24369 7

BF

BF

BF

BF

δ

δ

δ

δ

+

−

+

−

= × = × − × =

= − × = − × + × =

= × = × − × =

= − × = − ×

    

    

    

  ( )( )41 360 17 360 200.404+ × =  

(63) 

Ensuring agreement with the unification equation is achieved by applying the 
roots obtained from particular equations by establishing equality between the 
corresponding formulas for Dirac’s CP violating phase that have different signs. 

We show how it looks in the next section. 
The first thing we notice is that different values are obtained for the Dirac CP 

violating phase (63). This is due to the fact that there are some deviations during 
measurements from the true natural values for the ratio between the differences 
of the square of the neutrino mass eigenstates. 

Therefore, we will apply the rule that provides us with the same numerical 
value for Dirac’s CP violating phase regardless of the sign in front of the formu-
la. 

In other words, it means that we need to equalize these formulas and mark 
which unknown in that case we need to correct, and it looks like this: 
 
Table 3. Measured neutrino parameters. 

 Range of measured parameters BF 1σ−  1σ+  
2
21

5 210 eV
m

−

∆
 0.21

0.207.41+
−  7.41 7.21 7.62 

2
32

3 210 eV
m

−

∆
  2.4369 2.4119 2.4628 

2
31

3 210 eV
m

−

∆
 0.028

0.0272.5110+
−  2.5110 2.4840 2.5390 

/CPδ   42
25197+
−  197 172 239 

2
12

1

sin
10

θ
−

 0.12
0.113.03+
−  3.03 2.920 3.150 

2
23

1

sin
10

θ
−

 0.28
0.205.72+
−  5.720 5.520 6.00 

2
13

2

sin
10

θ
−

 0.056
0.0532.203+
−  2.203 2.150 2.261 
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( )
( )

( ) ( )

32 31

2 5 2
32

2 5 2
32

2 5 2 2 5 2
32 32

2 5 2 3 2
32

180 741 10 eV 360 16 360

180 741 10 eV 1 360 17 360

1 1741 10 eV 16 741 10 eV 1 17
2 2

7.41 10 eV 32.5 2.40825 10 eV ;

BF BF

m

m

m m

m

δ δ+ −

−

−

− −

− −

= →

 ∆ × − 
 = − ∆ × + + → 

∆ × − = − ∆ × + + →

∆ = × × = ×

  

    

( )
( )

( ) ( )

32 31

2 5 2
31

2 5 2
31

2 5 2 2 5 2
31 31

2 5 2 3 2
31

180 741 10 eV 1 360 17 360

180 741 10 eV 360 16 360

1 1741 10 eV 1 17 741 10 eV 16
2 2

741 10 eV 33.5 2.48235 10 eV .

BF BF

m

m

m m

m

δ δ− +

−

−

− −

− −

= →

 − ∆ × − + 
 = ∆ × − → 

− ∆ × − + = ∆ × − →

∆ = × × = ×

  

      (64) 

Based on the calculated values (64), we form the corrected Table 4, which 
looks like this: 

In the next step, we use the values in the corrected Table 4 and we calculate 
the Dirac CP violating phases: 

( )

( )

( )

2
32

32 2
21

2
32

32 2
21

2
31

31 2
21

2
31

31
21

180 180 24082.5 741 360 16 360 90

180 180 24082.5 741 360 17 360 270

180 180 24823.5 741 360 16 360 270

180

BF

BF

BF

BF

m
m

m
m

m
m

m
m

δ

δ

δ

δ

+

−

+

−

∆  = × = × − × = ∆

∆  = − × = − × + × = ∆

∆  = × = × − × = ∆

∆
= − ×

∆

    

    

    

 ( )2 180 24823.5 741 360 17 360 90 = − × + × = 
   

 (65) 

And with this source of information, based on the results (63) and (65), we see 
that mutual equating the formulas for Dirac’s CP violating phases with different 
signs transforms one numerical value into another, and we can show it in the 
following way: 
 
Table 4. Corrected values from measured neutrino parameters. 

 Range of measured parameters BF 1σ−  1σ+  
2
21

5 210 eV
m

−

∆
 7.41 7.41   

2
32

3 210 eV
m

−

∆
  2.40825   

2
31

3 210 eV
m

−

∆
 ( ) ( )0.02865

2.5110
txp −

 2.48235   

( )/CP exp
δ   42

25197+
−  197 172 239 

( )/CP th
δ   42

25270+
−  270 245 312 

https://doi.org/10.4236/jhepgc.2024.101018


Z. B. Todorovic 
 

 

DOI: 10.4236/jhepgc.2024.101018 218 Journal of High Energy Physics, Gravitation and Cosmology 
 

31

31

32

32

: 339.595 270 ,

: 20.404 90 ,

:159.595 90 ,

: 200.404 270 .

BF

BF

BF

BF

δ

δ

δ

δ

+

−

+

−

→

→

→

→

 

 

 

 

                     (66) 

Note: Neutrino oscillation processes take place over the calculated value in the 
best fit for Dirac’s CP violating phase, which is 270 degrees. Deviation from that 
value is related to the precision of the measurements, which have nothing to do 
with the oscillation process. That is why measurements are adopted in the range 

1σ±  which is shown in Table 4.  
From all these values (65), we choose those that are consistent with the root of 

the unification Equation (51), so we write: 

( )
( )
( )
( )

32 31

180 24082.5 741 360 17 360

180 24823.5 741 360 16 360 270

sin 180 24823.5 741 1,

sin 180 24082.5 741 1.

BF BFδ δ− += →

 − × + × 
 = × − × = 
 × = − 
 − × = − 

  

   





 

Therefore, on the basis of Formula (66), it can be seen that the achievement of 
the Dirac CP violation phase, which represents the root of the unification Equa-
tion (47), is only possible with the condition that the formulas for the Dirac CP 
violating phase with different signs produce mutually equal values. 

And this essentially represents the condition for spontaneous oscillation of 
three-flavor neutrinos during the movement of the neutrino beam from the 
source. 

Because of the solution for the value of the Dirac CP violating phase obtained 
in this way, the following questions could be asked: Why exactly was the value of 
270 degrees obtained for the Dirac CP violating phase? Could it not be some 
other value? 

The answer is as follows: For an angle of 270 degrees, the highest possible val-
ue for the Jarlskog invariant is obtained, which is exactly: 

2
12 12 23 23 13 13 sin sin sin 270mas mas mas

CP CP CP CPJ s c s c s c J J Jδ δ= = = = −     (67) 

Calculation task: 
Establish a connection between the experimental and theoretical values shown 

in Table 1 and Table 2. Taking into account ( )2 5 2
21 7.41 10 eV

BF
m −∆ = ×  as the  

exact value when measuring, and then giving an estimate for ( )2
31 BF exp

m ∆   in  

BF range that the experiments should measure for the Dirac CP violating phase 
to be exactly 270 degrees.  

Solution: 
The difference in BF range between the theoretical and experimental values is: 

( ) ( ) ( )2 2 3 3 2
31 31 2.5110 2.48235 10 0.02865 10 eV .

BF BFexp th
m m − −   ∆ − ∆ = − × = ×   

(68) 
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This difference (68), is positive, therefore the new value in BF range moves 
towards the area defined in 1σ−  range in the original measurement, so we 
could establish a connection between the new value in BF range and the original 
one: 

( ) ( )

( )
( )

2 2
32 32

2
32

3 2
0.038653 22.48235 10 eV 2.5110 .

10 eV

BF BFth exp

BF exp

m m

m
−

−−

   ∆ = ∆   

 ∆ 
= × → =

       (69) 

By determining the numerical value for the Dirac CP violation phase in the 
amount of 270 degrees, the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix, 
which was written in the general form (16) so far, can now be written with all its 
elements that have numerical values as shown in the next section. 

7. The Final Form of the PMNS  
(Pontecorvo-Maki-Nakagawa-Sakata) Mixing Matrix 

With these theoretical investigations and the results we obtained indicate the 
possibility that the PMNS matrix, which until now in neutrino physics has al-
ways been written in a general form due to an undetermined value for Dirac’s 
CP violating phase, is now given a final form [8]-[16]: 

1 2 3

1 2 3

1 2 3

12 13 12 13 13

12 23 12 23 13 12 23 12 23 13 13 23

12 23 12 23 13 12 23 12 23 13 13 23

270
12 13 12 13 13

12 23 12 23

e
e e

e e

e

e e e

PMNS

i

i i

i i

i

U U U
U U U U

U U U

c c s c s
s c c s s c c s s s c s

s s c c s c s s c s c c

c c s c s

s c c s

µ µ µ

τ τ τ

δ

δ δ

δ δ

−

−

 
 =  
 
 
 
 

= − − − 
 − − − 

= − −



270 270
13 12 23 12 23 13 13 23

270 270
12 23 12 23 13 12 23 12 23 13 13 23

12 13 12 13 13

12 23 12 23 13 12 23 12 23 13 13 23

12 23 12 23 13 12 23 12 23 13 13 23

e e

e e

i i

i i

s c c s s s c s

s s c c s c s s c s c c

c c s c is
s c ic s s c c is s s c s

s s ic c s c s is c s c c

 
 
 −
 
 − − − 

+
= − + +

+ − +

 

 

.
 
 
 
 
 

   (70) 

Using the data in the matrix (70), we find the values for the Jarlskog invariant 
[17]: 

( ) ( ) ( ) max
2 2 3 3 3 3 1 1 2 2 1 1Im ImCP e e e e e e CPJ U U U U U U U U U U U U Jµ µ µ µ µ µ

∗ ∗ ∗ ∗ ∗ ∗= = = − = −  (71) 

Leptonic unitariy triangle  
Based on the parameters of the first and third columns of the mixing matrix 

(70), we write the well-known relation for the triangle from geometry that the 
vector sum of the sides written in complex form for the leptonic unitariy triangle 
is equal to zero: 
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( ) ( )
1 3 1 3 1 3

12 13 13 12 23 12 23 13 13 23 12 23 12 23 13 13 23

0.

e eU U U U U U

iC C S S C iC S S C S S S iC C S C C
µ µ τ τ

∗ ∗ ∗+ +

= − + − + × + + ×

=

 (72) 

Summary 
In Ref. [18] we calculated the range in which values for the Dirac CP violating 

phase could be expected. 
This could be done because we paid attention only to the transition  

, ,e e e eµ τν ν ν ν ν ν→ → →  and it gave an equation whose root was the formula 
for the Dirac CP phase with a positive sign. We connected that formula with the 
rule for the sum of cosδ  [19] and that enabled us to form the procedure to de-
termine the range for the numerical value for the Dirac CP violating phase. 

However, when we derived the equations for the transitions eµν ν→ ,  
,µ τ µ µν ν ν ν→ →  and , ,eτ τ µ τ τν ν ν ν ν ν→ → → , we obtained the roots of 

those equations for the formula for Dirac’s CP violating phase with a negative 
sign. 

This indicated the need to establish continuity in the appearance of Dirac’s CP 
violating phase. This would mean that regardless of the sign in front of those 
formulas, they would have to give the same value for Dirac’s CP violating phase 
in the calculation. 

And that practically means that we should equalize those two formulas, which 
we did. 

In the ideal case that the experimental measurements were made with the 
highest possible precision, it should be expected that the application of either the 
formula with a plus sign or the formula with a minus sign would yield an equal 
or approximately equal numerical value. 

However, due to insufficient measurement accuracy, this did not happen, as 
can be seen from the calculation results (55) and (65) 

This theoretical consideration clearly indicated that the published measure-
ment results given in Refs. [14] [15] [16] must be corrected as shown in Table 2 
and Table 4. 

Applying the formulas for Dirac’s CP violating phase with both signs to the 
corrected results (T2 and T4), we came to a unique result for the numerical value 
for Dirac’s CP violating phase for both sources of information. And it is exactly 
270 degrees. 

In the published results of NuFIT 5.2 (2022) [16], all neutrino parameters are 
shown in diagrams using computer simulations in which numerical values of 
those parameters are expected. Such diagrams also show areas for both the Dirac 
CP violating phase and the Jarlskog invariant. 

And since ideal values cannot be obtained in the measurements, due to the 
appearance of systematic errors and others, then it is recommended to pay at-
tention to more precise measurements of the differences in the squared masses 
of neutrinos, bearing in mind that the theoretical value for the Dirac CP violat-
ing phase is equal to 270 degrees. 
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8. Project Assignment 

Definition of the task: Combine the data from the measurement results from 
the two mentioned sources of information [14] [15] [16] so that it will be 
adopted 2 5 2

21 7.43 10 eVm −∆ = ×  as an exact value. And then, by applying the 
procedure applied in the previous chapters, determine: 2

32m∆ , 2
31m∆ , and the 

Dirac CP violating phase which should be expected to be measured in laborato-
ries.. 

8.1. Task Solution 

Ref. [14] [15] 

( )

( )

( )

2
32

32 2
21

2
32

32 2
21

2
31

31 2
21

31

180 180 24490 743 360 16 360 172.964 ,

180 180 24490 743 360 17 360 187.0255 ,

180 180 25229 743 360 16 360 352.005 ,

180

BF

BF

BF

BF

m
m

m
m

m
m

δ

δ

δ

δ

+

−

+

−

∆  = × = × − × = ∆

∆  = − × = − × + × = ∆

∆  = × = × − × = ∆

= −

    

    

    

( )
2
31
2
21

180 25229 743 360 17 360 7.994 .m
m

∆  × = − × + × = ∆
    

(73) 

Ref. [16] 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

31

31

32

32

180 25110 743 180 25110 743 360 16 360 323.176

180 25110 743 180 25110 743 360 17 360 36.823

180 24369 743 180 24369 743 360 16 360 143.660

180 24369 743 180 24369 7

BF

BF

BF

BF

δ

δ

δ

δ

+

−

+

−

= × = × − × =

= − × = − × + × =

= × = × − × =

= − × = − ×

    

    

    

  ( )( )43 360 17 360 216.339+ × =  

 (74) 

We adopted 2 5 2
21 7.43 10 eVm −∆ = ×  as the exact value and 2

32m∆ , 2
31m∆  

represent unknown values that are related to the adopted exact value and we de-
termine them from the following equations:  

( ) ( )

2 2
32 31

32 31 2 2
21 21

2 5 2 2 5 2
32 32

2 5 2 3 2
32

180 180

1 17.43 10 eV 16 7.43 10 eV 1 17
2 2

32.5 7.43 10 eV 2.41475 10 eV ;

BF BF
m m
m m

m m

m

δ δ+ −

− −

− −

∆ ∆
= → × = − × →

∆ ∆

   ∆ × − = − ∆ × + + →   

∆ = × × = ×

 

 

( ) ( )

2 2
31 32

31 32 2 2
21 21

2 5 2 2 5 2
31 31

2 5 2 3 2
31
2 2
31 32
2 2
21 21

180 180

1 17.43 10 eV 16 7.43 10 eV 1 17
2 2

33.5 7.43 10 eV 2.48905 10 eV ;

66.

BF BF
m m
m m

m m

m

m m
m m

δ δ+ −

− −

− −

∆ ∆
= → × = − × →

∆ ∆

   ∆ × − = − ∆ × − + →   

∆ = × × = ×

∆ ∆
+ =

∆ ∆

 

 (75) 

Now we use the values (75) and the calculated values for the Dirac CP violat-
ing phases are: 
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( ) ( )( )
( ) ( )( )

( ) ( )( )
( )

31

31

32

32

180 24890.5 743 180 24890.5 743 360 16 360 270

180 24890.5 743 180 24890.5 743 360 17 360 90

180 24147.5 743 180 24147.5 743 360 16 360 90

180 24147.5 743 180 24147

BF

BF

BF

BF

δ

δ

δ

δ

+

−

+

−

= × = × − × =

= − × = − × + × =

= × = × − × =

= − × = − ×

    

    

    

  ( )( )
31 32

.5 743 360 17 360 270

0.BF BFδ δ+ −

+ × =

− =

  

 (76) 

Therefore, by looking for a common solution for both sources of information 
Refs. [14] [15] [16] we can project the following parameters for three neutrinos, 
which should be aimed for during measurements: 

( )
( )
( )

2 5 2
21

2 3 2
32

2 3 2
31

31 32

7.43 10 eV ,

2.41475 10 eV ,

2.48905 10 eV ;

270 .

BF

BF

BF

BF BF

m

m

m

δ δ

−

−

−

+ −

∆ = ×

∆ = ×

∆ = ×

= = 

                  (77) 

8.2. Projected Values to Aim for in Experimental Measurements 

Ref. [14] [15] 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 2 5 2 5 2
21 21

2
21

0.04
5 2

2 2 3 2
32 32

2
32

0.034253 2

7.43 7.39 10 eV 0.04 10 eV

7.39
10 eV

2.4490 2.41475 10 eV

2.4490
10 eV

BF BFth exp

BF exp

BF BFexp th

BF exp

m m

m

m m

m

− −

+
−

−

−−

   ∆ − ∆ = − × = × →   

 ∆ 
=

   ∆ − ∆ = − × →   

 ∆ 
=

 

( ) ( ) ( )

( )

( )

2 2 3 2
31 31

2
31

0.033853 2

4838
31 32 exp 28

2.5229 2.48905 10 eV

2.5229
10 eV

270 222 270 222 .

BF BFexp th

BF exp

BF BF th
exp

m m

m

δ δ δ δ

−

−−

++
+ − −

   ∆ − ∆ = − × →   

 ∆ 
=

 = = → = → = =  
 

      (78) 

Ref. [16] 

( ) ( ) ( )

( )

( ) ( ) ( )

( )

2 2 5 2 5 2
21 21

2
21

0.02
5 2

2 2 3 2
32 32

exp

2
32

0.022153 2

7.43 7.41 10 eV 0.02 10 eV

7.41
10 eV

2.4369 2.41475 10 eV

2.4490
10 eV

BF BFth exp

BF exp

BF BF th

BF exp

m m

m

m m

m

− −

+
−

−

−−

   ∆ − ∆ = − × = × →   

 ∆ 
=

   ∆ − ∆ = − × →   

 ∆ 
=
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( ) ( ) ( )

( )

( ) ( )

2 2 3 2
31 31

2
31

0.021953 2

31 32
0 042 73

25

2.5110 2.48905 10 eV

2.5110
10 eV

270

197 197 .

BF BFexp th

BF exp

BF BF th

exp th exp

m m

m

δ δ δ

δ δ

−

−−

+ −

+ +
−

   ∆ − ∆ = − × →   

 ∆ 
=

= = =

= → =



       (79) 

Based on the calculations performed using the information sources [14] [15] 
[16] and the project assignment, we could conclude that the most optimal nu-
merical value between the neutrino parameters could be represented by the fol-
lowing relationship: 

2 2
31 32
2 2
21 21

66.m m
m m

∆ ∆
+ =

∆ ∆
                       (80) 

9. Neutrino Mass Eigenstates and the Effective Value for the  
Majorana Neutrino Mass 

By introducing into research two formulas for Dirac’s CP violating phases that 
differ from each other in sign, it led to the formation of the unification equation 
and then to the unique root of that equation. 

From a mathematical point of view, both formulas must satisfy both the un-
ification equation and the particular equations. 

Namely, by the simultaneous inclusion in the calculation of both formula, a 
unique result for the Dirac CP violating phase of 270 degrees was reached. 

First of all, by including that value, there was a change in the numerical values 
that are displayed in Table 2 and Table 4, and we will use them to calculate the 
numerical values for neutrino mass eigenstates. For calculations, we will use the 
formulas derived in Ref. [6]. 

And secondly, we emphasize that this value could have a deep physical mean-
ing because the highest possible value for the Jarlskog invariant, which is

sin 270nax nax
CP CP CPJ J J= = − , is associated with Dirac’s CP violating phase of 270 

degrees. 
These formulas are derived by applying the rules for the sum of neutrino 

masses for Group 4A  Seesaw Type Weinberg Matrix Mν  [20]. 

9.1. Formulas for Calculating Numerical Values for Neutrino Mass  
Eigentates [6] 

2 2
32 31

1 2 2
32 31

2 3 2 0.016260 eV
4 2

m mm
m m

∆ − ∆
= =

∆ − ∆
            (81) 

2 21
2 1 31

1 0.018393 eV
2 2

mm m m= − + + ∆ =            (82) 

3 2 12 0.0530467 eVm m m= + =                (83) 

1 2 3 0.0877 eV.im m m m= + + ≈∑               (84) 
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9.2. Effective Value for the Majorana Neutrino Mass 

The formula for calculating the effective value for the Majorana neutrino mass 
reads:  

( ) ( )

( ) ( )

2 2 2 2 2
1 12 13 2 12 13 21 3 13 31

2 2 2 2 2
1 12 13 2 12 13 3 13

2 2 2 2 2
1 12 13 2 12 13 3 13

21 31

exp exp 2

exp exp 0 2 270

0.0042 eV.

, 0, 270 .

ee CP

CP

m m C C m S C i m S i

m C C m S C i m S i

m C C m S C m S

α α δ

α α δ

 = + + − 

 = + + − × 

= − − ≈

= = =

π

π





    (85) 

These formulas are derived by applying the rules for the sum of neutrino 
masses for Group 4A  Seesaw Type Weinberg Matrix Mν . 

9.3. Formulas for Calculating Numerical Values for Neutrino Mass  
Eigentates 

2 2
32 31

1 2 2
32 31

2 3 2 0.015996 eV
4 2

m mm
m m

∆ − ∆
= =

∆ − ∆
               (86) 

2 21
2 1 31

1 0.0181657 eV
2 2

mm m m= − + + ∆ =              (87) 

3 2 12 0.052328 eVm m m= + =                   (88) 

1 2 3 0.0865 eV.im m m m= + + ≈∑                 (89) 

9.4. Effective Value for the Majorana Neutrino Mass 

The formula for calculating the effective value for the Majorana neutrino mass 
reads: 

( ) ( )

( ) ( )

2 2 2 2 2
1 12 13 2 12 13 21 3 13 31

2 2 2 2 2
1 12 13 2 12 13 3 13

2 2 2 2 2
1 12 13 2 12 13 3 13

21 31

exp exp 2

exp exp 0 2 270

0.0041eV.

, 0, 270 .

ee CP

CP

m m C C m S C i m S i

m C C m S C i m S i

m C C m S C m S

α α δ

α α δ

 = + + − 

 = + + − × 

= − − ≈

= = =

π

π





    (90) 

9.5. Accounting Values According to the Project Assignment 
9.5.1. Formulas for Calculating Numerical Values for Neutrino Mass  

Eigentates 
2 2
32 31

1 2 2
32 31

2 3 2 0.016018 eV
4 2

m mm
m m

∆ − ∆
= =

∆ − ∆
               (91) 

2 21
2 1 31

1 0.018190 eV
2 2

mm m m= − + + ∆ =              (92) 

3 2 12 0.052398 eVm m m= + =                  (93) 

1 2 3 0.08660 eV.im m m m= + + ≈∑                (94) 

9.5.2. Effective Value for the Majorana Neutrino Mass 
Approximate mean values for mixing angles that include both sources of infor-
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mation are also taken here. 
The formula for calculating the effective value for the Majorana neutrino mass 

reads:  

( ) ( )

( ) ( )

2 2 2 2 2
1 12 13 2 12 13 21 3 13 31

2 2 2 2 2
1 12 13 2 12 13 3 13

2 2 2 2 2
1 12 13 2 12 13 3 13

21 31

exp exp 2

exp exp 0 2 270

0.00424 eV;

, 0, 270 .

ee CP

CP

m m C C m S C i m S i

m C C m S C i m S i

m C C m S C m S

α α δ

α α δ

π

 = + + − 

 = + + − × 

= − − ≈

= = =π





  (95) 

10. Conclusions 

To derive the equation of motion for three neutrinos, we use the rule for the sum 
of the probabilities of neutrino oscillation (8, 9, 10) for all three possible transi-
tions: , ,e e e eµ τν ν ν ν ν ν→ → → ; , ,eµ µ τ µ µν ν ν ν ν ν→ → →  and  

; ,eτ τ µ τ τν ν ν ν ν ν→ → → . 
By applying the standard PMNS matrix, the motion equations were obtained 

in which the Dirac CP violation phase appears as an unknown quantity. 
One might expect that by solving those equations, completely identical for-

mulas for Dirac’s CP violation phase would be obtained. 
However, this did not happen, formulas for Dirac’s CP violation phase were 

obtained, which differ in sign, for the following transitions: 
1) For the transition , ,e e e eµ τν ν ν ν ν ν→ → → , the formula is obtained in the 

form: 
2 2
31 32
2 2
21 21

, .m m
m m

δ δ
∆

π
∆

=
∆ ∆

π=  

2) For transitions , ,eµ µ τ µ µν ν ν ν ν ν→ → →  and , ,eτ τ µ τ τν ν ν ν ν ν→ → → , 
the following mutually identical formulas were obtained, but which are opposite 
in sign compared to transition , ,e e e eµ τν ν ν ν ν ν→ → → : 

2 2
31 32
2 2
21 21

, .m m
m m

δ δ
∆ ∆

= − = −
∆

π
∆

π  

Due to the fact that the oscillations of three neutrinos are reflected with the 
same value for the Dirac CP violating phase, it would mathematically mean that 
such transformations should be established that would give the same end result. 

Such a mathematical transformation can only be achieved by equating both 
formulas with opposite signs. 

For example, depending on the source of information [14] [15] [16] or the as-
signed design task, we had the following equations, respectively:  

31 32 0BF BFδ δ− +− = , 31 32 0BF BFδ δ+ −− = , 31 32 0BF BFδ δ+ −− = . 
Applying such a procedure in all the above examples, we obtained a unique 

result for the Dirac CP violating phase in the amount of 270 degrees and the 
maximum value for the Jatlskog invariant: ( )max maxsin 3 2CP CP CPJ J J= = −π . 

By equating formulas with opposite signs, it essentially describes continuity in 
neutrino oscillations, regardless of the type of transition. 
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By specifying a numerical value for the Dirac CP violating phase of 270 de-
grees, the PMNS (Pontecorvo-Maki-Nakagawa-Sakata) matrix, which until now 
was written in the general form (16), can now be written with all its elements 
having numerical values (70) and it looks like this: 

1 2 3

1 2 3

1 2 3

12 13 12 13 13

12 23 12 23 13 12 23 12 23 13 13 23

12 23 12 23 13 12 23 12 23 13 13 23

12 13 12 13 13

12 23 12 23 13

e
e e

e e

e e e

PMNS

i

i i

i i

U U U
U U U U

U U U

c c s c s
s c c s s c c s s s c s

s s c c s c s s c s c c

c c s c is
s c ic s s c

µ µ µ

τ τ τ

δ

δ δ

δ δ

−

 
 =  
 
 
 
 

= − − − 
 − − − 

+
= − + 12 23 12 23 13 13 23

12 23 12 23 13 12 23 12 23 13 13 23

.c is s s c s
s s ic c s c s is c s c c

 
 + 
 + − + 
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