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Abstract 
By analytically solving the equation of azimuthal null geodesics for spherical 
photon trajectories, a parametric representation of the corresponding seg-
ment of the orbit is obtained. The solution parameter is the latitude coordi-
nate. The dependences of the orbital radius on the black hole spinning para-
meter and the angle of inclination of its plane with respect to the rotation axis 
are calculated for flat circular non-equatorial orbits. It is proved that all 
spherical photon trajectories in the Kerr spacetime are unstable, as well as 
equatorial ones, and the critical photon orbits in the Schwarzschild metric. 
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1. Introduction 

Due to the commissioning of the LIGO and VIRGO gravitational waves obser-
vatories, the scientific community has received a powerful new tool for obtaining 
information about events occurring in the vicinity of black holes and neutron 
stars. However, as before, the main means of obtaining this information remains 
electromagnetic, in other words, photon radiation. A recent major success in this 
direction is the photography of a supermassive object in the heart of the M87 
galaxy in the constellation Virgo [1].  

A recent analysis of the results obtained by the NuSTAR space observatory 
showed that all 14 discovered black holes had their own spinning close to the 
theoretical limit [2].  

In this regard, the problem of lightlike (null) and timelike geodesics of pho-
tons and massive particles in the spacetime of spinning Karr black holes remains 
invariably attractive.  
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The first null geodesics in the Kerr metric were discovered by the authors of 
Ref. [3]. These were 2 groups of geodesic with prograde and retrograde rotation 
directions lying in the equatorial plane. The former occupy the region of radii 
from 1M to 3M, depending on the spinning of the black hole, while the latter 
occupy the region from 3M to 4M (M is the mass of the black hole). Hence it is 
clear that in the Schwarzschild metric in the absence of central body’s spinning, 
the radius of rotation is 3M. The essential difference, however, is that in the 
spherically symmetric Schwarzschild metric, any plane can be considered equa-
torial. In the Kerr metric, due to the lower symmetry, the situation is more com-
plicated. In addition to trajectories that lying in one plane, volumetric trajecto-
ries are also possible, and their diversity is large enough. Therefore, in recent 
years, a lot of works have appeared devoted to geodesics of various types [4]-[9].  

Substantial progress has been made in the work [10]. The author managed to 
find out a combination of trajectory parameters, photons and a black hole cha-
racteristics, a combination of which allows specific spherical orbits—those that 
are characterized by a radius, some constant along the orbit. By numerically 
solving the system of differential equations of motion obtained earlier, the au-
thor calculated a number of spherical trajectories in the Kerr metric. In addition, 
he found that the direction of rotation of photons around a black hole is entirely 
determined by the sign of the projection of the angular momentum on the spin-
ning axis. In a later work by this author [11], light-like spherical orbits were 
considered in detail. In addition, for null geodesics, analytical solutions were 
obtained using the Mino parameter [12]. 

An interesting special case of spherical orbits are planar circular orbits similar 
to equatorial ones, but located at an angle to the rotation axis. The effective or-
bital inclination angle i had been proposed and used [13] [14] to describe such 
trajectories. However, only very approximate results have been obtained so far.  

This work is structured as follows: in Section II, based on the system of null 
geodesic equations the motion of a photon along the latitudinal part of the orbit 
is analytically considered; in Section III the planar circular non-equatorial orbits 
are considered and their radii are calculated; and finally, in conclusion, the re-
sults are summarized. 

2. Latitudinal Motion  

Geodesics around the Kerr spinning black holes are described by the set of 4 1st 
order differential equations [3] [15] in spherical coordinates ( ), , ,r t ϕ θ  

( ) ( ) ( )
2 22 2 2 2

z zr R r E r a aL Q L aE  Σ = = + − − ∆ + −             (1a)  

2 2 2 2 2 2 2cos sinzQ L a Eθ θ θ− Σ = − − 
                 (1b) 

( )2sin 2 2zL Mr MarEϕ θ−Σ∆ = Σ − +                 (1c) 

( ) ( ) ( )2 2 2 2 2sinz zt a L aE r a E r a aLθ  Σ∆ = ∆ − + + + − 
          (1d) 

where a  is the spinning parameter meaning angular momentum of the black 
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hole per unit of its mass M. E and Lz are the integrals of motion determining the 
total energy and component of angular momentum with respect to the axis of 
rotation, respectively. The third constant Q  is the Carter’s constant which af-
fects the motion in the latitudinal direction. Upper points mean, as usual, diffe-
rentiation with respect to the affine parameter. In addition, we have introduced 
the notation 

2 2 2cosr a θΣ ≡ +  and 2 22r Mr a∆ ≡ − +                  (2) 

In the case of a spherical trajectory, its radius is a constant for given one, which 
makes it possible to integrate the Equations (1b)-(1d).  

As a result of dividing Equation (1b) by the square of Equation (1c) and the 
corresponding transformations, we obtain 

( )

( )
2

2 2 2 2 4

2
d 1
d

z z

z

a Mr al l
u

u q l q a u a u

ϕ
−

+
∆ −=

− + − −
,                    (3) 

where a new variable cosu θ=  is introduced and denoted z
z

Ll
E

=  and 2
Qq
E

= . 

As a result of integrating this equation using the known formulas for integrals 
[16] (Eqs. 3.152.3 and 3.157.3), we get the following expression 

( ) ( )
( ) ( )

( )
, , ,2

1 1
zz z F m l c mMr al lu

a w v w w v w
γ γ

ϕ
  Π−

= + + ∆ + + + + 
,         (4) 

where ( ),F mγ  and ( ), ,c mγΠ  are incomplete elliptic integrals of the 1st and 
3rd kind, respectively, and their parameters are 

( )2
arcsin u

m w u
γ

 
 =   + 

, vm
v w

=
+

1, and ( )1c m w= + ,       (5)     

v and −w are the roots of biquadrate polynomial under the square root of the 
Equation (3). 

Similarly, from Equations (1b) and (1d), using again [16] (Eq. 3.153.2), one 
can obtain the following expression 

( ) ( ) ( )

( )

22 2

2

2

2
1 ,

,

zr a Marl vt u a F m
a v w

v ua v wE m au
w u

γ

γ

 + −   = − +  ∆ +  

−
+ + −

+

          (6)  

where ( ),E mγ  is an incomplete elliptic integral of the 2nd kind. 

Expressions (4) and (6) are in fact a parametric description of the azimuthal 
motion along a spherical trajectory. Figure 1(a) and Figure 1(b) show the cor-
responding part of the trajectory in the cases of the photon rotation in the pro-
grade and retrograde directions, respectively. Trajectory parameters for the first 
case are (in fact a M  and so on) a  = 0.8, r = 2, lz = 2.525, q = 7 and for the  

 

 

1We use m instead of the usual for elliptic integrals k2. 
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(a) 

 
(b) 

Figure 1. Latitudinal section of the trajectory: (a) Positive angular momentum projection. 
a  = 0.8; r = 2; lz = 2.525; q = 7; (b) Negative angular momentum projection. a  = 0.5; r 
= 3; lz = −1; q = 27. 
 
second case a  = 0.5, r = 3, lz = −1, q = 27. As it was established in the Ref [10], 
the negative value of the z-projection of the angular momentum leads to the re-
trograde rotation of photons. Latitudinal oscillation continues until u v= . 
Wherein, 2γ = π  and the elliptic integrals turn into complete ones. This gives 
an increment in the azimuthal coordinate ϕ∆  and in the flight time t∆  
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( ) ( ) ( )

( )
,4 2

1 1
zz z wl c mMr al l K m

a w a wv w
ϕ

   Π−
∆ = + +   ∆ + ++    

,       (7) 

( ) ( ) ( )
22 2 2

4 1 4zr a Mral vt a K m a v wE m
a v w

 + −   ∆ = − + + +  ∆ +  

,   (8) 

where K, E and Π  are the complete elliptic integrals of the 1st, 2nd and 3rd kind, 
respectively. 

3. Planar Circular Non-Equatorial Orbits  

Spherical trajectories must satisfy two conditions simultaneously [Equation (1a)]  

( ) d 0
d
RR r
r

= =  [17]. These two conditions give the fourth and third degrees alg-  

ebraic equations. In Ref. [8], an attempt was made to solve the problem directly 
by finding the roots of these equations separately by the usual algebraic solution. 
However, it turned out that to find the common root of both equations in this 
way was practically impossible due to the extreme cumbersomeness of these so-
lutions. More successful was the attempt by the author [14] to use the previously 
introduced [13] an effective angle of inclination of the trajectory. A polynomial 
equation of the 5th degree was obtained, which also contained a square root 
which included two terms. The only possible approximate analysis did not give 
convincing results. However the idea of using this angle did not go unnoticed.  

By resolving Equations (1a) together with its derivative with respect to the 
parameters lz and q (here and beyond we use values per unit mass, i.e. we write r 
instead of r/M, etc.), the author [10] obtained  

( ) ( )
( )

2 23 1
1z

r r a r
l

a r
− + +

= −
−

 and 
( )

( )

24 2 3

22

3 4
1

r r a r
q

a r
− −

= −
−

.        (9)  

It is not difficult to prove that for 2 possible groups of circular equatorial trajec-
tories (prograde and retrograde) with radii [3] 

( )22 1 cos arccos
3

r a  = +     
                   (10) 

q = 0. At the same time, for polar trajectories with radii [10] 

2

3 2

2

2

1 11 2 1 cos arccos
3 3

1
3

a ar
a

 
 

− = + −    −    

             (11) 

0zl = . 

The question of the stability of spherical null geodesics in the Kerr metric de-
serves separate consideration. It is known that the critical photon orbit in the 
Schwarzschild metric is unstable [18]. Stability is determined by the sign of the 
second derivative of the Equation (1a)  
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( )2 212 2 zR r q l a′′ = − + −                     (12) 

Substituting here the expressions (9) after simplifications, we get 

( )8 1 0R r r′′ = − >                         (13)  

Hence, it follows that all the corresponding orbits are also unstable with respect 
to radial perturbations. 

It makes sense, to distinguish between equatorial and similar but inclined tra-
jectories. This purpose is served by the previously introduced an effective incli-
nation angle, defined as [13] [14] 

2
2

2cos z

z

li
l q

=
+

.                         (14) 

Due to this definition for the equatorial trajectories (q = 0) cosi = ±1 for pro-
grade and retrograde orbits, respectively, whereas i = 0. At the same time i = π/2 
for the polar orbits. 

After substituting expressions (9) into the formula (14) and the corresponding 
transformations, we get the 6th degree polynomial expression for determining 
the radii of this type of spherical orbits [19] 

( ) ( )6 5 2 4 2 3 2 2 2 4 46 9 2 4 6 2 0r r a r a r a a r a r aλ λ λ λ− + + − + − + + = ,    (15) 

where 2sin iλ = . 
From the Equation (15) it is not difficult to obtain well-known special cases. 

So for a  = 0 we have  

( )23 3 0r r − = ,                        (16) 

from which follows r = 3M, the well-known result for the Schwarzschild metric. 
In the case 0λ = , i.e. for the Kerr equatorial orbits Equation (15) turns into 

the numerator of the equality q = 0 (9) and hence the Equation (10). Finally, 
when 1λ =  for polar orbits, Equation (15) takes the form 

( )23 2 2 23 0r r a r a− + + = ,                   (17) 

whence follows (11). 
Equation (15) implies that the radii of photon orbits generally depend on a2. 

This in turn means that they are not affected by the spinning direction of the 
central body. Therefore, the radii of orbits with direct and reverse rotation are 
the same, and the statement of the author [14] about their difference is errone-
ous. 

As is well known (Ruffini-Abel theorem), the solution of a polynomial equa-
tion with a degree higher than 4 in radicals is impossible. Therefore, Equation 
(15) was solved numerically. The calculation results are presented in Figure 2 
and Figure 3. The first of them shows the dependence of the radius of a circular 
orbit on the rotation parameter of a black hole for various angles of inclination 
of the rotation plane between 15 and 60 degrees. The orbit radius increases mo-
notonically with increasing of the spin-parameter a, and increment is especially  
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Figure 2. Dependence of the circular radius on spinning parameter for different inclina-
tion angles of the orbital plane. 1—60; 2—45; 3—30 and 4—15 degrees. 
 

 
Figure 3. Dependence of circular radius on inclination angle for different spinning para-
meters. 1— a  = 0.3; 2— a  = 0.5; 3— a  = 0.7; 4— a  = 0.9; 5— a  = 1.0. 
 
steep for small inclination angles close to the equator. For angles close to the 
pole, the increment is relatively small. Figure 3 shows the dependence of the ra-
dius of the orbit on the tilt of the orbital plane. It is also monotonic and much 
stronger for spinning parameters a/M close to 1. As a result, the radii of orbits at 
an orbital inclination of about 65 degrees are approximately the same for all 
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black hole rotation rates. 
The range of possible radii is from 2.4M to 4.0M. Our results contradict the 

conclusions [14] about the presence of non-monotonic sector in the depen-
dences. Dependence r( a ) is monotonic, exactly as in the case of equatorial or-
bits [3].  

4. Conclusions 

1) By solving the equations of azimuthal motion, parametric solution is found 
for a section of a spherical photon trajectory around a rotating Kerr black hole 
without using the Mino parameter. The parameter is the latitudinal coordinate. 

2) It has been proved that the motion of photons along spherical trajectories 
in a Kerr spacetime is unstable with respect to radial perturbations, just like 
equatorial ones and critical photon trajectory in the Schwarzschild metric. 

3) The dependences of the radius of the circular non-equatorial motion of 
photons on the spinning parameter of the black hole and the angle of inclination 
of the rotation plane with respect to the rotation axis are obtained. Both depen-
dences are monotonic, which refutes the result of Ref. [14]. 
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