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Abstract 
Black holes contradict the Nernst-Planck (N/P) version of the 3rd law of 
thermodynamics, but agree with its unattainability (U) version. This happens 
without contradiction, because the N/P and U versions are not equivalent, 
namely, N/P implies U but U does not imply N/P. So, black holes obey the 
weaker version of the 3rd law, but not the stronger one. 
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1. Introduction 

It is commonly believed that the Nernst-Planck (N/P) version of the 3rd law of 
thermodynamics and the unattainability (U) version are equivalent [1]. Nernst 
(N) version [2] asserts that in the 0T +→  limit of the absolute temperature, the 
entropy S of the system tends to a constant which is independent of the remain-
ing thermodynamic quantities that characterize the system (pressure, volume, 
magnetic field, etc.), while N/P says that this constant is zero [3]. On the other 
hand, the U version says that to reach T = 0 needs an infinite amount of time or, 
what is equivalent, an infinite number of steps. 

In Section 2, we show, with two examples, how N/P ⇒ U; moreover, the left 
hand side of the implication needs to include the 1st and the 2nd laws of ther-
modynamics. It is clear that the above amounts to −U ⇒ −N/P but does not 
imply that U ⇒ N/P [4]. That is, the N (or N/P) version is stronger than the U 
version or, in other words, unattainability can hold even if N/P does not. 

The considerations for the Schwarzschild and Kerr black holes are reserved to 
Sections 3 and 4. In Section 3, the thermodynamics of the Schwarzschild black 
hole immediately illustrates the violation of N (or N/P) and simultaneously the 
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fulfillment of U [5]. For the more involved case of the Kerr black hole (Section 
4), the study of the entropy-temperature diagram clearly shows the violation of 
the N (or N/P) version, while the loss of analiticity of the entropy as a function 
of energy (mass) and angular momentum at T = 0 indicates the presence of a 
phase transition into a naked singularity, and therefore the disappearance of the 
black hole itself at this temperature. That is, as a black hole, the system never at-
tains T = 0. These arguments can be considered as a complement to the rigorous 
proof by Israel [6] and the precisions of Wreszinski and Abdalla [7]. 

2. N/P ⇒ U 

Through the use of two kinds of systems, one hydrostatic and the other magnetic, 
we show how, by the well known zig-zag processes, the N and obviously also the 
N/P versions of the 3rd law together with the 1st and 2nd laws, imply the unat-
tainability version of the 3rd law. 

2.1. Hydrostatic System 

Consider the picture in Figure 1: each curve represents the entropy S of the sys-
tem as a function of T at distinct values of pressure p, p1 and p2 with 2 1p p> , 
with the property that, as 0T +→ , both ( )1,S T p  and ( )2,S T p  converge to 
S0. 

a b→ , c d→ , e f→ , …, are isothermal compresions which, from the 
“TdS” equation (consequence of the 2nd. law) pT S C T TV pα∆ = ∆ − ∆  [8], 
where α  is the thermal expansion coefficient and V the volume, reduce to  
T S TV pα∆ = − ∆ ; since α  and V are positive, 2 1 0p p p∆ = − >  implies 

( ), , 0b a d c f eS S S S S S S∆ = − − − <  i.e. a lowering of the entropy. The other 
part of the zig-zag’s, b c→ , d e→ , f g→ , …, are adiabatic expansions  
( 0V∆ > ): from the 1st. law the variation of the internal energy U T S p V∆ = ∆ − ∆  
reduces to 0U p V∆ = − ∆ <  which implies a lowering of T. It is clear that 
through this procedure an infinite quantity of each time smaller zig-zag’s steps is 
needed to arrive at 0T += .  

At the same time it is clear that a cooling to 0T =  is possible in a finite 
number of zig-zag’s if ( ) ( )1 20 , 0 ,S p S p+ +≠  i.e. if N does not hold. 
 

 

Figure 1. Zig-zag isothermal-adiabatic cooling for 0S S→  as 0T +→ . 


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2.2. Magnetic System (Paramagnetism) 

Consider a system of N spins 1/2, each with magnetic moment µ  in the pres-
ence of an external magnetic field B. The picture of the entropy S as a function of 
T, B, and N is analogous to that in Figure 1 with magnetic fields B1 and B2 re-
spectively replacing p1 and p2 ( 2 1B B> ). S is given by  

( ) ( )( ), , 2S T B N N ln Chx xThx= −  

where 
Bx

T
µ

=  [9]. The derivation of this entropy involves the 1st and 2nd  

laws of thermodynamics as well the canonical ensamble of equilibrium statistical 
mechanics. In this case ( )0 0 , , 0S S B N+= = . The vertical parts of the zig-zag’s 
( a b→ , …) are magnetizing isothermals ( 0B∆ > ), while the horizontal parts 
( b c→ , …) are demagnetizing adiabatics ( 0B∆ < ). It is easy to verify that in  

each isothermal, , 0
2

1 0
2T B

B
B TS Th B

BT T Ch h
T

µ
µ µ

µ∆ >

 
   ∆ = − + ∆ <    

    

 (entropy 

descends), while in each adiabatic, 
, 0 0S B

B
T T

B∆ <

∆
∆ = − <  (temperature des-

cends). Again, an infinite quantity of each time smaller zig-zag’s is needed to ar-
rive at 0T += .  

3. Schwarzschild Black Hole 
It is well known that for the Schwarzschild black hole of mass M and horizon ra-

dius 2M, the entropy 
4
AS =  and the Hawking temperature 

2
T κ
=

π
, where A 

is the horizon area and κ  is the surface gravity, are given by  

.
1

8 SchwT T
M

= ≡
π

                        (1) 

and  
2

.4 SchwS M S= ≡π                         (2) 

respectively. So, for 0T +→ , M → +∞  and therefore S →∞  at the absolute 
zero. The last result implies the violation of N or N/P, and at the same time the 
fulfillment of U, due to the impossibility for a black hole to reach an infinite 
amount of mass or energy in any finite time, let it be proper or measured at 
r = ∞  [10]. 

4. Kerr Black Hole 

For a Kerr black hole of mass M and angular momentum J ( 20 J M≤ < ) in 
Boyer-Lindquist coordinates, the temperature and entropy at the event horizon  

2
2 Jr M M

M+
 = + −  
 

 are respectively given by [11]  


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( )
( )

( )

22

22

1
,

4 1 1

J M
T M J

M J M

−
=

π + − 
 

                (3) 

and  

( ) ( )22 2, 2 1 1 .S M J M J M = + − 
 

π                (4) 

At 0J =  both quantities are continuous ( 0C ) and reproduce the Schwarz-
schild values ( ) ., 0 SchwT M T=  and ( ) ., 0 SchwS M S= . Since  

( )
( ) ( )

5 2
2 22 2

1,
4

1 1 1M

T JM J
J M

J M J M

∂  = − × ∂   + − − 
 

π
     (5) 

and  

( )
( )

2

22

2, ,
1M

S J MM J
J J M

∂  =
π

− ∂  −
                 (6) 

T and S have also continuous first derivatives ( 1C ) for 20 J M≤ <  with  

( ) ( ),0 0 and ,0 0 .
M M

T SM M
J J+ − + −
∂ ∂   = =   ∂ ∂   

            (7) 

At 2J M=  both the event horizon at r+  and the Cauchy horizon at r−  
coincide:  

,r r M+ −= =                          (8) 

the black hole region disappears, formally reaching the so called “extreme black 
hole”, with  

( ) ( )2 2 2 ., 0 and , 2 ,
2

SchwS
T M M S M M M= = =π           (9) 

and the first derivatives in (5) and (6) diverge:  

( )( ) ( )( )2 2, and , .
M M

T SM M M M
J J− −

∂ ∂   = −∞ = −∞   ∂ ∂   
     (10) 

In other words, in the interval 20,J M ∈   , T and S belong to 0C  but not to 

1C , with 
M

T
J
∂ −∞ <  ∂ 

, 0
M

S
J
∂  < ∂ 

 for 20 J M< <  (see Figure 2). 

 

 

Figure 2. Temperature and entropy as function of J with M fixed. 
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On the other hand,  

( )
( )

( ) ( )

22

22

1 1 1, 4 ,
,1J

J MS M J M
M T M JJ M

+ −∂  = × =


π ∂ −
      (11) 

which is 0C  and 1C  at 0J =  since ( ),0 8
J

S M M
M
∂  = 

 
π

∂
 and  

( )
( )

3 3
22

4 1,
1J M

S JM J
J M M

J M

π ∂ ∂  = ×  ∂ ∂     − 
 

         (12) 

with ( ),0 0
J M

S M
J M
 ∂ ∂  =  ∂ ∂  

, but divergent at ( )2J M
−

=  with  

( )( )2,
J

S M M
M −

∂  = +∞ ∂ 
, and therefore neither 0C  nor 1C  since  

( ) ( )( )21 ,
,

M

M M
J T M J −

 ∂
= +∞  ∂  

 (see Figure 3). 

I.e., ( ),T M J  is monotonously decreasing with J from 1
8 Mπ

 at 0J = , to 

0+  at ( )2J M
−

= , at constant M. 

It can be easily verified that  

( ) ( )
( )

3 3
22

4 1, ,
1J M JM

S S JM J M J
J M M J M

J M

   ∂ ∂ ∂ ∂   = = ×      ∂ ∂ ∂ ∂        − 
 

π
 (13) 

holds for all )20,J M∈  , while at 2J M= ,  

( ) ( )2 2

2 2

.
J M J M

S S
J M M J

− −
= =

∂ ∂
= = +∞

∂ ∂ ∂ ∂
                  (14) 

The breaking down of the Maxwell-type relation 
2 2S S

J M M J
∂ ∂

=
∂ ∂ ∂ ∂

 and there-

fore the analyticity of S as a function of ( ),M J  at 2J M= , is the indication of  
 

 

Figure 3. Inverse of absolute temperature as a function of J for fixed M. 
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Figure 4. Entropy as a function of temperature for fixed M. 
 
a phase transition into a naked singularity occurring at 0T +=  and therefore of 
the unattainability (U) of this value of the absolute temperature. At the same 
time, the M-dependent value of the entropy at 0T =  (or 0T += ) given by (9), 
shows that the N or N/P version of the 3rd. law is violated. 

As a function of T at fixed M, J is given by ( ) 2 1 8
1 4

MTJ T M
MT
π

− π
−

= . 

Finally, we study S as a function of T for fixed M. From (3) and (4)  

( )
22 1, 0

1 4 8
MS T T

MT M
= < ≤

π
− π π

                  (15) 

with ( ) 20 2S M+ = π , 21 4
8

S M
M

  = 


π
 π

, and  

( )
( )

2 3

2

8
1 4M

S MT
T MT
∂  =

π

 − π

 ∂
                     (16) 

which equals 2 38 Mπ  at 0T +=  and 2 316 Mπ  at 1
8

T
M

=
π

 (see Figure 4). 

5. Final Comment 

We review and emphasize the fact that the Schwarzschild and Kerr black holes 
obey the weaker (unattainability U) version of the 3rd law of thermodynamics 
but not the stronger one (Nernst N or Nernst-Planck N/P). There is no contra-
diction in this fact since both the U and the N (or N/P) versions are not equiva-
lent. 
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