
Journal of High Energy Physics, Gravitation and Cosmology, 2023, 9, 234-244 
https://www.scirp.org/journal/jhepgc 

ISSN Online: 2380-4335 
ISSN Print: 2380-4327 

 

DOI: 10.4236/jhepgc.2023.91020  Jan. 31, 2023 234 Journal of High Energy Physics, Gravitation and Cosmology 
 

 
 
 

Direct and Exact Description of Null Geodesics 
in Schwarzschild Spacetime 

Leo Morgovsky  

Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt, Germany 

 
 
 

Abstract 
Null geodesics for massless particles in Schwarzschild spacetime are obtained 
by direct integration of the trajectory equation in spatial coordinates without 
transformation to the inverse space. The results are classified following 
Chandrasekhar depending on the ratio of the impact parameter of the trajec-
tory to its critical value. In the subcritical and supercritical cases the geodesics 
are expressed in terms of elliptic integrals of the first kind. Some results are 
formally different from the classical ones, but in fact equivalent to them, be-
ing at the same time more compact and descriptive. 
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1. Introduction 

Despite the fact that the study of recently discovered gravitational waves offers 
a new method of obtaining knowledge about the black holes (BH), the analysis 
of the trajectories of massive and massless particles is still the most important 
source of information about these largely mysterious physical objects. 

Recently obtained by the collaboration of the event horizon telescope (EHT) 
data on light bands in the vicinity of the supermassive object in the heart of the 
galaxy M87 [1] once again demonstrated the importance of solutions for null 
geodesics in the Schwarzschild and Kerr spacetimes. Despite the fact that these 
solutions have been obtained for a long time, efforts continue to find alternative 
approaches that would make it easier to obtain or clearer the final expressions. 
The most significant pioneering works in the field have been carried out by C. 
Darwin [2] [3] (in Schwarzschild metric) and S. Chandrasekhar [4] (in Kerr me-
tric). The results of their works are described in detail in Chandrasekhar’s own 
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book as well as in books of other authors [5] [6]. A review over the last decade 
can be found in Ref. [7]). 

All calculations accomplished so far have been performed through transfor-
mation of radial coordinate r into an auxiliary intermediate function u = 1/r. 
This technique originates in classical celestial mechanics long before the relati-
vistic era and is explained by quite clear reason. It is a desire to remove the sin-
gularity at the origin of coordinates to infinity and, at the same time, to include 
the physical infinity, which is a source and (often) an outlet for test bodies, and 
very often the position of the observer, in the field of events. 

Most often, researchers chose the use of Jacobi elliptic functions [8] [9] [10] as 
a solution method. More recently, it has been shown that Weierstrass elliptic 
function can also be successfully used in these calculations [11] [12]. The advan-
tage of both approaches is the opportunity to get results in a generally accepted 
form r = r(φ). 

The solution in the form of elliptic integrals is obtained as an inverse form, 
which was often considered a disadvantage. However, when calculating the tra-
jectory on a computer, it does not matter which of the forms is the preferred 
one. Both are completely equivalent and can easily be converted into one anoth-
er graphically and/or numerically. 

The aim of this work was to solve the equation of null geodesics using the 
natural coordinate system radius-azimuth angle, without additional coordinate 
transformations. In this case, the solution seems to be more natural and direct. 
This made it possible to obtain solutions that sometimes formally differ from the 
well-known ones, but in fact completely equivalent to them and, at the same 
time, are often simpler and more illustrative. 

This approach has an advantage due to its simplicity and straightforwardness 
in presentation. 

The consideration of the problem of searching for null geodesics in this paper 
is focused exclusively on the most promising geometry for further applications, 
when the source of test particles is localized at a sufficiently large distance from 
the event horizon, at least much greater than the Schwarzschild radius. 

2. Exact Solutions in Terms of Elliptic Integrals 

The Schwarzschild metric element has the form (c = 1), 

( ) ( ) ( )12 2 2 2 2 2 2d d d d sin ds f t fρ ρ ρ ρ θ θ ϕ−= − + + + ,        (1) 

where ( ) 1 sf Rρ ρ= − , 2sR GM=  the Schwarzschild radius, G is the gravita-
tional constant and M is the mass of the body which creates gravitational field. 

First of all, the solution of the problem is simplified by the fact that for the 
massless particles moving at the speed of light, the square of the interval 

2d 0s = . In addition, spherical symmetry of the Schwarzschild field makes it 
possible to consider the plane of particle motion as equatorial one ( 2θ = π ). 
Finally, it should be taken into account the conservation laws of angular mo-
mentum L and energy E. As a result of all these circumstances from the metric 
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(1) follows the equation [9] [10] 
2 4

2
2

d
d

r r r r
bϕ

 
= − + 

 
,                      (2) 

where we have introduced a dimensionless coordinates sr Rρ=  and an im-
pact parameter b = L/ERs. 

Integral of this equation will allow us to determine the required trajectories 

( )3

drb
rP r

ϕ = ± ∫ ,                       (3) 

where P3(r) is a cubic polynomial. 
P3 has 3 roots with the property that their sum 0i

i
r =∑ . This property is a  

direct consequence of the absence of a quadratic term in the polynomial. De-
pending on the sign of the discriminant of the cubic polynomial 

4 241
4 27
b bD

 
= − 

 
                       (4) 

there are three possible types of roots which determine the physical properties of 
null geodesics. All of them differ depending on the value of the impact parame-
ter regarding to its critical value at which the discriminant (4) turns to 0. It  

follows from Equation (4) that the critical impact parameter 3 3
2cb = . 

For b = bc, the polynomial has 3 real roots, two of which are equal, for b > bc 
all roots are real and different, and finally, for b < bc, only one root is real, and 
two others are complex conjugate. 

We will consider all these cases separately. 
1) b = bc. 
In this case two roots are equal and the equation becomes 

( ) ( )1 3

d
c

rb
r r r r r

ϕ = ±
− −

∫ .                   (5) 

The calculation of this integral is given in the Appendix A. 
As a result 

( )
( )

3 9
2 34 cosh 1 sinh

2

r ϕ
ϕ ϕ

= +
 

− − 
 

.              (6) 

It can be seen from the Equation (6) that the (unstable) critical photon trajec-
tory is circular and its radius asymptotically approaches one and a half Schwarz-
schild radius (in a system of units, where G = 1, the result for the asymptotic 
value has the form r = 3M). Approximation to the asymptote occurs exponen-
tially, approaching with every full turn the radius 3/2 as exp(−2π). 

Qualitatively, these results are well known and discussed many times. Howev-
er the solution found by C. Darwin [2] [3] in terms of reversal coordinate u = 1/r 
(discussed in details by S. Chandrasekhar in his classical book [4]) has the form 

https://doi.org/10.4236/jhepgc.2023.91020


L. Morgovsky 
 

 

DOI: 10.4236/jhepgc.2023.91020 237 Journal of High Energy Physics, Gravitation and Cosmology 
 

( )2
0

1 1 tanh 2
3 2

u
M M

ϕ ϕ = − + −  ,                (7) 

where integration constant ( )2
0anh 1t 2 3ϕ = . 

Both solutions have the same properties and are obviously different. It can be 
shown nevertheless by algebraic transformations that these solutions are identic-
al. A more detailed analysis is presented in the work of the author [13]. 

Some particular interest is the case when a photon with critical impact para-
meter does not appear from infinity, but is born near the event horizon, for ex-
ample, as a particle of Hawking radiation [6]. In this case the Equation (5) re-
mains valid, but boundary condition now has the form r(0) = 1. 

A solution completely analogous to that described in Appendix A leads to the 
following result 

( )
3 9
2 14cosh 8 3 sinh 4

r
ϕ ϕ

= −
+ +

,               (8) 

Thus, the photon tends to the same critical orbit 3/2, but from the inner side 
of the spherical surface and also approaches it, spinning in a spiral. 

2) b < bc. 
In this case one root is real while two others are complex conjugate. 
The geodesic trajectory now defined by the integral 

( )( )( )1 2 3

d

r

rb
r r r r r r r

ϕ
∞

= ±
− − −

∫ ,                (9) 

where the integration limits are chosen in such a way as to automatically satisfy 
the boundary condition φ = 0 as r → ∞. 

After transformation ( )( ) ( )2 2
2 3 2 2Re Imr r r r r r r − − = − +   the result of in-

tegration can be formally written according to Ref. [14] (Eq. 260.00) as expressed 
in terms of 

( ) ( ), ,b F k F k
AB

ϕ ψ ψ∞= ± −   .               (10) 

where F(ψ, k) is an incomplete elliptic integrals of the 1st kind. 
In addition, we have introduced the following notation 

2A r= , ( )( ) ( )2 2
1 2 2Re ImB r r r= − + , 

( )2 2
12

4
A B r

k
AB

+ −
=      (11) 

( )
( )

1

1

arccos
A B r r A
A B r r A

ψ
 − −

=  
+ −  

, arccos A B
A B

ψ∞
− =  + 

         (12) 

where the roots are defined with expressions 

( )1
2

3 sin 2
br

α
= − , ( )

( )2Re
3 sin 2

br
α

= , ( ) ( )2Im cot 2r b α= ,   (13) 

( )3arctan tan 2α β= , sin cb bβ = .              (14) 

Trajectories of the particles whose impact parameter is less than the critical 
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one inevitably terminate inside the event horizon. The result (10) obtained here 
differs from those found by other authors, since no one required fullfilment of 
natural condition φ = 0 at infinity. 

The corresponding trajectories are depicted in (Figure 1) for various b < bc (1 
and1a b = 2.55; 2 and 2a b = 2; 3 and 3a b = 1; 4 and 4a b = 0.5). Trajectories 1-4 
belong to positive φ while symmetric to them 1a-4a belong to φ < 0. 

3) b > bc. 
All three roots are real and different in this particular case. The integral that 

determines the geodesic trajectory has the same form as Equation (9), 

( )( )( )1 1 2 3

dr

r

rb
r r r r r r r

ϕ = ±
− − −

∫ ,                (15) 

in which, however, the lower limit of integration is the coordinate of a periapsis 
point and upper limit is a particle coordinate. The equation which defines the 
first one is the same trajectory Equation (2) where is the maximum point of the 
trajectory, i.e. the point of the nearest approach of the particle to the gravitating 
body. It is quite clear that at this point d d 0r ϕ = . The roots in this case are 

1
2 cos

33
br α

= ; 2,3
2 2cos

33
br α ± =  

 

π ; arccos cb
b

α  = −  
 

π .     (16) 

Accordingly, the periapsis coordinate is the largest root 1r . 
The result of integration is [14] (Eq.258.00) 

( ) ( )
42 3 ,
2sin
3

r F kϕ ψ
α

= ± ,                  (17) 

where 
( )

2

22sin cos
3 3
sin 2 3

k

α α

α

+ −   
   
   
π π

= , and            (18) 

 

 
Figure 1. Particle trajectories with b < bc destined to fall inside the event horizon. 1, 1a − 
b = 2.55; 2, 2a − b = 2; 3, 3a − b = 1; 4, 4a − b = 0.5; 1 − 4 φ > 0; 1a − 4a φ < 0. 
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( )
( ) ( )

2

2 cos 3 sin 3
3sin

2 2cos sin
3 33

br
r

br

α α
ψ

α α

 
− 

 =
 −  +   −     

π


π
 

.          (19) 

The corresponding trajectories are shown in Figure 2. The particles fly around 
the black hole and then return back to infinity. Due to the symmetry with re-
spect to the horizontal plane, trajectories +φ and −φ are actually the same ones. 
The dashed line shows the position of the critical photon orbit. 

As in previous cases, the resulting Equation (17) formally differs from the 
well-known classical solution [4]. Despite this, the calculations show complete 
and exact equivalence of both solutions. The proof of the identity of both solu-
tions is given in Appendix B. The advantage of the above obtained solution is its 
complete closure. At the same time, the classical solution [4] uses the periapsis 
value, which must be introduced from outside the equation, for example, from 
astronomical data. No additional data besides the impact parameters is necessary 
in our approach. 

These results make it possible to write out a closed equation for determining 
the photons deviation angle after turning around the BH. 

It is quite obvious that the angle of total deviation Ω  is expressed in terms of 
the deflection angles as 

2 ϕ∞Ω = − π ,                        (20) 

where ϕ∞  is a deflection angle at infinity. 
Using the expression (17), the desired result takes the form 

( )
42 2 3 ,
2sin
3

F kψ
α ∞Ω = − π ,                  (21) 

where the angular variable in the integral is found from the formula (19) and has  
 

 

Figure 2. Particle trajectories with b > bc which are deflected by the BH. 1—b = 1.1bc; 
2—b = 1.25bc; 3—b = 1.5bc; 4—b = 2.0bc; 5—critical photon orbit. 
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a simple form 

2 sin 3sin
sin

3

αψ
α∞ =

π+
.                     (22) 

The Equation (21) makes time-consuming series expansion ( )bΩ  [10] un-
necessary. The hyperbolic curve of this dependence is shown in Figure 3. The 
equation which expresses this dependence can be useful in the analysis of the ef-
fects of gravitational lensing, one of the most frequently discussed topics. 

The listed options exhaust all possible cases of trajectories of massless particles 
starting at infinity. It is useful and instructive, however, to consider several spe-
cial cases on the basis of the obtained solutions. 

Consider the case of a very weak gravitational field, in which cb b . This 
situation occurs in particular when the photon beams graze the edge of the solar 
disk. In this case we conclude from Equation (16) that 2α ≈ π . Expanding 
Equations (18) and (22) to the terms of the first non-vanishing order, we obtain 

2 2k b=  and 13
4 4

bψ −
∞ = +

π . 

Expanding then Equation (17), including the integral and taking into account 

that 2 1k  , we get 1

2
bϕ −

∞ =
π
+ . From Equation (21) we finally obtain 

2
b

Ω =  

(or in dimensional units it is twice the ratio of gravitational and real physical ra-
dii of the Sun 2Rs/Rsol). 

This result was first obtained personally by A. Einstein and subsequently con-
firmed by the expedition of the Royal Astronomical Society during the solar ec-
lipse. As it was shown in Ref. [10], this is only the first term in the expansion of 
the deviation angle in a power series of the impact parameter. However, for the 
relatively weak gravitational field of the Sun, this turned out to be enough.  

 

 
Figure 3. Plot of the deviation angle depending on the impact parameter. 
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It is clearly seen from Figure 3, as the impact parameter decreases to the crit-
ical value, the deviation angle increases and for an exponentially small difference 
between them, a photon is able to make several turns around the BH. The closer 
the photon’s orbit approaches the critical circular orbit, the more rotations the 
photon can make. Calculation results according to Equations ((21), (22)) are 
shown in Figure 4. The number of rotations N = Ω/2π is expressed as a function 
of the exponent in the difference between the impact parameter and its critical 
value log(b/bc−1). 

 

 
Figure 4. Number of rotations depending on the difference between 
the impact parameter and its critical value.  

 

 

Figure 5. Photon trajectory computed for b/bc − 1 = 10−3 (The distance 
scale is in the units of Schwarzschild radius). 
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The trajectory calculated by approximate formula according to Eqs. (17)-(19) 
for b/bc = 1 + 10−3 is shown in Figure 5. 
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Appendix A 
In this case, the roots of the cubic polynomial are easily found by elementary 

formulas and they are equal 1 2
3
2

r r= =  while 3 3r = − . 

The integral (5) is calculated using the substitution 
13

2
t r

−
 = − 
 

. As a result 

it takes the form 

2

d
271 6
4

t

t t
−

+ +
∫ .                     (A.1) 

This integral is calculated in a standard way and is equal to 

227 2727 1 6 6
4 22 ln

27

t t t

C

  + + + +  
  −  

  
 

,            (A.2) 

where C is a constant of integration. 
Substituting this result into the formula (5) we get the equality 

227 27 271 6 6
4 4 2

ln
t t t

C
ϕ

  + + + +  
  = −  

  
 

.            (A.3) 

Natural boundary condition is that, when r → ∞ that means t = 0 φ = 0. 
Hence it follows that 6 3 3C = + .Substituting C and expressing now t as a 

function of φ, we obtain 

( ) ( ) ( ) ( )
1

2 3 exp 2 3 exp 4

9
t

ϕ ϕ
−

+ − + + −
= .          (A.4) 

Returning back to the variable r, we finally find 

( )

3 9
2 34 cosh 1 sinh

2

r
ϕ ϕ

= +
 

− −  
 

.              (A.5) 

Appendix B 

We will outline the course of the proof for the case b > bc. 
The well-known formula [4] for supercritical geodesics has the form 

( )2 ,
2

P K k F k
Q

χϕ   = −     
,                 (B.1) 

where P is a periapsis and ( )( )2 6P M MQ P− += . 
It is quite easy to prove that in our notation they are equal to 1P r=  and 

( )( )1 11 3Q r r= − +  because 2 1sM R= =  in our units system. 
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After that it is easy to verify that the factor in front of the integrals in Equation 
(A2.1) is exactly the same as the factor in front of the integral in the Equation 
(17). The modules of the integrals k also coincide. Finally, the equality of the in-
tegrals 

( ) ( ), ,
2

K k F k F kχ ψ − = 
 

,                 (B.2) 

turns out to be an identity valid for any values of variables r and b. 
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