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Abstract 
A binary gravitational rotator, also called the two-body problem, is a pair of 
masses m1, m2 moving around their center-of-mass (com) in their own gravi-
tational field. In Newtonian gravitation, the two-body problem can be de-
scribed by a single reduced mass (gravitational rotator) ( )1 2 1 2rm m m m m= +  
orbiting around the total mass 1 2m m m= +  situated in com in the distance 
r, which is the distance between the two original masses. In this paper, we 
discuss the rotator in Newtonian, Schwarzschild and Kerr spacetime context. 
We formulate the corresponding Kerr orbit equations, and adapt the Kerr 
rotational parameter to the Newtonian correction of the rotator potential. We 
present a vacuum solution of Einstein equations (Manko-Ruiz), which is a 
generalized Kerr spacetime with five parameters ( )1 2 1 2, , , ,g m m R a aµν , and 
adapt it to the Newtonian correction for observer orbits. We show that the 
Manko-Ruiz metric is the exact solution of the GR-two-body problem (i.e. 
GR-rotator) and express the orbit energy and angular momentum in terms of 
the 5 parameters. We calculate and discuss Manko-Ruiz rotator orbits in their 
own field, and present numerical results for two examples. Finally, we carry 
out numerical calculations of observer orbits in the rotator field for all in-
volved models and compare them. 
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1. Introduction 

A binary gravitational rotator, also called the two-body problem, is a pair of 
masses m1, m2 moving around their center-of-mass (com) in their own gravita-
tional field.  
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The problem can be formulated as a single rotator under certain conditions. 
In Newtonian gravitation, the two-body problem can be described by a single 

reduced mass (single rotator) 1 2

1 2
r

m mm
m m

=
+

 orbiting around the total mass 

1 2m m m= +  situated in com in the distance 1 2r = = −r r r , which is the dis-
tance between the two original masses. 

In Newtonian case, the com has zero acceleration, i.e. it is a well-defined Lo-
rentzian frame. 

In section 2, we discuss the two-body problem in Newtonian, Schwarzschild 
and Kerr spacetime context, and show that the (single) rotator is well-defined 
also in Schwarzschild spacetime, and in Kerr spacetime it is well-defined, if the 
rotational parameters of the two spinning Kerr-masses are equal. 

We describe the general GR-ansatz for the two-body problem in section 3, and 
formulate the corresponding Kerr orbit equations in section 4.  

In section 5, we adapt the Kerr rotational parameter to the Newtonian correc-
tion of the rotator-potential. 

In section 6, we present the exact GR-solution (Manko-Ruiz) of the two-body 
problem, which is a generalized Kerr spacetime with four parameters, and adapt 
it to the Newtonian correction. 

In section 7, we discuss extensions: the Einstein radiation power formula and 
complex rotation parameters in the generalized Kerr spacetime. 

In subsection 8.1, we carry out numerical orbit calculations for observer orbit 
in rotator potential for all involved models and compare them. 

In subsection 8.2, we derive the formula for the angular momentum of the 
Manko-Ruiz rotator in its own field, and calculate and discuss the exact rotator 
orbits in two examples. 

The formulas for metrics, orbit equations, and Christoffel symbols are calcu-
lated symbolically from fundamental equations in [1] and [2], and are therefore 
errorless. In the text, they are typed by hand where needed, but are inserted ad-
ditionally as images in the appendix to serve as protection against typos. 

2. The Rotator in Newtonian, Schwarzschild and Kerr  
Spacetime 

2.1. Schwarzschild and Kerr Spacetime 

We start with exact solutions of Einstein equations in spherical coordinates for 
the non-rotating (Schwarzschild) and rotating (Kerr) black-hole. 

The Kerr line element reads [3] [4] (with metric signature ( )1, 1, 1, 1η = − − − ) 

( )

2
2 2

2 2 2 2 2 2

2 22 2 2
2 2 2 2 2

2 2 2 2 2

2 2 2 2

2 sin
d 1 d d d

cos cos

sincos d sin d
cos

cos d

s s

s

s

rr rr
s t t

r r

rrr r r
r rr r

r

α θ
φ

α θ α θ

α θα θ α θ φ
α α θ

α θ θ

  = − +   + +   
   +

− − + +   
− + +   

− +

   (1) 
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where 2

2
s

GMr
c

=  is the Schwarzschild radius, and J
Mc

α =  is the angular 

momentum radius (amr), α has the dimension of a distance: [ ] [ ]rα = , and J is 
the angular momentum. 

In the limit α → 0 the Kerr line element becomes the standard Schwarzschild 
line element  

( )
2

2 2 2 2 2 2dd 1 d d sin d
1

s

s

r rs c t r
rr
r

θ θ ϕ = − − − + 
  −

           (2) 

The total energy for a mass m in Newtonian gravitation field of a mass M is: 
2 2 2

2

2 2 t t
mr m r GmM E mc

r
ϕ ε+ − = =
��

                (3) 

where Et is the total energy and tε  the relative total energy. We use in the fol-
lowing the terminology of [4] for the GR energy and radial orbit equation:  

2 1
2t

Fε −
= , where 2 2 1tF ε= +  is the (dimensionless) relativistic velocity 

factor, and tε  the (here negative) relative total energy, tε ε=  the absolute 
relative total energy. 

Because of conservation of angular momentum L is  

( ) ( )2Ll r const
m

ϕ τ τ′= = = , l = reduced angular momentum is a constant. Us-

ing this relation, (3) becomes the Newtonian orbit differential equation for the 
orbit radius r, with the parameters l and tε  to be determined from the initial 
condition.  

From the first Schwarzschild orbit equation (see below) we get  

( ) ( )
11t const F

r
τ

τ
 

′ − = =  
 

 [4], where F is the above relativistic velocity factor 

and has the dimensionality of velocity FF v c= < . 

In the general relativistic Schwarzschild case the Newtonian approximation 
(3) becomes the exact relativistic energy equation (radial orbit equation [5] [6] 
[7]): 

2 2 2

2 2

2 11
2 22 t
r l GM GM F

rr c r
ε − + − − = = 

 

�
               (4) 

or with Schwarzschild radius sr . 
22 2 2

2

11
2 2 22

s s
t

r r cr l F
r rr

ε − + − − = = 
 

�
, the relative total energy is negative for a 

bound state: 0tε < , we use in the following also the absolute relative energy 

tε ε= . 
We can write the energy equation using the effective potential [5] 

22

2 1
22

s s
eff

r r clV
r rr

 = − − 
 

 

2

2 eff
r V ε+ = −
�

                        (4a) 
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or still simpler using the general effective potential  
22

2 1 2 2 2s s
eff eff

r r clV V
r rr

ε ε = − − + = + 
 

�  

2 0effr V+ =��                          (4b) 

The second form is convenient for expansion of the energy equation in section 
6. 

The equation is solvable in integral form 

( )
2 2

2

1 d

2 1
S

s s
t

r r
r c rl

r rr

τ

ε

=
 + − − 
 

∫  

For the Newtonian case, the 
2

2 1
2

srl
rr

 − 
 

 term is missing, and the integral 

can be calculated in closed form (see 5.1). 

2.2. Newtonian, Schwarzschild, Kerr Rotator 

Newtonian rotator 
In Newtonian gravitation, the movement of two masses with location vectors 

1r  and 2r  in their own gravitational potential takes a very simple form, when 
formulated in their center-of-mass (com) reference frame [8] [9]. 

The location of com is 1 1 2 2

1 2

m m
m m

+
=

+
r rR  and we get for its acceleration from 

the third Newtonian law 

( )1 1 2 2 1 2 12 21'' '' ''m m m m+ = + = +r r R F F , so '' 0=R , com has constant velocity 
and is a well-defined reference frame, in which the com relation 2 2 1 1m r m r=  is 
valid. 

For the displacement vector 1 2= −r r r  we have then for a central force F  
then  

( )12 21
1 2 12

1 2 1 2

1 1 1'' '' ''
r

F r
m m m m m r

   
= − = − = + =   

   

F F rr r r F ,  

or ( )''rm F r
r

=
rr  and 2 2 1 1 rm r m r m r= =  

where 1 2

1 2
r

m mm
m m

=
+

 is the reduced mass: i.e. the movement of m1 and m2 is 

described by the movement of mass rm  with distance r  in com reference 
frame, this orbit is the single rotator.  

Schwarzschild rotator 
We consider now the case of the Schwarzschild spacetime gravitational rota-

tor, also called the Schwarzschild two-body problem: two point masses m1 and 
m2 with 2 1m m≥  rotating around their center-of-mass (com), in the com ref-
erence-frame with orbit radii r1 and r2 respectively.  

We make the approximation, that the Schwarzschild potentials of the two 
masses add up to the total spacetime, which is approximate, since the Einstein eq-
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uations are non-linear. Under this assumption, every mass “sees” the Schwarz-
schild potential of the other mass, like in Newtonian case. 

The original Schwarzschild energy equation reads [5] [6] 

with 
2

θ =
π  ( ) 0θ τ′ =  ( )1 2

2

2
s

m m G
r

c
+

=  2 1ϕ ϕ ϕ= = + π  

( ) ( ) ( )

( )

( ) ( )
2

2 2 22 2'
1 ' '

1

s

s

rr
t c r c

r r
r

τ
τ τ ϕ τ

τ
τ

 
− − − =      −  

 

          (5) 

and for the two masses 

( ) ( ) ( )

( )

( ) ( )
2

2 2 212 2
1 1

'
1 ' '

1

s

s

rr
t c r c

r r
r

τ
τ τ ϕ τ

τ
τ

 
− − − =      −  

 

 

( ) ( ) ( )

( )

( ) ( )
2

2 2 222 2
2 2

'
1 ' '

1

s

s

rr
t c r c

r r
r

τ
τ τ ϕ τ

τ
τ

 
− − − =      −  

 

 

we use the two Schwarzschild orbit invariants l and F and get 

( )
( ) ( ) ( )

2
2 21

1 12
1

' 1 2s sr rlr c
r rr

τ ε
τ ττ

 
+ − − = −  

 
 

( )
( ) ( ) ( )

2
2 22

2 22
2

' 1 2s sr rlr c
r rr

τ ε
τ ττ

 
+ − − = −  

 
 

Because of the com-condition 2 2 1 1m r m r= , r1 and r2 can be calculated from 
the distance r0 between m1 and m2 

2
1 0 0 0

1 1
rm mr r r r

m m
µ
µ

= = =
+

 and 1
2 0 0 0

2

1
1

rm mr r r r
m m µ

= = =
+

 where  

1 2

1 2
r

m mm
m m

=
+

 is the reduced mass, and 1 2m m m= +  is the total mass, fur-

thermore we have 2 1ϕ ϕ ϕ= = + π  for the rotation angles, and the reduced an-

gular momenta ( ) ( )2
1 1'l rϕ τ τ= , ( ) ( )2

2 2'l rϕ τ τ= , where  

( )
( )

( ) ( )
1 2

2 2 2
1 2

'
l l l

r r r
ϕ τ

τ τ τ
= = = , so ( ) ( )2

2
1 2 2

1
1l l l

µ
µ

µ
+

+ = =  is the reduced 

angular momentum of the rotator, with the relation 1 2l l l= + . 

From the above follows  

( ) ( )( )2 2
1 1' 2 2effr V r cτ τ ε+ = − , ( )

2

2 1
22

s s
eff

r rlV r
r rr

 = − − 
 

 

( ) ( )( )2 2
2 2' 2 2effr V r cτ τ ε+ = − , so ( ) ( )2 2

2 1
d d' '

d d
r rτ τ

τ τ
= , ( ) ( )1 2'' ''r rτ τ=  

and the com acceleration vanishes: ( ) ( ) ( )1 2'' '' '' 0τ τ τ= + =R r r , so the com 
frame has constant velocity relative to the observer, the Schwarzschild single ro-
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tator is well-defined.  
We add the two orbit equations  

( ) ( )( )2 2
1 1 1 1 1' 2 2effm r m V r m cτ τ ε+ = −  

( ) ( )( )2 2
2 2 2 2 2' 2 2effm r m V r m cτ τ ε+ = −  

and from 2 2 1 1 rm r m r m r= =  we get the well-known single rotator orbit equation 

( ) ( ) ( )( ) ( )22 2 2
1 2 1 1 2 2

1 2

1 1 ' 2 2r effm r m m V r m c m c
m m

τ τ ε ε
 

+ + + = − + 
 

  (6) 

( ) ( )( ) ( )
( )

2 2 2 2
1 1 2 2

1 2

' 2 2 2

2 2
r eff r

t t t

m r mV r m c m c m c

E E E

τ τ ε ε ε+ = − + = −

= + =
 

The single rotator has the orbit of the reduced mass rm  in the potential 

( )effV r  with energy 1 2t t tE E E= +  and reduced angular momentum  

( )2

1 2l l l= + . 

In order to calculate the individual relative energies ( )1 2,ε ε , we consider 

1 1mε � , since 1 0ε →  for 1 0m → . From 1 1 2 2 rm m mε ε ε+ =  follows 

1
1 2 2

1 2

rm m
m m

ε
ε =

+
, 2

2 2 2
1 2

rm m
m m

ε
ε =

+
 

Kerr rotator 
In case of two rotating relativistic masses, the underlying individual spacetime 

is the Kerr spacetime. 
We consider the 1/r-expanded Kerr energy equation to third order and get 

(dimensionless 1sr = , 1c = ) 

( ) ( ) ( ) ( )
2 2 2 3 2 2 2 2

2 2
3 2

2 1 2 ' 1 0l F Fl l F Fl r F
rr r

α α α α α τ
ττ τ

− − + + − −
+ − + + − =   (7) 

Like in the Schwarzschild case, we get (here with error 
4

1O
r

 
 
 

) and setting 

1F ≈  

( ) ( )( )2 2
1 2 1' 2 2effr V r cτ τ ε+ = − ,  

( )
2 2 2

2 2 2
2 2 21 2 1

22
s s

eff
r rl lV r
r r rr r

α α α +  = − − + +  
   

           (8) 

( ) ( )( )2 2
2 1 2' 2 2effr V r cτ τ ε+ = − , ( )

2 2 2
1 1 1

1 2 21 2 1
22

s s
eff

r rl lV r
r r rr r

α α α +  = − − + +  
   

 

with rotation parameters 1α  and 2α .  
Now the condition for a well-defined com reference frame is 1 2eff effV V= , i.e. 

1 2α α= . 
Under this condition, the movement of masses m1 and m2 is described by the 

binary Kerr rotator orbit ( )r τ  with the radial potential  

( )
2 2 2

2 21 2 1
22

s s
eff

r rl lV r
r r rr r

α α α +  = − − + +  
   

, with reduced angular momen-
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tum l , rotation parameter α , and relative energy ε . 

2.3. The GR Field and Orbit Equations  

The Einstein field equations are [5] [6] [8]: 

0
1
2

R g R g Tµν µν µν µνκ− + Λ =                   (9) 

where Rµν  is the Ricci tensor, R0 the Ricci curvature, 4

8 G
c

κ =
π , Tµν  is the 

energy-momentum tensor, Λ  is the cosmological constant. In the following 
Λ  is neglected, i.e. set 0Λ = , because it is important only on cosmological 
scale, and here we consider a distance scale of star binaries, i.e. d = 10, …, 300 
AU. 

Further on, we use the Christoffel symbols (second kind) 

1
2

g gg
g

x x x
κµ µνλ λκ κν

µν ν µ κ

∂ ∂ ∂
Γ = + − 

∂ ∂ ∂ 
                (10) 

and the Ricci tensor 

R
x x

ρ ρ
µρ µν σ ρ σ ρ

µν µρ σν µν σρν ρ

∂Γ ∂Γ
= − + Γ Γ −Γ Γ

∂ ∂
              (11) 

The geodesic orbit equations O1…O4 in vacuum ( 0Tµν = ) are: 
2

2

d d d 0
d dd

x x xκ µ ν
κ
µν τ ττ

+ Γ = , 0, ,3κ = �               (12)
 

where τ = proper time. 
The four equations O1, O2, O3, O4 are the relativistic orbit equations for 

( ), , ,x ct x y zκ =  i.e. time t and the three spatial coordinates x, y, z in depen-
dence on the relativistic proper time τ For τ we get for the line-element ds = dτ 
and therefore trivially:

 
2d d 0

d d
x xg c
µ ν

µν τ τ
− =                    (13) 

This relation yields for the Kerr- and Schwarzschild-spacetimes the GR energy 
relation, we choose the denomination E1s for it, the orbit equations for the Kerr 
spacetime [1] [3] O1s, O2s, O3s, O4s are given in the appendix [9]. 

Setting [τ] = π/2 solves O3s = 0, and simplifies considerably the other equa-
tions. 

The simplified expressions E1s1, O1s1, O2s1, O4s1 are given in the appendix 
[9]. 

In the following, we use the expression for the τ-derivative with dot or with 

prime: d'
d

tt t
τ

= =� . 

3. The General Ansatz for the GR Two-Body Problem  
The General Formulation of GR Two-Body Problem 

The GR GR two-body problem is the GR-gravitationally bound binary system of 
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two masses m1 and m2 moving around their center-of-mass (com) with respec-
tive distances (r1, r2) from com [10] [11]. 

The GR two-body problem has 4 independent parametersthe total mass 

1 2m m m= +  (resp. corresponding Schwarzschild radius 2

2
s

Gmr
c

= ), the mass 

ratio 2

1

m
m

µ = , and two orbit parameters: the reduced angular momentum 

Ll
m

=  and the relative total energy 2 0t
t

E
mc

ε = <  (resp. its absolute value 

tε ε= ). 

Equivalently we can use the two masses m1 and m2, 
1

4c sr r
ε

=  = mean dis-

tance, and l, which defines the eccentricity by the formula 
2

2 4

81
s

le
r c
ε

= − . 

The corresponding spacetime has the form 

( )( )1 2, , ,br cM g m m r lµν=  

In comparison, Schwarzschild spacetime has only one parameter sr . 
( )( )S sM g rµν=  (see matrix form in the appendix) and Kerr spacetime has 2 

parameters: sr  and J
Mc

α =  the angular momentum radius ( )( ),K sM g rµν α=  

(see matrix form in the appendix) 
The general formulation of the GR two-body-problem is as follows [11] [12]. 
We formulate the problem in coordinates relative to center-of-mass, 

( )1 1 1,x ctκ = x  and ( )2 2 2,x ctκ = x  for the two masses, and ( )1 2,g x xκ κ
µν  the 

metric of the GR two-body-system, with the com-equations 1 1 2 2m m= −x x ,  
3 3

2 2 2 2 2
1 1 2 2

1 1
d d d d dk k

k k
t x t xτ

= =

= − = −∑ ∑ , and τ  proper-time of the metric gµν . 

We can eliminate 2xκ  using the com-equations and are left with gµν  and 1xκ  
as the 10 + 4 unknown variables of the problem. 

Equivalently, we can express 1xκ  and 2xκ  by the rotator 4-vector  

( ), , ,x ct rκ θ ϕ=  in center-of-mass (com) spatial spherical coordinates, with r 

being the distance between m1 and m2, 2
1 0 0 0

1 1
rm mr r r r

m m
µ
µ

= = =
+

 and  

1
2 0 0 0

2

1
1

rm mr r r r
m m µ

= = =
+

 where 1 2

1 2
r

m mm
m m

=
+

 is the reduced mass, and  

1 2m m m= +  is the total mass. In Newtonian limit, this is a correct formulation 
of the two-body problem (see above), so it is also valid in the GR case. 

We have then 10 Einstein-equations for the metric gµν  

0
1
2

R g R Tµν µν µνκ− = − , 

where the energy-mass tensor is [4]: d d
d d
x xT
µ ν

µν ρ
τ τ

= , and where for black-holes 
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2

3 23
3

4 8s s

m c
r r G

ρ = =
π π

 (or dimensionless 3
4
mρ =
π

), and the 4 geodesic orbit eq-

uation for xκ  
2

2

d d d 0
d dd

x x xκ µ ν
κ
µν ττ τ

+ Γ =
 

So in principle, we can solve the 14 coupled partial deq’s for the 14 unknowns 
imposing appropriate boundary conditions. 

We show in section 6.3 that the Manko-Ruiz spacetime  
( )( )1 2, , ,brM g m m R aµν=  is the exact GR-solution of the relativistic two-body 

problem. However, the Manko-Ruiz solution is very complicated, since it has a 
complexity of ( ) 5, 1 1.3 10effC V M = ×  terms. 

If the direct evaluation of the exact solution is too demanding, one is forced to 
use some iterative scheme.  

The common approach is the so-called post-Newtonian approximation [10]. 
Here we make a series ansatz for the GR-Hamiltonian  

( ) ( ) ( ) ( )0 1 22 4

1 1, , , ,PN PN PNH H H H
c c

= + + +q p q p q p q p �  

in the reduced location 3-vector 
( )

1 2

1 2G m m
−

=
+

q qq  and reduced momentum 

3-vector 
( )

1

1 2 1 2m m m m
=

+
pp , where 1 2= −p p  (from com-equations), unit 

vector =
qn
q

, reduced mass ratio 
( )

1 2
2

1 2

m m
m m

ν =
+

. 

Note that here the reduced momentum has the dimensionality [ ] m
s

p =  of 

velocity, and the reduced location has the dimensionality [ ]
2

2

s
m

q =  of 

1/velocity2, so the dimensionality of the Hamiltonian [ ] J
kg

H =  is energy/mass. 

The Newtonian Hamiltonian is then 

( )
2

0
1,

2
H = −

pq p
q

 

and the first post-Newtonian Hamiltonian is 

( ) ( )
( )

( ) ( )( )
22

22
1 2

1 1, 3 1 3
8 2 2PNH ν ν ν= − − + + +

p
q p p np

q q
 

Now we can apply the Hamiltonian equations to get the approximate GR equ-

ation-of-movement d
d

H
t

∂
= −

∂
p

q
. 

4. The Kerr Orbit Equations 

Of special importance is the solution of O1, which gives the derivative d'
d

tt
τ

= . 
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In the Newtonian approximation, is of course t τ=  and ' 1t = .  
In the Schwarzschild spacetime, O1 can be solved analytically, and the 

well-known solution is [5] [6] 

'
11

Ft

r

=
−

, where 2 2 1tF = +ε  the velocity factor, and reduced energy tε  

are constants of the orbit and result from initial conditions.  
Furthermore in Schwarzschild spacetime, angular momentum L is conserved: 

( ) ( )2' Lr l
m

ϕ τ τ = = , where l is the reduced angular momentum, and the azimu-

thal angle is constant, we can choose 
2

θ =
π .  

In the Kerr spacetime, the solution cannot be given in analytical form, but it 
can be expressed as a series in r and α, it seems that it is derived here for the first 
time. 

First, we bring O1 into a new form using 2θ = π , ' 0=θ  and 2'r l=ϕ , 
thus eliminating 'ϕ  and 'θ :  

( )
( )

( )

( ) ( )
( )

( ) ( )

( ) ( )
( )

( )

2

22

4 2
2 22 2

2
1 '

' '
''

1 1

0

r
l r

r r t
t

r r
r r

r r

τ
α τ

α τ τ τ
τ

τ τ
τ τ

α τ α τ

 
 +
 +  + +

   
   − −
   + +   

=

     (14) 

This has the general form ( ) ( )2 3'' ' ' ' 0t t r f r r f r+ − =  and after multiplica-
tion with a function ( )1f r  it can be made a total differential 

( ) ( ) ( ) ( ) ( )1 2 1 3 1'' ' ' ' 0t f r t r f r f r r f r f r+ − =  with ( ) ( ) ( )1
2 1

d
'

d
f r

r f r f r
τ

=  

And with this condition the formal solution can be derived immediately: 

( ) ( )( )1 2exp df r f r r= ∫  and 
( ) ( )

( )
3 1

1

'
f r f r F

t
f r

+
= ∫  with an integration con-

stant F. 
In the Schwarzschild case with α = 0 and ( )3 0f r =  this results immediately 

in ( )1
11f r
r

= −  and '
11

Ft

r

=
−

. 

In the Kerr case,  

( )2
2

2 2

1

1
f r

rr
r α

=
 − + 

, ( )

2

2

3

4
2

2

21
1

11
1

rf r

r
r

r

α
α

α

 
 
 +
 + 
 =

 
 
 −  

+     
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and after turning the integral in the numerator of 't  into a series in α and 1/r, 
't  becomes to first order in α 

( )

( )

2
2 3 42

4 2

' ,

1 1 24
5 3 7exp

14 1

st t r

l
r r rrF

rr r r

=

   − + + −        = − + +  − −  
 

�

α

α α
α  

which for α = 0 results again in '
11

Ft

r

=
−

. 

So the first-order Kerr-correction to 't  is of the order 
2

4F
r
α  from the 

F-term (total energy) and of the order 3l
r
α  from the l-term (rotational energy). 

Now we can eliminate ( )ϕ τ , ( )θ τ , ( )t τ , using the above relations in the 
Kerr energy equation E1d, and we get the radial equation for ( )r τ  in the form 
( ) ( )2' effr V r constτ + = , where ( )effV r  is called the effective potential. 

Inserting the Schwarzschild (dimensionless) invariants: ( ) ( )
1' 1t F

r
τ

τ
 
− =  

 
 

and ( ) ( )2' Lr l
m

ϕ τ τ = =  yields the simplified Kerr energy equation in α, l, and 

positive relative total energy tε ε=  (see also appendix [9]), with 21 2F ε− =  

( ) ( )

( ) ( ) ( )

( )
( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( )

2

2

2 2

2

2

2

3

2 2 2
2

2 2 3

2

1'

11 2 1

1
11

12 1 1

11

11 1

E1dS0 r
r

r r

r
r

l
r r

r
r

l
r r r r

r

−

 
 − − +
 
 + − +
−

 
 − − +
 
 −

 
−  

 
  
  − + + +
  
 +

=



τ
τ

αε
τ τ α

τ
τ

αα ε
τ τ

τ
τ

α α α
τ τ τ τ

τ

         (15) 

and for pure Schwarzschild α = 0 and we recover the Schwarzschild energy equ-
ation  

( ) ( ) ( ) ( )
2

2
2

1 11E1dS0 ' 20 l r
r rr

τ ε
τ ττ

 
− − + +  

 
=  

E1 with Kerr-replacement (full Kerr) 
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( )

( ) ( )

( ) ( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( )
( )

2
3 3

3 5 6 72

2

2

3 3

3 5 6 7

3

2 2
2

2 3

2

4 21
5 3 7'

1
11 11

4 22 1
5 3 7

11

1

E1dA0

l l l l
r r r rr

rr r

l l l ll
r r r r

r
r

l
r r

r

α α α αε
τ τ τ ττ

α
ττ τ

α α α αα ε
τ τ τ τ

τ
τ

α α
τ τ

τ

 
 − − + + −
 
 + −

−− +

 
 − − + + −
 
 −

 
−  

 
 
 + +
 
 +

=

(16) 

The Kerr radial equation E1dS0 can be expanded in 1/r powers: 

( ) ( ) ( )
( ) ( )

( )
( )

( )

2 22 2
2

2 3

2 2

4

2 1 1 21 2' 2

2 1

N

2

K1
l llr

r r r

l

r

α ε α εα ετ ε
τ τ τ

α ε

τ

+ − + −+
+ − + −

− +

=

+

   (17) 

5. Adaptation of the Kerr-Parameter α to the Newtonian  
Rotator Correction 

5.1. The Newtonian and Schwarzschild Orbit 

The Newtonian Kepler orbit is a fundamental formula of classical celestial me-
chanics. We shall use it in the following sub-chapter and describe it here as a 
reminder. 

The Kepler orbit results from the Newtonian gravitational potential  
2

2
s

N
r mcMGmV

r r
= − = −  where sr  is the Schwarzschild radius of the central 

mass M. 
The Kepler orbit is an ellipse with eccentricity e described by [9]. 

( ) ( )
2

2 2

1 1 cos 1 cos
2
sr cMGm e e

r L l
ϕ ϕ= + = + , where the reduced angular momen-

tum is Ll
m

= , the eccentricity is 
2 2 2

2 4 2 4

2 8 81 1 1 1t t

s s

E L l le
mGM r c r c

ε ε
= + = + = − < , 

and t
t

E
m

ε =  is the relative total energy from the radial orbit equation, 0tε <  

for bound states with elliptical orbits, t=ε ε  is the absolute value of the (neg-
ative) relative total energy. 

The orbit rotation angle ( )t=ϕ ϕ  is time-dependent and obeys the relation 

( ) ( )2d
d

t
r t l

t
ϕ

= . 

The Newtonian orbit Equation (4) is solvable in integral form 
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( )
2 2

2

1, , d

2
N t

s
t

t r l r
r c l

r r

ε

ε

=

+ −
∫                 (18) 

The resulting formula is [13] (dimensionless, time in Schwarzschild-units 

s
s

r
t

c
= , radius in Schwarzschild-units sr , c = 1). 

( )

( )( )( )2 2 2 2 2 2
3 2

, ,
1 4 2 2 log 1 4 2 2 2

8

Nt r l

l r r r l r r= − + + − + + − +

ε

ε ε ε ε ε ε ε ε
ε

 (19) 

The zeros of the root in the integral are the minimal and maximal radius, i.e. 
the semi-minor and the semi-major axis of the orbit ellipse [13]. 

2

min
1 1 8

4
lr − −

=
ε

ε
, 

2

max
1 1 8

4
lr + −

=
ε

ε
 dimensionless 

2

2 4

min

81 1

4
s

s

l
r c

r r

ε

ε

− −

= , 

2

2 4

max

81 1

4
s

s

l
r c

r r

ε

ε

+ −

=  full dimensional, mean distance is 1
4c sr r
ε

= . 

For circular orbit, ( )min maxr r r t= = , 3 22
sr c

r
ω = , 2

2s
rl r r cω= = . 

The minimal and maximal radii ( )min max,r r  are zeros of the Newtonian effec-
tive potential (4b) (dimensionless, i.e. 1, 1sr c= = ). 

2

, 2

1 2eff N
lV

rr
ε= − +� , which yields a quadratic equation for the two radii. 

In case of the Schwarzschild metric with the corresponding effective potential 
2

, 2

1 11 2eff S
lV

r rr
ε = − − + 

 
�  the minimal and maximal radii ( )min max,r r  are roots 

of a cubic equation in r. 
The first root 1r  is the turning point of a parabolic orbit, the other two are 

( )min max,r r  of a closed Schwarzschild orbit [2], see appendix . 
When ( )min max,r r  become complex, there is no closed Schwarzschild orbit, 

this happens for small distances from the center. The mean radius 

( ) min max,
2c

r r
r lε

+
=  has the form ([2]) 

( )
( ) ( )( )

( ) ( )( )

21 3
2 2 4 2 2

1 3
2 4 2 2

6 1 1 9 1 6 3 3 4 8 1 36 108
,

12 1 9 1 6 3 3 4 8 1 36 108
c

l l l l l
r l

l l l l

ε ε ε ε ε ε ε
ε

ε ε ε ε ε ε ε

 
− − + + − + + + + − − + 
 =

+ − + + + + − − +
 

for small energies 1ε � , it becomes 1
6cr ε

= . 

5.2. The Orbit Equations for the Remote Observer in Kerr  
Spacetime and in the Newtonian Limit 

First, we calculate the two-body correction 
3

1O
r

 
 
 

 to the Newtonian gravita-

https://doi.org/10.4236/jhepgc.2022.83051


J. Helm 
 

 

DOI: 10.4236/jhepgc.2022.83051 703 Journal of High Energy Physics, Gravitation and Cosmology 
 

tional potential from the Newtonian Kepler orbits of the rotatoras shown in 
Figure 1. 

Second, we take into account the Kerr correction 
3O

r
 
 
 

α  in the Kerr energy 

E1dS0 and compare both expressions, from this we get a formula for α . 
The z-axis of the observer is the z-axis of the rotator: perpendicular to the ro-

tator plane, the origin is at rotator-com.  
We make the assumptions:  
- Observer distance from com is large compared to the rotator’s orbit diame-

ter, so bϕ  = rotation angle of the rotator, changes much faster than oϕ  = rota-
tion angle of the observer orbit. 

- The distance vector between observer and center-of-mass: 0o xr r� , i.e. ob-
server orbit movement is much slower than rotator movement 

We have the following denominations: 

or  = vector(observer, com rotator)  

( ), ,o o o ox y z=r  Cartesian observer coordinates ( ), ,o o o or=r θ ϕ  spherical 
coordinates relative to com 

sino o ox r θ= , coso o oz r θ=  

distance between masses ( )0 1 2,xr d m m= , 

( ) ( )1 2, projection , 2phi phi o ox x r θ = π=  

( ) 2
01 1 0com,x x

mr d m r
m

= = , ( ) 1
02 2 0com,x x

mr d m r
m

= =  

masses: 1m , 2m , 1 2m m m= + , 1 2
r

m mm
m

= , mass ratio 2

1

1
m
m

µ = ≥  rotator 

orbit angle bϕ  = angle(rotator-axis, observer x-projection) observer mass-distance 
projections:  

2 2
1 01 012 sinphi o x o x bx x r x r ϕ= + − , 2 2

2 02 022 sinphi o x o x bx x r x r ϕ= + −  

distances between observer and masses ( )11 observer,xr d m= ,  
( )22 observer,xr d m=  are 

2 2 2 2 2 2
1 1 01 01

2 2
01 01

2 sin cos

2 sin sin

x phi o o x o x b o o

o x o x o b

r x z x r x r r

r r r r

ϕ θ

θ ϕ

= + = + − +

= + −
 

2 2 2 2 2 2
2 2 02 02

2 2
02 02

2 sin cos

2 sin sin

x phi o o x o x b o o

o x o x o b

r x z x r x r r

r r r r

ϕ θ

θ ϕ

= + = + − +

= + −
 

We calculate now the correction of the Newtonian potential due to the two-body 
rotation of the rotator. 

The Newtonian potential of the rotator mass 1 2m m m= +  is 

( ) ( ) 2

2
s

N o
o

r m c
V r

r
= , ( ) 2

2
s

Gmr m
c

=  
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Figure 1. The Newtonian correction to the observer orbit in rotator potential. 

 
We develop the distances 1xr  and 2xr  

2
2 2 01 01

1 01 01 22 sin sin 1 sin sin
2

x x
x o x o x o b o o b

oo

r r
r r r r r r

rr
θ ϕ θ ϕ

 
= + − ≈ + − 

 
 

2
02 02

2 21 sin sin
2

x x
x o o b

oo

r r
r r

rr
θ ϕ

 
≈ + − 

 
 

Now, we have to average over a rotation period over the angle bϕ . Theoreti-

cally, we have to insert ( )b t=ϕ ϕ  from the orbit equation ( ) ( )2d
d

t
r t l

t
ϕ

=  and 

invert ( ), ,Nt r lε  to get ( )r t , and then integrate over a rotation period 

( )01 01
0

1 d
t T

x x
t

r r t t
T

=

=

= ∫ . 

It is hopeless to get an analytical expression for 01xr , but we can assume that 

( )tϕ  is approximately linear ( )t t≈ϕ ω , which is exact for a circular orbit: 

( )t t=ϕ ω . Then the term 02 sin sinx
o b

o

r
r

θ ϕ  cancels by averaging over a rotation 

period, and we get the expression 
2

01
1 21

2
x

x o
o

r
r r

r
 

≈ + 
 

, where the average 

2
01x c

mr r
m

 ≈  
 

, min max

2c
r r

r
+

≈  is the mean diameter of the rotator orbit ellipse, 

22
2

1 21
2

c
x o

o

r mr r
mr

  ≈ +     
, 

22
1

2 21
2

c
x o

o

r mr r
mr

  ≈ +     
 

With this approximation, we get the correction of the Newtonian potential 

x1phi

x2phi

xo

zo

π/2−θο

m1

m2

r01x

r02x

φb
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( )

1 2
2

2 22 2
2 1

2 2

2 2 2 2 2 22 2
1 2 2 1 1 2

3 3 3 2 3 2

1
2

1 1
2 2

4 4 4 1

s
N

o c c

o o

s c s c s c

o o o

m m
r c m mV

r r rm m
m mr r

r r c r r c r r cm m m m m m
mr m r m r

µ
µ

  
  
  ∆ = − +       + +          
 

= + = = 
+ 

  

or dimensionless 

( )

2

3 24 1
c

N
o

r
V

r
µ
µ

∆ =
+

                      (20) 

The term 
( )4

1O
r τ

 
 
 
 

 in E1dS0 is with ( ) or r=τ  dimensionless 

( )
2 2

2 2
4 42 (1 2 ) 2

o o

E
l l

m r r
α α αε

∆
= − − ≈  

Now, for circular orbit dimensionless 
2
orl = , so 

2

3
o

E
m r

α α∆
≈ , and we get for 

( )

2
2

24 1
cr µα

µ
=

+
, and 

( )2 1
cr µ

α
µ

=
+

 and ( )( )lim , 0α µ µ →∞ = , as it should 

be, because for 1 0m →  the rotator becomes a single mass, and the cylindrical 
symmetry becomes spherical, the Kerr-spacetime becomes Schwarzschild- 
spacetime with 0α = . 

6. The Manko-Ruiz Solution as a Generalized Kerr  
Spacetime 

6.1. Tomimatsu-Sato Solutions as Generalizations of Kerr  
Spacetime 

The Kerr solution belongs to the class of Tomimatsu–Sato solutions describing 
exterior gravitational fields of stationary rotating axisymmetric sources intro-
duced by Tomimatsu and Sato (1972, 1973). 

In Weyl’s canonical (cylindrical) coordinates (ρ, z), the axisymmetric Papape-
trou space-time metric ([14] 19.17) is given by 

( ) ( )( )( ) ( )( )22 2 2 2 2d exp 2 exp 2 d d d exp 2 d ds U k z U t Aρ ρ ϕ ϕ= − + + − +   (21) 

with functions U, k, A. 
We get the Einstein field equations in the form 

( ) ( )1
, , , ,,

1,2 1,2
i i i iii

i i
U U U U kρ ρ−

= =

∆ = = +∑ ∑  

( )
2 2

2 ,2 ,12 2
,1 ,2 ,1 ,22

k k
U U U U U

ρ ρ
   

∆ = − + − −   
   

 where ,1
UU
ρ

∂
=
∂

, ,2
UU
z

∂
=
∂

 

For ( )exp 2U iωΓ = +  we obtain in Weyl coordinates the Ernst equation 
([14] 19.41) 
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( )( ) ( )1 2 2
, , , , ,2zz zρρ ρ ρρ−Γ + Γ Γ + Γ + Γ = Γ + Γ             (22) 

from which we calculate the metric functions 

( )
, ,

, 22k ς ς
ς ρ

Γ Γ
=

Γ + Γ
, 

( )
( )

,
, 22A ς
ς ρ

Γ −Γ
=

Γ + Γ
, where 

2
ziρ

ς

∂ − ∂
∂ =  

The Ernst equation with Γ can be reformulated by introducing the new poten-
tial ξ  by 

1
1

ξ −Γ
=

+ Γ
 

We go over to the prolate spheroidal coordinates ( ),x y  connected with 
Weyl’s canonical coordinates ( ), zρ  by the relations 

2 21 1x yρ σ= − − , z xyσ= , constσ =  

In these coordinates, the Ernst equation becomes ([14] 20.37) 

( ) ( )( ) ( )( )( ) ( ) ( )( )2 2 2 2 2 2
, , , ,, ,

1 1 1 2 1 1x y x yx y
x y x yξξ ξ ξ ξ ξ ξ− − + − = − + −  

Based on this ansatz, the Tomimatsu-Sato solution with integer δ can be ob-
tained via a limiting process from the non-linear superposition of δ Kerr solu-
tions with common symmetry axis (Tomimatsu and Sato, 1981). 

The potential ξ of these solutions is a quotient βξ
α

= , α and β being polyno-

mials in the coordinates x and y, with parameters ( ),p q  where 2 21 p q= + . 

Here, the constant σ in the relation between the Weyl coordinates ( ), zρ  and 

the prolate spheroidal coordinates ( ),x y , the angular momentum J and the 
quadrupole moment Q are given by  

mpσ
δ

= , 2J m q= , 
( )2 2

2 2
2

1

3

p
Q m q

δ

δ

 −
 = +
 
 

, where δ is an integer 

For δ = 1 we get the Kerr solution in prolate coordinates 

px iqyα = − , 1β = , βξ
α

=  

The full Kerr metric can be obtained from ξ as ([14] 20.36) 

( )
( )

2 2 2 2

2 2 2

1exp 2
1

p x q yU
px q y

+ −
=

+ +
,  

( ) ( )
2 2 2 2

2 2 2

1exp 2 p x q yk
p x y

+ −
=

−
, ( )( )2

2 2 2 2

2 1 1
1

mqA y px
p x q y

= − +
+ −

 

where mq = a, mp = σ 

aq
m

= , p
m
σ

= , 
2

21 am
m

σ = − , 
2 2

2 2

2 11

41 1

s

s

rr
rr m mx

a a
m r

σ

−−−
= = =

− −

, cosy θ=  
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For δ = 2 we get the Kinnersley and Chitre (1978) solution 

( ) ( ) ( )2 4 2 2 2 41 2 1p x ipqxy x y q yα = − − − + − ,  

( ) ( )2 22 1 2 1px x iqy yβ = − − − , βξ
α

=  

6.2. Metric for Kerr-Kerr Binary Configuration 

We consider the spacetime of two Kerr black-holes with masses m1 and m2, rota-
tion parameters a1 and a2, in fixed distance R, and we are looking for the corres-
ponding vacuum solution of Einstein equations, which is asymptotically flat, i.e. 
it becomes Minkowski metric at infinity (Manko & Ruiz [15]), it is also called 
the Kinnersley-Chitre five-parameter vacuum solution, Manko & Ruiz [16]. 

This spacetime generalizes the Tomimatsu-Sato solution for δ = 2 [16]. 
Ernst complex potential Γ of the exact solution for two aligned Kerr sources is 

defined on the symmetry axis (ρ = 0) by the expression (Stephani [14] (34.94), 
Manko & Ruiz [15]) 

( ) ( ) ( )
( ) ( )

2

20,
z m ia z s i

z
z m ia z s i

µ τ δ
ρ

µ τ δ
− + + − + +

Γ = =
+ − + + + −

 

where m is the total mass of the binary system, a is the rotational parameter, and 
the real quantities s, μ, τ, δ are related to the physical characteristics: 

( )( )2 2 2 2 2
1 2

1 2
4

s R m aσ σ= + + − + , 1 1 2 2ma m a m aδ = − − , 

( )
( ) ( ) ( )( )

( )
2 1 1 1 2 2

2 1 2 2

2 2
2

R m m a R m m a R mR a a
R m a

τ
+ + − +

= − +
+ +

, 

( )( )2 2
1 2

1 2
2

R a
m

µ σ σ τ= − −  

We have the 5 real physical parameters {m1, m2, a1, a2, R}, with distance R, to-
tal mass m and total angular momentum J 1 2m m m= + , 1 1 2 2J m a m a= + , rota-

tional parameters 1
1

1

ja
m

= , 2
2

2

ja
m

= , total rotational parameter a depends on J 

and is obtained from the cubic equation in 1 2 1 2, , , ,a a R m m  

( )( )
( )

2 2 2
1 2 0

2

a a a R m a
J ma

R m

+ − − +
− + =

+
 

1σ  and 2σ  are the half-horizon radii 
2 2

1 1 1 2 1 14m a m a dσ = − + , 2 2
2 2 2 2 2 24m a m a dσ = − +  

where  

( )( ) ( )( )
( )( )

2 2 2
1 1 2 2 1

1 22 2

m a a a Ra R m a m a a
d

R m a

− + + + + +
=

+ +
 

( )( ) ( )( )
( )( )

2 2 2
2 2 1 1 2

2 22 2

m a a a Ra R m a m a a
d

R m a

− + + + + +
=

+ +
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Ernst complex potential Γ in the whole ( ), zρ  space is then extended to 

A B
A B
−

Γ =
+

                         (23) 

( )( )( )( ) ( )( )2
1 2 1 2 .4A R R R r r R r R rσ σ σ σ+ − + − + − − += + − − − + − −  

( )( ) ( )( )
( )

2 2 2 2 2 2
1 1 2 2 1 2 .

1 2

2 2

4

B R R R R r r

R R R r r

σ σ σ σ σ σ

σ σ
− + − +

+ − + −

= − + − + + − −

+ + − −
 

with the radial functions 

2
2

12
Rr zρ σ±

 = + − ± 
 

� , 
2

2
22

RR zρ σ±
 = + − ± 
 

� , 0
R m ia
R m ia

µ + −
=

+ +
 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

2 2
1 1 1 1 1

2 2
0 1 1 1 1 1

2

2

m ia R m a a m a im R mrr
m ia R m a a m a im R m

σ

µ σ
±

±

± − − + + + + +
=

± − + + + + − +

�
 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

2 2
2 2 2 2 2

0 2 2
2 2 2 2 2

2

2

m ia R m a a m a im R m
R R

m ia R m a a m a im R m

σ
µ

σ
± ±

± + − + + − − +
= −

± + + + + − + +
�  

which satisfies the Ernst equation (Cabrera [13]) 

( ) ( )22Γ +Γ ∆Γ = ∇Γ                       (24) 

( )( ) ( )1 2 2
, , , , ,2zz zρρ ρ ρρ−Γ + Γ Γ + Γ + Γ = Γ + Γ  

The line element becomes now [13] in the Weyl-form from 6.1 with new de-
nominations 

( )exp 2f U= , k=γ , A= −ω                   (24a) 

( )( )( ) ( )22 1 2 2 2 2d exp 2 d d d d ds f z f tγ ρ ρ ϕ ω ϕ−= + + − −  

with the functions f, γ, ω of the Weyl coordinates ρ and z 

( )( )
AA BBf

A B A B
−

=
+ +

, ( ) 2 2 2
1 2 0

exp 2
16

AA BB
K R R r r

γ
σ σ + − + −

−
=

� � � �
,  

( )2
2

Im G A B
a

AA BB
ω

 + = −
−

,                  (24b) 

( )( )( )

( )( )( )

( ) ( )( )(
( )( ))

2 2 2
1 1 2

2 2 2
2 1 2

1 2 1 2

2 2
1 2

2 2

G zB R R R r r R

R r r R R R

R r r R R r r R R

r r R R

σ σ σ

σ σ σ

σ σ σ σ

σ σ

− + + −

− + + −

+ − + − − + − +

+ − + −

= − + − + − + +

+ + − − + −

− − − − + −

+ − + − −

 

where  

( )( ) ( )( )
( )( )

2 22 2 2 2 2 2
1 2 1 2

0 2 2
1 2

4R m a R m m a a m m
K

m m R m a

+ + − − + −
=

+ +
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6.3. Transformation to Spherical Coordinates 

It is advisable to transform the metric from the Weyl cylindrical coordinates 
( ), , ,t zρ ϕ  to spherical coordinates ( ), , ,t r θ ϕ .  

The transformation reads: 2 sinr mrρ θ→ − , ( )cosz r m→ − θ , where 

1 2m m m= +  is the total mass [14]. 
The differentials in the line element also have to be transformed correspon-

dingly: d dd d d
d d

r
r
ρ ρρ θ

θ
→ +  and d dd d d

d d
z zz r
r

θ
θ

→ + . The transformed me-

tric doubles in complexity [1] [2], ( )( ), , 127000C g zµν ρ = ,  

( )( ), , 478000C g rµν θ = , but handling the Christoffel symbols and the Einstein 
equations in familiar spherical coordinates is easier. 

The resulting Christoffel symbols have the complexity  
( )( ) 6, , 34 10C rκ

µν θΓ = ×  terms, and the Einstein equations have the complexity 
( )( ) 6, , 240 10C G rµν θ = ×  terms, so symbolic verification of the Einstein equa-

tions is out of the question, but numeric verification by stochastic insertion 
works (although it is time-consuming), and the result is indeed zero within the 
limit of precision for this complexity (10−4) [2]. 

In the following and in the program code, we use exclusively this transformed 
Manko-Ruiz metric. 

6.4. Adaptation of the Manko-Ruiz Kerr-Kerrpotential to the  
Newtonian Correction for Observer Orbit 

The Manko-Ruiz Kerr-Kerr-solution ( )( )1 2 1 2, , , ,brM g m m R a aµν=  has origi-
nally 5 parameters: two rotator masses m1, m2, the distance between the masses 
R, two orbit rotation parameter a1, a2. We interpret R as the mean rotator dis-
tance rc, and a1, a2 as the two individual reduced angular momenta of the rotator  

masses. In this case, the rotation parameters have the ratio 22

1

a
a

µ= , where 

2

1

m
m

µ =  (see 2.1), so we are left with 4 independent parameters:  

( )( )1 2 0, , ,brM g m m R aµν= , where 0
1 21

a
a

µ
=

+
, 

2
0

2 21
a

a
µ
µ

=
+

. 

The 4 parameters have to be adapted to the Newtonian rotator correction: in 

order 
2

1O
r

 
 
 

: 0NV∆ ≈ , and in order 
3

1O
r

 
 
 

: 
( )

2 2

3 24 1
s c

N
r r c

V
r

µ
µ

∆ =
+

, pre-

serving the mass ratio 2

1

m
m

µ = ; in order ( )1O  and 1O
r

 
 
 

 the Manko-Ruiz 

metric is Schwarzschild. 
The general effective potential of the Manko-Ruiz metric in the energy (or 

radial) equation is ( )1 2 0, , , , ,effV m m R a l ε� , it depends on the 4 metric parameters 
( )1 2 0, , ,m m R a  and the two orbit parameters ( ),l ε  of the observer orbit. 

The two free parameters ( )0,R a  in ( )( )1 2 0, , ,brM g m m R aµν=  are in fact 

functions of the rotator orbit parameter cr , i.e. ( )cR R r= , ( )0 0 ca a r= . The 
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coefficient of 
3

1O
r

 
 
 

 in effV�  is 1 2 0 3

1, , , , , , ,effc m m R a l V
r

ε 
 
 

. 

It is a quadratic polynomial in ( ),l ε , as evaluation shows [2]:  
2

1 2 0 33
, 0

1, , , , , , , i j
eff ij

i j
c m m R a l V k l

r
ε ε

=

  = 
 

∑� , the same is true for 
2

1O
r

 
 
 

,  

2

1 2 0 23
, 0

1, , , , , , , i j
eff ij

i j
c m m R a l V k l

r
ε ε

=

  = 
 

∑� . 

Adaptation means: in the effective orbit potential ( )1 2 0, , , , ,effV m m R a l ε�  the 
( ),l ε  independent coefficient satisfies  

( )
( )

2 2

300 1 2 0 2, , ,
4 1

s c
N

r r c
k m m R a V µ

µ
= ∆ =

+
            (25) 

and the coefficient ( )200 1 2 0, , , mink m m R a = . 
This results in two equations for the two parameters ( )0,R a , which are solv-

able, usually in real numbers, as the numerical example shows. 
The adaptation cannot be done symbolically, because the radial equation po-

tential effV�  for Manko-Ruiz has a complexity of ( ) 5, 1 2.6 10effC V M s = ×�   

terms, and to calculate the expansion in 1
r

-powers takes several weeks on a  

desktop. In comparison, for Kerr-spacetime ( ), 1 200effC V K =�  with the ex-
pansion computing time ( ), 1 0.015 sefft V K =� . The assessment for the compu-
ting time is 3~t C , so we get  

( ) 7, 1 3.3 10 390 defft V M s == ×� . 

A numerical alternative is to fit the expansion in 1
r

-powers of the radial equ-

ation ( ), ,effV R a µ�  with inserted parameters ( ), ,R a µ , for the two expansion 

coefficients: for ( )1,2 2

1, , ,E effV R a c V
r

µ  =  
 
�  coefficient of 

2

1O
r

 
 
 

, and for 

( )1,3 3

1, , ,E effV R a c V
r

µ  =  
 
�  coefficient of 

2

1O
r

 
 
 

. 

This is done in [2] in section “Interpolation Manko-Ruiz coeff-expansion 
(1/r2), coeff-expansion (1/r3), in R, a” as a fit in ( ),R a  with fixed 0 2µ µ= = . 

We find the solution of the relation (25) to be [2]:  

( )22.6, 0.0021R a= =  

We use the approximate values ( )20, 0.05R a= =  for the calculation of 
Manko-Ruiz observer orbits with 0 2= =µ µ  in subsection 8.1.  

6.5. Manko-Ruiz Rotator Orbits in Its Own Potential 

The Manko-Ruiz Kerr-Kerr-solution ( )( )1 2 1 2, , , ,brM g m m R a aµν=  has originally 

5 parameters, we replace the two masses ( )1 2,m m  by the total mass 1 2m m m= + , 

and the ratio 2

1

m
m

µ = . The rotational parameters ( )1 2,a a  are proportional to 
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the reduced orbit angular momentum of the two masses: 1 1l a�  and 2 2l a� , as 

in the case of the Kerr metric, where al
c

= . We have shown in 2.2 that the angu-

lar momentums of the rotator have the ratio 22

1

l
l

µ= , so we can set 1 2

1
1

a a
µ

=
+

 

and 
2

2 21
a a µ

µ
=

+
, where a is the rotational parameter of the rotator. 

Now the Manko-Ruiz metric becomes ( )( ), , , , ,brM g m R a rµν µ θ=  as a 
function in spherical coordinates ,r θ  with 3 parameters ( ), ,R a µ  and the 
mass m. We make the metric dimensionless by setting, as usual, 2 1m =  and  

1c = , which is equivalent to calculation in Schwarzschild units 2

2
s

mGr
c

=  and 

s
s

r
t

c
= . 

In order to calculate Manko-Ruiz rotator orbits in its own potential, we have 
to derive a formula for the orbit parameters ( ),l ε  in dependence of the three 
Manko-Ruiz parameters ( ), ,R a µ : ( ), ,l l R a= µ  and ( ),R=ε ε µ . 

Relative energy ( ),Rε µ  
Here cR r=  is the mean radius of the orbit, and we know from 5.1 that the 

Kepler formula for ε  is 1
4 cr

ε = . 

As for ε , in the case of Manko-Ruiz rotator, we calculate ( ),Rε µ  at fixed 

µ  by iteration with the ansatz 
( )1 ,
4 c

c R
r
µ

ε = : we start with 1
4R

ε =  and 

( ), ,l l R a= µ , calculate the orbit from the Manko-Ruiz orbit equations, calculate 

min max

2c
r r

r
+

= , and adapt the factor 1c  in such a way to make cr R= , The ite-

ration normally converges after 2 - 3 steps with accuracy 0.5cR r− ≤ , as dem-
onstrated in [2]. 

In principle, we can calculate symbolically the roots ( )min max,r r  of the Man-

ko-Ruiz effective potential ( ), , , ,effV R a lµ ε� , calculate min max

2c
r r

r
+

= , and solve 

the equation ( )( ), , , , , ,cr R a l R a Rµ µ ε =  for ε . 

In reality, the equation is of course hopelessly complicated. 
However, we can solve the equation numerically for given discrete parame-

ter values ( ) ( ), , , ,i j kR a R aµ µ=  on lattice in a certain parameter region, and 
then fit the values ( ), ,i j kR aε µ  in three dimensions. This has been done in [2] in  

subsection “fit epsc = c1(rc)/(4rc)” and the result is ( ) ( )1

4
c R

R
R

ε = , where the 

coefficient ( )1c R  is fitted by a rational quadratic function 

( )
2

1 2

4.67 9.94 8.94
1 0.488 9.12

R Rc R
R R

+ +
=

+ +
                  (26) 

which depends only on R, and the fit-data plot is shown below Figure 2: 
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Figure 2. The ε-coefficient ( )1c R  as a function of R in Schwarzschild units. 

 
For R > 20, ( )1 1c R ≈ , and we have the Newtonian relation (19). 
Reduced angular momentum ( ), ,l l R a= µ . 
In order to derive the formula ( ), ,l l R a= µ , we start with the off-diagonal 

metric component ( )
2

14 2 2 2

sin,
cos

rag r
r a

θθ
θ

=
+

 of the Kerr metric. In the orbit 

plane 
2

θ =
π  and we get 14 ,

2
ag r
r

θ  = 
 

π
= , i.e. 1l a c

r
 = =  
 

 is the coefficient 

of 1O
r

 
 
 

 in the expansion of 14 ,
2

g r θ π = 
 

 in 1
r

-powers. 

We apply this to the Manko-Ruiz metric. Symbolic calculation is out of the 

question, but we can fit the expansion of 14 ,
2

g r θ π = 
 

 numerically in the pa-

rameters ( ), ,R a µ , as we did in 6.4. in parameters ( ),R a . 

This is done in [1] in subsections “interpolation M14” and “fit M14”. 
The result is the formula 

( ), ,
2.99 4.718 1.553 1.137cf1n5c

aRl l R a
a R

µ
µ

= =
+ + +

        (27) 

which we use for the calculation of rotator orbits in 8.2. 

7. Extended Interpretations of Rotator Energy Equation 
7.1. The Gravitational Radiation Power 

The Einstein-formula gravitational radiation power of a two-body rotator is as 
presented in [5]: 

( )

4 4 2
2 2 5
1 1 5 5 5 5 4

32 32
5 5 1

gr
c c

G GP m m m m
r c r c

µ
µ

= =
+

            (28) 

where min max

2c
r r

r
+

=  is the mean distance of the rotator. or expressed by the 

Schwarzschild radius ( ) 2

2
s

Gmr m
c

=  
( )

4 2
2

4

2
5 1

s
gr

c c

r cP mc
r r

µ
µ

 
=  

+ 
, which shows 
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manifestly dimensionality energy/time, or dimensionless 

( )

2

5 4

2 1
5 1

gr
c

P
r

µ
µ

=
+

 

We compare it to the Kerr energy term 
3

1O
r

 
 
 

 in E1dS0 with 2'
c

l
r

= =ω ϕ , 

where we have to set cl l= , since we consider now the rotator orbit in his own 
metric,  

( ) ( )( ),3 2 2
3

1 2 1 1 2c c

E
l l

m r
α α ε α ε

∆
= − + − + −  

and calculate the corresponding power = energy/period dimensionless setting 

( ) 2' c

c

l
r

ω ϕ τ= =  and have  

( ) ( )( )2 2
,3 52 1 1 2

2 2
c

K c c
c

E ml
P E l l

T r
α

α
ω α ε α ε

∆
= = ∆ = + −

π π
+ − , or dimensionless 

1
2

m =  

( ) ( )( )2 2
,3 52 1 1 2

4
c

K c c
c

l
P l l

r
α ε α ε+ −

π
= + −  

Now, for circular Keplerian orbits, 
2
c

c
r

l =  (dimensionless), therefore 

~c cl r , so the term is approximately 

( ) ( )2
,3 5

22 1 1 2
2 2 4

c

c c
K

c

r
r r

P
r

α ε α ε
 

≈ + − + −  
 π

 

We see, that none of the term has the correct order in 1

cr
, and, since the term 

4

1O
r

 
 
 

 in E1dS0 contains no cl -term, there is no appropriate term in Kerr 

potential, the Kerr approximation cannot explain radiation loss. 
In fact, there is another important precondition for radiation lass, this energy 

term is extracted from the gravitational system, therefore it must be imaginary in 
the potential effV� . In optics and quantum mechanics, imaginary terms in energy 
are related to dissipation and wave damping. 

What about the Manko-Ruiz metric? 

One can see from numeric 1
r

-expansion of the Manko-Ruiz potential effV� , 

that there is a cl -term in the 
4

1O
r

 
 
 

 coefficient, so the Manko-Ruiz potential 

yields an appropriate term for radiation energy. However, in order to be imagi-
nary, the Manko-Ruiz metric itself has to be made complex and still satisfy the 
Einstein equations. 

In fact, there is a natural way to do it. 
In the basic equations of the Manko-Ruiz metric, in (24b) the line element 
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coefficient of dϕ  is defined as 

( )2
2

Im G A B
a

AA BB
ω

 + = −
−

 

In fact, this equation is a little artificial, it is made so, to ensure that the metric 
is real. 

The setting 
( )2

2
G A B

a
AA BB

ω
+

= −
−

 is natural, and of course it satisfies the 

Einstein equations as well. 
The Manko-Ruiz metric thus becomes manifestly complex, and the orbits are 

calculated from complex orbit equations. With this ansatz, the solution 

( ) ( ) ( ), ,t rτ τ ϕ τ  becomes complex, and we simply take the absolute of the va-
riables ( ) ( ) ( ), ,t rτ τ ϕ τ , as all of them must be positive, as below in subsec-
tion 7.2. 

So in Manko-Ruiz metric, the radiation power can be derived from the poten-

tial as the imaginary part of the term 4
clO

r
 
 
 

, but we will deal with it in a sepa-

rate paper. 

7.2. Taking into Account Self-Rotation of the Participating Masses  
m1 and m2 

Self-rotation with the Kerr ansatz 
The Kerr ansatz is valid as long as there is a θ -symmetry, i.e. the system is 

independent of ϕ .  
If there is self-rotation (around z-axis) for the masses m1 and m2, the 

θ-symmetry is not disturbed and self-rotation (spin-) angular momentums L1 
and L2 add up and contribute to the Kerr parameter α according to the formula  

1 2sα α α= + . For a rotating black hole 
( )2

x s x xx
x

x x

r m mL
m c m c

κω
α = = , where 

( ) 2

2 x
s x

Gm
r m

c
=  is the Schwarzschild radius, κ is the inertia-factor (κ = 2/3 for a 

spherical shell) and xω  the angular frequency.  
Now we can make the ansatz that in the case of a binary rotator with 

self-rotation of the black-holes with masses m1 and m2, this contribution adds a 

part to the (real) bα  of the binary rotator, where from above 
2 1
c

b
r µ

α
µ

=
+

. 

For the masses (m1, m2) (dimensionless, i.e. m = 1) rotating with angular fre-

quencies (ω1, ω2) we get then 
( )2 2

1 2

22 1 1
c s

b x
r r

c

κ ω ω µµ
α α α

µ µ

+
= + = +

+ +
 

For →∞µ  the rotator becomes a single rotating Kerr- blackhole with 

2α α= , as it should be. Also, the contribution bα  from gravitational rotation 
becomes zero for →∞µ , and the spacetime becomes the normal real Kerr 
spacetime of a rotating black-hole. 
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We can generalize the self-rotation to arbitrary rotation axis: the z-component 
of the axis is yields the (real) Kerr parameter xα  as above, the perpendicular 
component, i.e. the projection on the rotator plane yields the imaginary Kerr 
parameter yiα , so that the total Kerr parameter becomes  

b x yiα α α α= + +  

With this ansatz, the solution ( ) ( ) ( ), ,t rτ τ ϕ τ  becomes complex, and we 
simply take the absolute of the variables ( ) ( ) ( ), ,t rτ τ ϕ τ , as all of them must 
be positive. The numerical solution of the radial equation with complex coeffi-
cient, as well as that of the full orbit equations with complex coefficient presents 
no additional difficulties, so the ansatz is perfectly feasible.  

The program code for the calculated examples can be found in [2]. 
Self-rotation with Manko-Ruiz rotator 
In case of the Manko-Ruiz rotator, the metric parameter a is determined from 

the orbit reduced angular momentum cl  according to the formula  

( ), ,cl l R a= µ  (see 6.5 (27)). 

If we take into account individual rotation of the two rotator masses, then the 
additional Kerr parameters ( )1 2,α α  add up to the relative angular momentum 

cl  directly: ( ) 1 2, ,cl l R a= + +µ α α . If the individual rotation is inclined under 
angle , 1, 2k k =θ  to the rotator (i.e. orbit) z-axis, then the corresponding per-
pendicular components enter the formula as imaginary numbers, as described 
above: 

( ) ( ) ( )1 1 1 2 2 2, , cos sin cos sincl l R a i i= + + + +µ α θ θ α θ θ  

We get then, as above, orbit equations with complex coefficients, solve them 
in complex orbit radius ( )r τ , and the physical radius is then taken as the abso-
lute value ( ) ( )pr rτ τ= . 

8. Numerical Examples 

In the following subsections 8.1 and 8.2, we present orbits around the binary ro-
tator calculated numerically from different models. 

In subsection 8.3, we present results of calculation of rotator orbits in its own 
metric for mean radius 20cr R= = , and 35cr R= = . 

The details of the calculation, the results and graphics are accessible in the 
Mathematica source code [2]. 

8.1. Binary Rotator with Mass Ratio μ = 2, Observer Orbit 
We consider an example of a rotator consisting of a binary black-hole with mass 

ratio 2

1

2
m
m

µ = = , in dimensionless spacetime, i.e. r in Schwarzschild-units rs, 

and t in Schwarzschild-units s
s

r
t

c
= . 

We consider an observer orbit around the rotator, with orbit parameters 

( ),l F , or equivalently 
21,

2
Fl ε

 −
= 

 
. 
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For the Kerr radial equation, we have to specify the initial value for ( ) 00 cr r= , 
the orbit parameters 0cpl l= , 0cF F= , and the rotator parameters 0 2µ µ= =  
and 0α α= . Here we use the Kerr parameter value derived for the Newtonian  

correction in 5.2: 
2 1
cr µ

α
µ

=
+

, where 00c cr r=  is the mean distance of the  

binary rotator. We have two scales here: 0cr  determines the maximum orbit ra-
dius (orbit scale), 00cr  is the mean rotator distance (rotator scale). 

We use the following values: 

0 2µ = , 0 100cr = , 00 30cr = , 0 3
0

1 0.000707
2 cr

ω = = , 2
0 0 00.61 4.321cp cl rω= = , 

0
0

2.51 0.996c
c

F
r

= − = , relative absolute energy 
2
0

0
1

0.00399
2

cF
ε

−
= = , eccentric-

ity 2
0 01 8 0.635t cpe lε= − = , 000

0
0

7.071
2 1
cr µ

α α
µ

= = =
+

 pure Newtonian cor-

rection, resp. complex α  with additional self-rotation ( )1 i∆ = +α  for both 

black-holes 45˚ to rotator axis ( )000
0

0

1 8.071 1.0
2 1
cr i i

µ
α

µ
= + + = +

+
. 

The reduced angular momentum 0cpl  is set on purpose relatively low in or-
der to make eccentricity large, to test the validity of the formula for α  for 
non-circular orbits: the results show that the approximation of the Newtonian 
correction is still good in this case. 

In the case of the Manko-Ruiz spacetime, we have made the adaptation of the 
orbit parameters by semi-manual gradient procedure.  

In this way [2], we got the Manko-Ruiz parameter values with fixed mass ratio 

0 2µ = , 2
0

1

m
m

µ= , 22
0

1

a
a

µ= . 

The result values are: 1 0.5 3m = , 2 0.5 2 3m = ∗ , 35R = , 1 0.05 5a = , 

2 0.05 4 5a = ∗ . 
We use the following calculation models without self-rotation: pure Newto-

nian N1, Newtonian with rotator correction N1s, Schwarzschild S1, Kerr ap-
proximation (E1dS0 Schwarzschild-Kerr) K1, Kerr approximation (E1dA0 full 
Kerr-approx.) L1, exact Kerr (full Kerr orbit equations) A1, the Manko-Ruiz 
4-parameter Kerr-extension M1. 

We use the following calculation models with self-rotation: Kerr approxima-
tion (E1dS0 Schwarzschild-Kerr) K1s, Kerr approximation (E1dA0 full Kerr) 
L1s, exact Kerr (full Kerr orbit equations) A1s. 

8.2. Numerical Results  

Orbit parameter table 
The following table (Table 1) contains the principal orbit values for the mod-

els without self-rotation: minimal and maximal radius rmin, rmax, radius drift Δr, 
first rotation period T1, period drift ΔT, all in Schwarzschild units. 
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Table 1. Orbit parameters of observer orbits in the rotator field in different models. 

model rmin rmax Δr T1 ΔT 

N1 Newton 22.84 102.41  4403.7  

N1s Newton corr. 33.57 100.0  4469.4  

S1 Schwarzschild 21.49 102.56  4397.5  

K1 Kerr Schw-approx 20.33 102.6  4280.7  

K1s mit spin 19.9 102.6  4254.5  

L1 Kerr fK-approx 33.01 102.9  4545.7  

L1s mit spin 34.45 103.  4565.6  

A1 exact Kerr 22.6 102.76  4457.4  

A1s mit spin 22.34 102.76  4459.6  

M1s Manko-Ruiz 29.5 103.0 1.9 × 10−6 4645.0 −1.7 × 10−4 
 

Orbit radius plots r(τ) 
Kerr exact, Kerr apS Schwarz-app, Schwarzschild, Newton 
Here we present models, which approximate well the uncorrected original 

pure Newton orbit with values: rmin: ~22, period T1 ~4400. The main deviation in 
period is in the model Kerr apSas as shown in Figure 3. 

Kerr apF full-Kerr-approx., Schwarzschild, Newton corrected, Manko-Ruiz 
Here we present models as shown in Figure 4, which approximate well the 

rotator-corrected Newton orbit with values: rmin: ~34, period T1 ~4470, and for 
comparison Schwarzschild orbit with rmin = 21.5. The main deviation in period is 
in the Schwarzschild model. 

Kerr exact, Kerr exact with spin 
Here we show the influence of 2x spin (self-rotation) ( )1 i∆ = +α  added to 

the orbit angular momentumas shown in Figure 5, where the spin is inclined 
45˚ to rotator axis. The exact Kerr solution shows only a small deviation 

min 0.3r∆ ≈ −  and 1 2T∆ ≈ . 
Kerr apS Schwarzschild-approx, Kerr apS with spin 
Here we show the influence of self-rotation on the Kerr solution with 

Schwarzschild-approximationas shown in Figure 6. 
The Kerr solution shows a larger deviation min 0.4r∆ = −  and 1 26T∆ ≈ − . 
Kerr apF full Kerr-approx, Kerr apF with spin 
Here we show the influence of self-rotation on the Kerr solution with full 

Kerr-approximation. 
The Kerr solution shows a larger deviation min 1.5r∆ =  and 1 20T∆ = − . 

8.3. Manko-Ruiz Rotator Orbits in Its Own Field (Metric) 

We consider the Manko-Ruiz rotator in its own field, with parameters ( ), ,R a µ , 

relative orbit energy 
( )1 , 1.45
4 4

c R
R R
µ

ε = ≈  for 2µ = , and reduced angular orbit 

momentum ( ), ,
2.99 4.718 1.553 1.137

aRl l R a
a R

µ
µ

= =
+ + +

, where the two 
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latter relations have been derived in subsection 6.5, we set the total mass 

1 2 0.5m m m= + =  and calculate in Schwarzschild units, i.e. dimensionless. 
 

 
Figure 3. Orbit radius r(τ): Kerr exact, Kerr apS = Schwarz-app, Schwarzschild, 
Newton. 

 

 
Figure 4. Orbit radius r(τ): Kerr apF full-Kerr-approx., Schwarzschild, Newton cor-
rected, Manko-Ruiz. 

 

 
Figure 5. Orbit radius r(τ) without and with spin: Kerr exact. 
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A rotator orbit for a rotator with given mass ratio µ  is determined by the 
mean radius cr  (which determines the relative orbit energy according to  

( )1 ,
4c

c R
R
µ

ε = ) and the reduced angular momentum cl  (which determines the 

eccentricity of the orbit). We extract the metric parameters from it: cR r= , and 
a from the above formula ( ), ,cl l R a= µ . 

We calculate for the rotator with 2µ =  two orbits with mean radii 20cr =  
resp. 35cr =  and 0.2a = . 

We calculate also the corresponding Newton and Schwarzschild orbits with 
the same orbit parameters cl , cε . 

The result are presented in Schwarzschild units in the following Table 2 and 
Figure 7, resp. Table 3 and Figure 8. 

Comparison of the two tables reveals strong differences in behavior of the 
Manko-Ruiz orbits and Kepler orbits as shown in Figure 9.  

 

 
Figure 6. Orbit radius r(τ) without and with spin: Kerr apS Schwarzschild-approx. 

 

 
Figure 7. Orbit radius r(τ) without and with spin: Kerr apF full Kerr-approx. 
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Figure 8. The Manko-Ruiz 20cr =  orbit and corresponding Newton orbit. 

 

 
Figure 9. The Manko-Ruiz 35cr =  orbit and corresponding Newton and Schwarzschild 
orbit. 

 
Table 2. Orbit parameters of observer orbits in its own field, 20cr = . 

Parameters 
2µ =  

0.2a =  
rmin rmax period T energy cε  ang.m cl  

Manko Ruiz 1.8 38.2 957.3 0.018 0.13 

Newton 0.018 27.9 547.3 0.018 0.13 

Schwarzschild no solution      

 
Table 3. Orbit parameters of observer orbits in its own field, 35cr = . 

Parameters 
2µ =  

0.2a =  
rmin rmax period T energy cε  ang.m cl  

Manko Ruiz 4.52 61.4 1755.4 0.010 0.15 

Newton 0.022 46.3 991.6 0.010 0.15 

Schwarzschild min. cl  3.07 41.7 996 0.010 13.8 × 0.15 
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The Kepler law 3 2
cT r�  does not apply anymore, we have  

( )
( )

1.135 351.83
20 20

c

c

T r
T r

=  = =  =  
. 

Also, the formula for the eccentricity is different from the Keplerian 
21 8 c ce lε= − : e is larger for Manko-Ruiz, and the energy-radius relation 

1.45
4c

cr
ε ≈  deviates from the Newtonian case. 

However, we have to keep in mind that in the limit 1r �  (i.e. here 

min 1r � ) Manko-Ruiz metric becomes the first Schwarzschild and then flat 
Minkowski metric and the orbit become the first Schwarzschild and then New-
tonian orbits. 

9. Conclusion 

The central theme here is the gravitational two-body problem. 
New results are: 

- Precise formulation and calculation 
The two-body problem is precisely formulated and calculated as (single) rota-

tor with a single mass based on the Newtonian, Schwarzschild, and Kerr effective 
potential ( )effV r  in the energy (radial) equation. 
- Adaptation of the Kerr and Manko-Ruiz spacetime for observer orbit 

Kerr and Manko-Ruiz spacetime are adapted to the Newtonian rotator correc-
tion for the observer orbit, i.e. parameters are fitted resp. calculated in order to 

describe the Newtonian correction in order 
4

1O
r

 
 
 

.  

In the case of the Manko-Ruiz spacetime, the Newtonian-limit-principle in 
GR guarantees that with adaptation to the Newtonian correction, the Man-
ko-Ruiz spacetime ( ) ( )( )( )1 2, , ,br c cM g m m R r a rµν=  for observer orbit is the 
exact GR-solution for an orbit in the rotator potential, since it is a solution of the 
Einstein equation with exactly 4 independent parameters matching the 4 para-
meters ( )1 2, , ,c cm m r l  of the two-body problem, and becomes the Newtonian 
solution in the limit r →∞ . 
- Calculation of rotator orbit in its own field 

The verification of Manko-Ruiz Einstein equations, the symbolic calculation 

of the Manko-Ruiz general effective potential ( )effV r� , its development in 1
r

-powers are new results. 
Furthermore, we derive a formula for the reduced angular momentum 
( ), ,l l R a= µ  of a Manko-Ruiz rotator in its own field from the rotational pa-

rameter a, the orbit radius R, and the mass ratio μ, and for the relative total 
energy ( ),R=ε ε µ . These two parameters determine the rotator orbit, and we 
calculate this orbit in two examples and present the results in table and graphical 
form. 
- Numerical calculation of Manko-Ruiz orbits and of the effective potential 
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The presented numerical calculation of observer orbits in the Newton-adapted 
Manko-Ruiz potential is also a new result. 
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Appendix A1 

Schwarzschild spacetime in matrix form (dimensionless, r in rs units) 

( )

2

22

11

1
11

sin

r

r
r

r θ

 − 
 
 − 

− 
 

− 
  − 

 

Kerr spacetime in matrix form (Boyer-Lindquist coordinates), Kerr parameter  

La
mc

=  

( )

2

2 2 2 2 2 2

2 2 2

2 2

2 2 2

2 2 2
2 2 2

2 2 2 2 2 2

sin1
cos cos

cos

cos

sin sinsin
cos cos

r r
r r

r
r r

r

r rr
r r

α θ
α θ α θ

α θ
α

α θ

α θ α θθ α
α θ α θ

 
− 

+ + 
 +

− 
− + 

 − + 
   − + +  + +  

 

Christoffel symbols κ
µνΓ  (Schwarzschild) have the values  

( ) ( )0

2 2

1 10, ,0,0 , ,0,0,0 , 0,0,0,0 , 0,0,0,0
1 12 1 2 1r r
r r

µν

    
    
    Γ =
       − −              

 

( )( ) ( )( )1 2
3

2

1 1,0,0,0 , 0, ,0,0 , 0,0, 1 ,0 , 0,0,0, 1 sin
12 2 1

r r r
r r

r

µν θ

  
  −   Γ = − −      −      

 

( ) ( )( )2 1 10,0,0,0 , 0,0, ,0 , 0, ,0,0 , 0,0,0, 0,0,0, cos sin
r rµν θ θ    Γ = −    

    
 

( ) ( )3 1 10,0,0,0 , 0,0,0, , 0,0,0,cot , 0, ,cot ,0
r rµν θ θ    Γ =     

    
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