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Abstract 
In the presented work a closed analytical expression is obtained that describes 
the critical photon orbits in the equatorial plane of a spinning Kerr black hole 
(BH). A significant difference in the behavior of photons with prograde and 
retrograde directions of rotation is shown. The photons with prograde rota-
tion exhibit an exponential increase in the deflection angle together with the 
number of rotations around the BH as its spin parameter increases. The 
number of rotations exceeds 103 when spin parameter of the BH reaches 
0.999. At the same time this value decreases insignificantly for reverse rotat-
ing photons and is less than that for the non-spinning Schwarzschild BH. The 
transition to a zero spin limit made it possible to determine the number of 
photon rotations along the critical trajectory for such BHs. 
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1. Introduction 

Despite the fact that the study of recently discovered gravitational waves offers a 
new method of obtaining knowledge about the black holes (BH), the analysis of 
the trajectories of massive and massless particles is still the most important 
source of information about these largely mysterious physical objects.  

Recently obtained by the collaboration of the event horizon telescope (EHT) 
data on light bands in the vicinity of the supermassive object in the heart of the 
galaxy M87 [1] once again demonstrated the importance of solutions for null 
geodesics in the Schwarzschild and Kerr spacetimes. Even though the analysis of 
temporal and null (lightlike) geodesics has been going on for almost 100 years, 
starting with Ref. [2], many researches are now focused on this topic. The most 
significant pioneering works in the field have been carried out by C. Darwin [3] 
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(in the Schwarzschild spacetime) and S. Chandrasekhar [4] (in the Kerr space-
time). The results of their works are described in detail in Chandrasekhar’s own 
book as well as in books of other authors [5] [6]. A review over the last decade 
can be found in [7]).  

All calculations accomplished so far have been performed through transfor-
mation of radial coordinate r into an auxiliary intermediate function u = 1/r. 
This technique originates in classical celestial mechanics long before the relati-
vistic era and is explained by quite clear reason. It is a desire to remove the sin-
gularity at the origin of coordinates to infinity and, at the same time, to include 
the physical infinity, which is a source and (often) an outlet for test bodies, and 
very often the position of the observer, in the field of events. 

The most general results for equatorial orbits in the Kerr spacetime were ob-
tained by Chandrasekhar, who also used the inverse radius method. However, 
although he presented the result for critical trajectories in integral form, he could 
not reach a closed analytical expression.  

As a consequence, this section has been presented by him with only very li-
mited numerical results. Whereas we regard critical trajectories as most impor-
tant, while they separate the photons which undergo deflection and retreat back 
to infinity from those falling into the events horizon. 

This gap was largely filled by the authors [8], who found, in particular, a sig-
nificant difference in behavior between photons with two directions of rotation 
around the BH, coinciding with its rotation and opposite to it. 

In the present work, calculations of critical photon trajectories in the Kerr 
spacetimes are limited to equatorial planes only. Furthermore, they have been 
performed without the previously mentioned preliminary transformation and 
were carried out in the natural radius-azimuth angle coordinate system instead. 
This has allowed us to find the analytical solution for critical trajectories for the 
Kerr metric that has not been known previously and to obtain both a new and a 
simpler presentation of the solution for the Schwarzschild spacetime.  

The paper consists of two parts. The first part is devoted to the calculation of 
the critical photon orbits in the spinning Kerr spacetime, but exclusively in the 
equatorial plane. More general cases which are not limited in this way and in-
clude not only flat, but also spatial orbits are considered in other works [9] [10] 
[11] [12]. The second part deals with the same subject in the Schwarzschild me-
tric using the result obtained in the previous part.  

In both cases, only angular geodesics are considered, since radial ones are 
covered in sufficient detail in the book [4].  

It is also assumed that the particles source is located at a sufficiently large dis-
tance from the event horizon, in any case, many times greater than the Schwarz-
schild radius.  

2. Kerr Spacetime 

The Kerr line element (using Boyer-Lindquist coordinates) can be written (c = G 
= 1) [6],  
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Here 2 2 2cosr a θΣ = + , 2 22r Mr a∆ = − + , 
Ja
M

=  is the angular mo-

mentum per unit mass. 
Taking into account that for massless particles ds2 = 0, the angular momen-

tum L and energy E are integrals of motion, for the equatorial plane θ = π/2 in 
Ref. [13] the following equation is derived: 

( ) ( )

( )

22 3 2 22

2

2d

2

r r b a M b ar
d r br M a bϕ

 ∆ − − + −   = 
  + −  

,           (2.2) 

where b = L/E is an impact parameter. 
It should be emphasized, that the Kerr metric has only axial symmetry instead 

of the spherical one for the Schwarzschild metric, therefore, not only equatorial, 
but also other types of orbits are possible. The orbits of massless particles in 
other planes, as well as spherical orbits, can be found in other works mentioned 
above. 

The cubic polynomial in Equation (2.2) can be transformed, taking into ac-
count that the critical trajectory is characterized by two identical roots, and the 
third is twice as large and has the opposite sign. Thus, the sum of all roots is ze-
ro. 

Thereby 

( ) ( ) ( ) ( )2 23 2 2 2 2c c c cr r b a M b a r r r r− − + − = − + ,        (2.3) 

where bc is the critical impact parameter [4] 
2 2 23c cb r a= +  

It is well known that critical radii for Kerr metric are [14]  

22 1 cos arccos
3c

ar M
M

   = + −   
   

,              (2.4) 

where a > 0 for prograde spinning photons and a < 0 for retrograde ones. Thus  

( ) ( )1 0 3 0 4c cM r a M r a M≤ > ≤ ≤ < ≤ ,            (2.5) 

so Schwarzschild case a = 0 corresponds to the intermediate position rc = 3M. 
Integration of the Equation (2.2) allows us to find the equatorial null trajecto-

ries, as follows  

( )
( )( ) ( )2 2

2
d

2 2r c c

br M a b r
r

r Mr a r r r r r
ϕ

∞ + −  =
− + − +

∫ .          (2.6) 

The limits of integration were chosen so as to automatically satisfy the boun-
dary condition:  
when r →∞ , 0ϕ = . 
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As a result of sufficiently long transformations and integrations, the final ex-
pression of the trajectory has the following form 

( ) ( ) ( ) ( ) ( ) ( )( )
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Here, to shorten the expression, we introduced the notations: 
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along with the well known expressions [4]  
2 2r M M a± = ± − .                  (2.13) 

Formulae (2.7)-(2.13) allow plotting critical photon trajectories around a 
spinning black hole (Figure 1). The direction of rotation of the black hole is 
conventionally taken to be clockwise. The radius of each final section of the orbit 
is 10M. The figures show parts of the orbit near the BH for photons with spin 
parameters a/M = −0.9 (a), 0.9 (b), 0.8 (c), and 0.95 (d).  

It is clearly seen that the number of the rotations for prograde rotating pho-
tons increases with the growth of the spin parameter. On the contrary, the 
number of revolutions for photons with the opposite direction of rotation does 
not increase. On Figure 2 these results are shown more precisely. The Figure 
shows a section of the trajectory for photons of both directions of rotation at 
distances 100M and 10M from the BH (2.a—with reverse rotation and 2.b and 
2.c—with direct one). The influence of the BH gravitational field is practically 
negligible at a large distance for both directions of photons. The dotted lines 
show the asymptotic values at large distances calculated by formula (3.5). The 
influence of gravitational field at a closer distance leads to a strong exponential 
increase in the azimuthal angle for photons of direct rotation. At the same time,  
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Figure 1. Critical photon orbits in vicinity of the BH. (a) a/M = −0.9; (b) a/M = 0.9; 
(c) a/M = 0.8; (d) a/M = 0.95. a < 0 describes retrograde spin, a > 0 indicates pro-
grade spin. BH spinning direction is conventionally taken clockwise. Dotted line in-
dicates the critical photon ring. Radius of each shown area corresponds to 10M.  
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Figure 2. Plot of photon rotation angle versus spin para-
meter. Distances from the BH are 100M and 10M. Dotted 
lines indicate asymptotic values according Equation (3.5). 
(a) Retrograde spin; (b) and (c) Prograde spin. 

 
however, the effect of the action for photons of reverse rotation is completely 
different. The azimuthal angle decreases slightly. Figure 3 shows the number of 
photon revolutions around the BH calculated according to our formulas the de-
pending on the spin parameter. It also exhibits an exponential increase for pro-
grade spinning photons and a slight decrease for retrograde spinning ones. The 
number of rotations exceeds 103 when spin parameter reaches 0.999. It should be 
emphasized that the calculated number of revolutions means their number from 
an infinitely distant source up to the photon circle, and not on it. The latter 
means that calculation is possible only up to the distance ( )151 10cr

−+ , since at 
smaller distances, as well as on the circle itself, the integral diverges. This is a 
mathematical manifestation of the instability of a circular orbit. At the same 
time, this fact can be used as proof of the instability.  

Our results made it possible to determine the number of rotations also for 
non-spinning Schwarzschild black hole. This is also possible up to the same li-
miting distance to the circle stated above and a/M = 10−4. The number of rota-
tions Nsch, calculated from the presented expressions, is 5.57.  

It should also be noted that, although all spatial dimensions of the orbit are 
proportional to the BH mass M, which sets the scale, the azimuthal angles, as it 
follows from expression (2.7), do not depend on M.  

3. Schwarzschild Spacetime 

The calculation of the critical trajectory for the Schwarzschild metric is certainly 
possible, starting from the integral (2.6), if we set a = 0 in it. However, this is 
completely redundant, since we have already calculated it in a general form. 
Therefore, in our result (2.7) it suffices to put a = 0. It turns out that terms 2 and 
4, as well as 3 and 5, cancel each other out. As a result  

( ) ( )r Z rϕ = − ,                       (3.1) 
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Figure 3. Plot of the number of revolutions around the BH 
on a trajectory from infinity to the critical photon circle 

( )151 10cr
−+  depending on the spin parameter. 1—prograde 

and 2—retrograde spinning photons.  
 

or after substitution ( )0 3cr M=  we get 

( )
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3 33
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After obvious transformations we obtain the final result  

( ) ( )
1

9 33 1
2 2
Mr M ch shϕ ϕ

−
 

= + − −  
 

.              (3.3) 

Traditionally quoted [4] [15] result for critical photon orbit in the Schwarz-
schild spacetime belongs to sir C.G. Darwin [3], who used the auxiliary coordi-
nate variable method u = 1/r and found that 

2 01 1 tanh
6 2 2

u
M M

ϕ ϕ− = − +  
 

,               (3.4) 
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Figure 4. Comparison of the classical expres-
sion (3.4) (dotted line) and the derived de-
pendence (3.3) (solid line). 

 
where  

2 0 1tanh
2 3
ϕ

= . 

This result looks clearly different from the expression (3.3). Despite the ap-
parent difference between the two solutions, it can be shown that both of them 
are identical. The simplest way to verify this statement without tedious proof is 
to plot both expressions. They match perfectly (Figure 4). Nevertheless, from 
the expression (3.3) the well-known properties of the orbit are immediately ob-
vious, while from the classical result (3.4) it is not so clear.  

Equation (3.3) implies that when cr r�  and 1ϕ �  we get quite unders-
tandable approximation for large distances  

3 3 cbM
r r

ϕ = = ,                      (3.5) 

which is used in Figure 2(a) and Figure 2(b). 
Equation (3.3) also implies the law of approaching the circular orbit. Assum-

ing 1ϕ �  we obtain  

( )expcr r ϕ− −∼                        (3.6) 

It is easy to notice that ( ) 15exp 2 0.6 10schN −− = ×π  coincides with the smallest 
distance to the critical radius which it was possible to achieve when we calcu-
lated the number of revolutions.  

4. Conclusion 

Closed analytical expressions are derived that describe the full critical trajectory 
of photons motion in the equatorial plane of a Kerr black hole. Our detailed 
formulas make it possible an accurate description of the trajectories for both di-
rections of rotation for an arbitrary value of the BH spin parameter. Our results 
show that the orbits of photons with direct rotation can include many more rev-
olutions (up to hundreds of times) around the BH than for photons with the 
opposite rotation direction. This conclusion may be of particular importance for 
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the lensing effect. These photons, travelling very close to the unstable circular 
orbit, generate an infinite sequence of additional images that contribute to the 
total flux received by the observer [16].  
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